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ABSTRACT 

In Wireless Sensor Networks (WSNs), ensuring secure and reliable communication amidst various cyber 

threats is a pivotal challenge. Existing security methods often struggle with high computational demands 

and do not adequately address the unique characteristics of WSNs, such as the limited energy resources 

and their susceptibility to specific types of attacks like blackhole and Sybil attacks. The proposed 

Lightweight MG-Net Model addresses security and performance challenges in WSNs by integrating a 

Trust Model, Anomaly Detection, and Secure Communication protocols into a novel hybrid deep learning 

framework. This framework combines MobileNet, which utilizes depthwise separable convolutions for 

efficient spatial feature extraction, with Gated Recurrent Units (GRUs) to capture temporal dependencies, 

enabling precise real-time anomaly detection with reduced computational demands. Trust management 

leverages a modified EigenTrust algorithm, dynamically updating trust scores based on node interactions 

to optimize reliability across network operations. The anomaly detection component was rigorously trained 

using a labeled dataset that includes various attack scenarios such as blackhole attacks, where detection 

accuracy exceeds 97.5%, and Sybil attacks, highlighting its robustness against sophisticated threats. Secure 

communications are upheld by the Datagram Transport Layer Security (DTLS) protocol, ensuring data 

integrity and confidentiality with an encryption success rate of 97%. Operational performance metrics are 

evaluated through simulations, showcasing the system’s efficiency with a detection latency under 2 s and 

energy consumption that is 30% lower than traditional security frameworks. Overall, the Lightweight 

MG-Net Model enhances WSN security without compromising on efficiency, demonstrating significant 

advancements in trust management, anomaly detection accuracy, and secure, low-latency communications. 

Keywords-trust; energy; detection; attacks; WSN;GRU; DTLS 

I. INTRODUCTION  

Wireless Sensor Networks (WSNs) are applied significantly 
to achieve automatic and better observing of numerous areas, 
from industrial settings to natural habitats [1-3]. As these 
networks become more integrated into critical infrastructure, 
their vulnerability to cyber threats grows, emphasizing the need 
for strong security measures [4-6]. Trust management is critical 
in WSNs for ensuring the reliability of node interactions and 
mitigating potential risks posed by malicious actors [7-10]. 
Traditional security mechanisms frequently fail to meet the 
resource constraints that characterize WSNs, such as limited 
energy and computational power [10, 11]. Furthermore, the 
nature of WSNs makes them vulnerable to specific attacks such 

as blackhole, Sybil, and node replication attacks, making their 
detection and management a significant challenge [12]. 

In response to these challenges, this paper introduces the 
Lightweight MG-Net Model, a novel security framework 
tailored specifically for WSNs. This model combines a 
sophisticated trust management system, advanced anomaly 
detection, and secure communication protocols into a unified 
solution designed to meet the operational requirements of 
WSNs. The model achieves effective and precise anomaly 
identification by employing the best performing mobile 
convolutional base model MobileNet followed by Gated 
Recurrent Units (GRUs) temporal dependency algorithm, 
thereby enhancing network protection in general. The 
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contributions of this work are significant in advancing the field 
of WSN security and are outlined as follows: 

 Hybrid Deep Learning Framework: The Lightweight MG-
Net Model was developed, which integrates MobileNet for 
efficient spatial feature extraction and GRUs for capturing 
temporal dependencies, optimizing both security and 
computational efficiency. 

 Enhanced Trust Management: A modified EigenTrust 
algorithm that dynamically updates trust scores based on 
node interactions was implemented, significantly improving 
the reliability and robustness of network operations against 
malicious attacks. 

 Real-time Anomaly Detection: High-accuracy anomaly 
detection was achieved with the integration of deep learning 
methods, capable of identifying subtle and sophisticated 
threats in real-time, thus enhancing the protective measures 
in WSN environments. 

 Secure Communication Protocols: Datagram Transport 
Layer Security (DTLS) was utilized to ensure secure 
communication across the network, protecting data integrity 
and confidentiality against various cyber threats. 

 Comprehensive Performance Evaluation: Extensive 
simulations were conducted to validate the model's 
effectiveness, demonstrating superior performance metrics 
in terms of detection accuracy, energy efficiency, and 
operational latency compared to traditional security 
frameworks. 

II. RELATED WORKS 

In the world of WSNs, detecting malicious nodes is critical 
to maintaining network integrity and performance. The 
Optimal Lead Node Election Algorithm (OLNEA) [13] 
achieved 91% detection accuracy for identifying malicious 
nodes. This approach, while effective, has some limitations. 
Specifically, the OLNEA may struggle in dynamic network 
environments where node behavior can change quickly, 
potentially resulting in inaccuracies in the long-term reliability 
of trust assessments. Similarly, authors in [14] created 
Lightweight Trust Management based on Bayesian and 
Entropy (LTMBE). This method aims to manage trust 
efficiently in WSNs by evaluating trustworthiness using a 
probabilistic approach and entropy calculations. Although this 
method is intended to be lightweight, it may be limited by its 
reliance on the accuracy and availability of prior data, 
reducing its effectiveness in environments with sparse or 
incomplete data. Authors in [15] used a decision tree model to 
detect malicious nodes with an impressive 96% accuracy. 
However, the decision tree model is prone to overfitting, 
particularly when the training data do not reflect the network's 
typical activity. This could result in excellent performance on 
known data but poor generalization to new or evolving attack 
vectors in the network. Authors in [16] took a different 
approach, employing the Dynamic DV-Hop algorithm, which 
dynamically recalculates the network's shortest paths. While 
this method is useful for adapting to changes in network 
topology, its performance can suffer in highly mobile 

environments where frequent recalculations can result in 
significant overhead and delay in response times. 

Authors in [17] used Principal Component Analysis (PCA) 
and Support Vector Machine (SVM) algorithms to achieve 
92% accuracy and a 60% F1 score in trust management. The 
PCA-SVM approach excels at dimensionality reduction and 
classification, however, the relatively low F1 score indicates a 
limitation in balancing precision and recall, which is critical 
for the practical application of trust assessments in operational 
networks. Authors in [18] proposed a model based on random 
forest and fuzzy logic to improve decision-making regarding 
node trustworthiness. While the use of fuzzy logic effectively 
can handle uncertainty and imprecision, the random forest 
component requires a significant amount of data for training, 
which may be a constraint in scenarios with limited data 
availability. Authors in [19] proposed a lightweight encryption 
and signature-based scheme for securing communications 
within WSNs. Despite its advantages in terms of data integrity 
and confidentiality, the computational overhead associated 
with encryption and digital signatures may not be appropriate 
for all sensor nodes, particularly those with strict energy and 
processing power constraints. Authors in [20] introduced the 
Trusted Node Feedback-Based Clustering model (TNFC), 
which achieved an average detection accuracy of 97% in 2023. 
The TNFC model uses trusted node feedback to improve 
clustering and trust evaluation. While this model is highly 
accurate, its reliance on the availability and reliability of 
feedback from nodes may limit its effectiveness if trusted 
nodes are compromised or incorrectly classified, resulting in 
cascading trust evaluation errors across the network. 

Table I briefly presents the key aspects of each 
methodology discussed above, providing a clear view of their 
performance metrics and the challenges they face. 

TABLE I.  COMPARATIVE ANALYSIS OF WSN SECURITY 
METHODOLOGIES 

Methodology 
Performance 

metrics 
Limitations 

OLNEA [13] 
91% detection 

accuracy 

Struggles in dynamic 

environments 

LTMBE [14] 
Efficient trust 

evaluation 

Limited by accuracy of 

prior data 

Decision tree model [15] 96% accuracy 
Prone to overfitting in 

variable data scenarios 

Dynamic DV-Hop 

algorithm [16] 

Adapts to topology 

changes 

High overhead in mobile 

environments 

PCA and SVM 

algorithms [17] 

92% accuracy, 

60% F1 score 

Low F1 score indicates 

precision-recall balance 

issues 

Random forest and fuzzy 

logic [18] 

Effective handling 

of uncertainty 

Requires substantial data 

for training 

Energy-efficient trust 

and quarantine-based 

secure data transmission 

[19] 

Moderate energy 

consumption 

High computational 

overhead 

TNFC [20] 
97% detection 

accuracy 

Dependent on reliable 

node feedback 
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III. THE PROPOSED SYSTEM 

The proposed system (Figure 1) addresses the security and 
performance challenges in WSNs by integrating three key 
components, namely Trust Model, Anomaly Detection, and 
Secure Communication. The system's core is the Lightweight 
MG-Net Model, a hybrid deep learning framework that 
combines MobileNet and GRU to detect anomalies efficiently 
and accurately. MobileNet is used for spatial feature extraction, 
with depthwise separable convolutions to improve 
computational efficiency, whereas GRU captures temporal 
dependencies in network traffic data, modeling sequential 
patterns like transmission rates and error metrics. This 
combination establishes a solid foundation for detecting 
network anomalies in real time while minimizing 
computational overhead. 

 

Fig. 1.  Block diagram of the proposed system. 

The system begins with the trust model, which is based on 
the EigenTrust algorithm but has been modified to account for 
WSN constraints: 

���0� � ����	     (1) 

where Ti(0) represents the initial trust score of node i and Tinit is 
a constant value. 

Each node starts with a predetermined trust score, which is 
dynamically updated based on direct interactions and feedback 

from neighboring nodes. This model employs the EigenTrust 
algorithm, adapted to the unique constraints of WSNs. Trust 
scores are updated dynamically based on direct interactions and 
feedback from neighboring nodes using (2): 

���
 � 1� � 
∑ ������
� � �1 � 
�����	
�
���   (2) 

where α is the weighting factor, cji represents the trust 
transferred from node j to node i, and N is the number of 
neighboring nodes. 

The trust computation logic is embedded in sensor node 
firmware, which guides network management decisions such as 
routing and data aggregation integrity. Nodes that engage in 
suspicious behavior, such as packet dropping or data 
tampering, are penalized, ensuring that the network remains 
highly reliable and resilient. 

The Lightweight MG-Net Model handles anomaly 
detection by processing data streams and identifying deviations 
from normal patterns. The model is trained using a labeled 
dataset that includes both normal operational behaviors and 
anomaly scenarios such as blackhole attacks, irregular 
transmission rates, and data tampering incidents. MobileNet is 
fine-tuned to extract spatial features, while GRU is trained to 
analyze temporal dependencies within the dataset. The 
MobileNet utilizes depthwise separable convolutions to extract 
spatial features: 

�� � ������ ∗ ��� � ��    (3) 

where ��  is the output, ���� is the input, �� is the layer's kernel, 
�� is the bias, and f is the activation function. 

The GRU part of the model captures temporal dependencies 
and is defined by: 

�	 � ���� !	 � �� ��" ℎ	�� � �" �   (4) 

$	 � �%��&!	 � ��& ��"&ℎ�	��� � �"&'  (5) 

(	 � tanh%���!	 � ��� � �	 ∗ ��"�ℎ	�� � �"��' (6) 
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where �	, $	, and (	 are the reset gate, update gate, and new 
gate activations at time t, respectively.   

The model is deployed on network gateways following 
optimization techniques such as quantization and pruning to 
ensure that it operates efficiently within WSN resource 
constraints. Once deployed, the model continuously monitors 
data flows, triggering alerts and isolating affected nodes when 
anomalies are detected, allowing for real-time mitigation of 
potential security threats. 

The DTLS protocol enables secure network 
communication. DTLS uses end-to-end encryption to protect 
data transmissions from eavesdropping, tampering, and replay 
attacks. Automated key exchange and renewal processes ensure 
data confidentiality and integrity while minimizing latency and 
energy consumption. All node-to-node and node-to-gateway 
communications are encrypted and optimized to meet the 
energy and processing limitations of WSN devices. The DTLS 
protocol is an adaptation of the TLS (Transport Layer Security) 
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protocol designed specifically for use with datagram protocols. 
DTLS provides privacy and data integrity between two 
communicating applications by preventing eavesdropping, 
tampering, and message forgery. Unlike TLS, which is 
intended for stream-based protocols, DTLS handles data that 
can be lost, re-ordered, or delivered in duplicate, typical 
characteristics of datagram transports like UDP. This is crucial 
in WSN environments, where data packets are frequently 
transmitted over unreliable or lossy channels. DTLS achieves 
this by maintaining a consistent connection state and 
encrypting data with strong security mechanisms, ensuring that 
even if packets are dropped or received out of order, the 
integrity and confidentiality of the data are upheld, thereby 
enabling secure and reliable communication across the 
network. 

In the proposed Lightweight MG-Net Model, we utilize 
post-training quantization to enhance the deployment efficiency 
on resource-constrained devices typical of WSNs. This type of 
quantization reduces the model size and speeds up inference by 
converting the floating-point precision of the weights and 
activations to lower precision integers after the model has been 
trained. Specifically, we apply 8-bit integer quantization, which 
strikes an optimal balance between performance and model 
accuracy, ensuring that our system remains robust and 
responsive under operational conditions. The key management 
process is automated, optimizing the trade-off between security 
and system performance: 

�-.�/0 � 1(��.2
��-.3�4 , 67(�-�  (8) 

where Keynew and Keyold are the new and old encryption keys, 
respectively, and Nonce is a random number generated for each 
session to ensure security. 

The system is rigorously tested and validated using 
simulations. Several attack scenarios, including blackhole 
attacks and Sybil attacks, were used to evaluate the system's 
resilience and anomaly detection capabilities. Security 
performance, including detection rates and false positive rates, 
is evaluated, as is operational performance, which is measured 
by latency, energy consumption, and network throughput. By 
combining trust management, robust anomaly detection via the 
Lightweight MG-Net Model, and secure communication 
protocols, the proposed system strikes a balance between 
security and efficiency, making it a viable solution for WSN 
deployment. 

In our methodology, the Lightweight MG-Net Model 
specifically targets a range of sophisticated cyber threats within 
WSNs. We address blackhole attacks where malicious nodes 
intercept and discard packets while falsely claiming the shortest 
route to the destination. The model detects these by monitoring 
for unexplained traffic drops. Sybil attacks, where a node 
assumes multiple identities to manipulate network decisions, 
are mitigated through trust scores dynamically adjusted by our 
modified EigenTrust algorithm. Node replication attacks are 
countered by analyzing spatial and temporal data to identify 
unusual patterns indicative of cloning. Additionally, data 
tampering is addressed through the use of DTLS, which 
ensures the integrity and confidentiality of the network data. 
Compined, these strategies provide a comprehensive defense 

mechanism, enhancing the resilience of WSNs against diverse 
and dynamic security threats. 

A. Architecture 

The Lightweight MG-Net Model's architecture combines 
MobileNet and GRU as shown in Figure 2 to achieve efficient 
and accurate anomaly detection in resource-constrained WSNs. 
The model is built around MobileNet, which uses depthwise 
separable convolutions to extract spatial features from network 
data while minimizing computational demands. Its lightweight 
structure significantly reduces the number of parameters 
compared to traditional convolutional neural networks, making 
it ideal for WSNs with limited resources. GRU layers 
supplement MobileNet by focusing on temporal analysis, 
which captures sequential patterns in data like transmission 
rates, error frequencies, and node behaviors. This dual 
capability allows the model to effectively identify anomalies by 
analyzing both spatial and temporal features, ensuring real-time 
detection while not overwhelming the system's computational 
capabilities. 

 

Fig. 2.  Proposed model architecture. 

The model is fine-tuned with carefully selected 
hyperparameters to optimize its performance within the 
operational constraints of wireless sensor networks. The input 
size is standardized to 128×128 to ensure consistency when 
processing spatial features. Dead nodes during training are set 
to 32 have strong balance between memory utilization and time 
and the learning rate was initially set to 0.001 and reduced 
dynamically using step decay for faster convergence. The GRU 
component has 64 units and as with the case of temporal 
modeling, it gives a strong performance without demanding 
immense computational power. Training takes 50 epochs. For 
preventing overfitting early stopping is used based on the 
validation loss and optimize the learning process by using 
Adam optimizer. To improve generalization, repeated use of 
the GRU layers is retained and the dropout rate has been kept 
to 0.3. As mentioned earlier, binary cross entropy is commonly 
used in classification and is perfectly tuned for anomaly 
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detection problem. Following training, the model is quantized 
and pruned to further reduce its memory footprint, making it 
suitable for real-time deployment. 

In the Lightweight MG-Net Model, the dropout rate was set 
to 0.3 to effectively prevent overfitting while maintaining 
adequate learning capacity. Dropout is a regularization 
technique used to avoid overfitting in neural networks by 
randomly setting a fraction of input units to zero during 
training. Setting the dropout rate to 0.3 means that 30% of the 
neuron connections are randomly dropped in each training 
epoch, which helps in making the network less sensitive to the 
specific weights of neurons. This encourages the model to learn 
more robust features that are generalizable across different data 
samples, rather than memorizing or overfitting to the noise in 
the training data. 

The Lightweight MG-Net Model is unique due to its hybrid 
design, which combines MobileNet's efficiency in spatial 
feature extraction with GRU's strength in temporal dependency 
modeling. This novel combination ensures high detection 
accuracy while adhering to the energy and computational 
constraints of WSNs. By combining spatial and temporal 
analyses, the model can detect subtle anomalies that would 
otherwise be missed by approaches that focus solely on one 
aspect. Furthermore, the tailored hyperparameter configuration 
and post-training optimizations make the model extremely 
lightweight and adaptable, allowing for easy deployment in 
WSN gateways. These advancements establish the Lightweight 
MG-Net Model as a pioneering solution for anomaly detection 
in secure and efficient WSN environments. 

B. Algorithm  

The Lightweight MG-Net Model algorithm operates with a 
streamlined architecture designed for efficient anomaly 
detection in WSNs. 

Algorithm: Lightweight MG-Net Model 

Step 1: Initialize Parameters   

Step 2: Preprocess Input Data   

Step 3: Build the Model   

Step 4: Compile the Model   

Step 5: Train the Model   

Step 6: Optimize the Model   

Step 7: Deploy the Model   

Step 8: Perform Inference   

Step 9: Handle Anomalies   

Step 10: Evaluate the Model   
 

IV. RESULT AND DISCUSSION 

For simulations, we used MATLAB on a PC with an Ultra 
Core 5 processor, 16 GB RAM, and a 64-bit operating system. 
This configuration provided sufficient computational power for 
medium-scale network simulations, which included 100 nodes 
to effectively replicate the dynamics and challenges 
encountered in typical WSN applications. This hardware 
configuration ensured that the simulations ran smoothly, 
handling real-time data processing and complex network 
behaviors without sacrificing performance. The use of a 
medium-scale network with 100 nodes allowed us to 

thoroughly test the model's scalability and robustness under 
realistic conditions, including various security threats like 
blackhole and Sybil attacks.  

In the simulation environment, we precisely selected 
parameters to accurately replicate the operational conditions 
typical of real-world WSN scenarios. For instance, we 
configured the simulation with 100 nodes to represent a 
medium-sized network, which is common in industrial and 
environmental monitoring applications. Each node was 
programmed to operate within a 50 m transmission range, 
which reflects the typical capabilities of commercial sensor 
nodes. The simulation time was set to 24 hours to observe the 
network behavior under a full day’s cycle of varying traffic and 
interaction patterns. The packet size was standardized at 128 
bytes, which is consistent with typical sensor data payloads. 
The decision to use these specific parameters was motivated by 
the desire to strike a balance between computational efficiency 
and realistic network dynamics, ensuring that the results are 
meaningful and scalable. This approach enables us to 
demonstrate the Lightweight MG-Net Model's effectiveness in 
managing network security and performance under a variety of 
challenging conditions. 

Figure 3 depicts the evolution of trust scores over time, 
with enhanced effects from cooperative behaviors, more 
significant impacts from malicious events, and recovery 
mechanisms. This visualization better depicts the dynamics of 
an effective trust model in a Wireless Sensor Network, 
demonstrating how trust can degrade significantly due to 
malicious activities and then recover due to positive node 
interactions. This plot demonstrates your trust model's 
resilience and adaptability, which are critical for maintaining 
network integrity and reliability. The rapid recovery of trust 
scores following detrimental activities demonstrates the 
effectiveness of the proposed trust management system in 
quickly re-establishing network reliability, which is crucial for 
maintaining continuous operation in dynamic WSN 
environments. 

 

 
Fig. 3.  Trust score over time. 

The plot in Figure 4 shows the trade-off between precision 
and recall for your system's anomaly detection component. The 
curve provides a visual representation of the model's ability to 
identify true anomalies while minimizing false positives. The 
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graph depicts how well the MG-Net model detects anomalies in 
network traffic, making it an important tool for ensuring 
security in the Wireless Sensor Network. The curve's proximity 
to the top-right corner highlights the MG-Net model's ability to 
achieve high detection accuracy while minimizing false 
positives, illustrating its practical utility in securing WSNs 
against sophisticated cyber threats. 

 

 
Fig. 4.  Trade-off precision - recall curve. 

 
Fig. 5.  Anomaly incident breakdown plot. 

The anomaly incident breakdown by type chart given in 
Figure 5 shows the number of incidents for each type of 
anomaly detected by your system. This visualization includes 
categories such as blackhole attacks, irregular transmission 
rates, data tampering, and sybil attacks. This stacked bar chart 

shows how the anomaly detection system responds to various 
threats, emphasizing the system's ability to identify and 
respond to a wide range of security challenges within the 
wireless sensor network. The varied response across categories 
underscores the model’s nuanced understanding of diverse 
attack vectors, showcasing its capability to tailor defenses to 
specific threats prevalent in Wireless Sensor Networks. The 
current trust levels across nodes are displayed in the radar chart 
of Figure 6. This visualization depicts the trustworthiness of 
each node in the network, with trust scores plotted in a polar 
coordinate system. The chart depicts differences in trust levels 
among the nodes, providing an intuitive understanding of 
which nodes are currently deemed more or less reliable based 
on their scores. 

 

 
Fig. 6.  Current trust levels plot. 

 

Fig. 7.  Frequency of anomaly alerts. 

The chart in Figure 7 shows the frequency of anomaly alerts 
over the course of a day. This graph depicts the number of 
anomaly alerts per hour, providing a detailed picture of how 
alert frequencies fluctuate throughout the day. This level of 
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granularity can be critical for determining when the network is 
most vulnerable to attacks or other security threats. This hourly 
breakdown can assist you in tailoring security measures and 
monitoring efforts to peak times, increasing the overall 
responsiveness and effectiveness of your anomaly detection 
system. 

 

 

Fig. 8.  Protocol integrity check success rate Guage chart. 

The Protocol integrity check success rate Guage chart is 
given in Figure 8. The green section depicts the percentage of 
secure communications handled successfully by the DTLS 
protocol, while the red section represents the failure rate. In this 
example, the system achieves a 97% success rate, 
demonstrating the secure communication protocol's 
effectiveness in preserving data integrity and confidentiality. 
This chart gives a quick, spontaneous representation of 
protocol performance and can be used to monitor security in 
real time. 

 

 

Fig. 9.  Histogram plot of final trust score. 

The final trust score distribution histogram provided in 
Figure 9 indicates a highly reliable model with the majority of 

trust scores clustered around 0.9. This visualization shows how 
the trust management system maintains a high level of network 
reliability and security across most nodes. The low spread and 
high average score effectively demonstrate the model's 
robustness and trust-enhancing abilities. 

Figure 10 demonstrates the attack period which is 
highlighted in red (time steps 10-20), demonstrating the impact 
on trust scores for specific nodes as they decline due to 
malicious activity. It also depicts the recovery phase following 
the attack (time steps 20-50). The trust scores gradually 
improve due to the system's trust management and anomaly 
detection mechanisms. This visualization effectively 
demonstrates the proposed system's robustness and resilience, 
highlighting its ability to handle and recover from security 
threats while maintaining network stability. 

 

 

Fig. 10.  System resilience under attack scenarios. 

Figure 11 shows the bar chart of energy consumption 
versus security overhead. This visualization shows how energy 
consumption increases slightly as more security features (Trust 
Model, Anomaly Detection, and DTLS) are added to the 
system. The relatively small increase in energy consumption 
demonstrates the effectiveness of our proposed model in 
maintaining high security without putting a significant energy 
burden on WSN nodes. 

Figure. 12 represents a bar chart depicting the latency 
impact of secure protocols. This plot shows a slight increase in 
communication latency after DTLS implementation, indicating 
the trade-off for improved data security. The minimal increase 
demonstrates our system's efficiency in maintaining low 
latency while ensuring strong encryption and secure 
communications. 
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Fig. 11.  Energy consumption vs security overhead. 

 
Fig. 12.  Latency impact. 

Figure 13 shows the detection rate bar chart which displays 
how well the system identifies various types of attacks, with 
detection rates consistently above 97.5%. The red lines display 
the recovery times (line plot) which indicate the time required 
for the system to recover the trust levels and stabilize following 
each type of attack, demonstrating effective recovery 
mechanisms. This plot demonstrates the system's ability to 
handle a variety of security challenges while maintaining high 
detection rates and reasonable recovery times. 

Table I and the hatched bar plot in Figure 14 show the 
detection accuracies of various models used for trust and 
malicious node detection in WSNs. The OLNEA [13] achieves 
91% accuracy, indicating reasonable reliability in detecting 
malicious nodes. The Decision Tree Model of [15] performs 
better with an accuracy of 96%, due to its robust classification 
capabilities. The PCA and SVM-based approach [17] achieves 

92% accuracy, demonstrating its strength in feature reduction 
and classification, despite limitations in balancing precision 
and recall. The TNFC model [20] achieves 97% accuracy, 
demonstrating its effectiveness in using node feedback for 
clustering and trust evaluation. Notably, the proposed model 
outperforms the other methods, with an accuracy of 97.5%, 
demonstrating its superior ability to address the complexities of 
trust management in WSNs.  

 

  

Fig. 13.  Detection rates under various attack scenarios. 

TABLE II.  DETECTION ACCURACY COMPARISON 

Model Accuracy 

OLNEA [13] 91 

Decision tree [15] 96 

PCA and SVM [17] 92 

TNFC [20] 97 

Proposed 97.5 

 

To further assess the effectiveness of the proposed 
Lightweight MG-Net Model, we have expanded our evaluation 
metrics to include the False Positive Rate (FPR) and the True 
Positive Rate (TPR). The FPR is particularly critical for 
determining the incidence of non-anomalous events mistakenly 
classified as threats, thereby evaluating the model’s specificity. 
Conversely, the TPR, or sensitivity, reflects the accuracy with 
which the model identifies genuine anomalies. These metrics 
are indispensable for a holistic evaluation, providing insights 
into the model's reliability and efficiency in real-world 
scenarios. Detailed analysis of these rates in our experiments 
shows that while maintaining a TPR of 98%, our model 
achieves an FPR of just 2%, indicating high accuracy and 
minimal disruption due to false alarms in WSNs. 

Figure 15 depicts the energy consumption across various 
node counts (5, 10, 30, 50) for the Multilevel Trust-Based 
method [12], OLNEA [13], Quarantine-Based [19], and the 
proposed method. The Multilevel Trust-Based [12] and 
OLNEA [13] methods consume more energy, with values 
rising steadily as the number of nodes grows, highlighting their 
less energy-efficient nature. The Quarantine-Based [19] 
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method consumes moderate energy across the respective nodes, 
indicating a balance between efficiency and functionality. In 
contrast, the proposed method maintains consistently low 
energy consumption, demonstrating superior efficiency, 
especially in larger networks. 

 

 
Fig. 14.  Detection accuracy comparison. 

 

Fig. 15.  Energy consumption comparison.l 

V. CONCLUSION 

The proposed Lightweight MG-Net Model improves the 
security of Wireless Sensor Networks (WSNs) by addressing 
critical performance and security issues. This hybrid deep 
learning framework, which combines MobileNet and Gated 
Recurrent Unit (GRU), excels at real-time anomaly detection 
while processing network behaviors efficiently and with low 
computational demands. The system uses a modified 

EigenTrust algorithm to dynamically update trust scores, 
ensuring node reliability and integrity, with a 97% success rate 
in maintaining stable network operations under stress 
conditions. The use of the Datagram Transport Layer Security 
(DTLS) protocol provides strong communication security, 
achieving a 97% encryption success rate and protecting data 
transmissions from a variety of cyber threats. Operational 
performance, validated through rigorous simulations, 
demonstrates exceptional detection accuracy of more than 
97.5% while using 30% less energy than traditional security 
frameworks and keeping network latency below 2 s. 
Furthermore, the model's ability to stabilize and recover from 
sophisticated network attacks, with recovery times of as little as 
10 s post-attack, demonstrates its resilience and adaptability, 
essential for deployment in complex, dynamic network 
environments.   

Future work could explore the adaptability of the MG-Net 
framework to other types of networks, such as Internet of 
Things (IoT) environments and smart grids, where similar 
security and efficiency challenges exist. 
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