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ABSTRACT 

The diagnosis and classification of depressive disorders pose significant challenges in mental healthcare, 

mainly due to overlapping symptoms, subjective evaluations, and variations in patient presentations. 

Traditional diagnostic approaches often lack objectivity and fail to capture the complex nature of 

depression across diverse populations. This study introduces a comprehensive framework that leverages 

advanced Machine Learning (ML) and Deep Learning (DL) models to improve the accuracy and reliability 

of diagnosing depressive disorders. Using the SAMM (Spontaneous Micro-Facial Movement) dataset, 

comprising 11,800 high-resolution facial images capturing spontaneous facial expressions, the proposed 

framework integrates dual embedding methods (GloVE and BERT) with hierarchical attention 

mechanisms for feature extraction. Parallel processing streams of LSTM and CNN architectures allow the 

recognition of intricate patterns across multimodal data. Experimental results showed superior 

performance across key metrics, achieving an accuracy of 94%, precision of 92%, recall of 93%, F1-score 

of 92.5%, and an AUC-ROC of 0.96. The proposed framework provides an efficient, interpretable, and 

scalable solution to advance mental health diagnostics, addressing the urgent need for objective and 

standardized tools in psychiatric care. 

Keywords-depression diagnosis; deep learning; multimodal analysis; hierarchical attention; feature fusion; 

clinical implementation 

I. INTRODUCTION  

Depressive disorders are a significant public health 
concern, affecting millions of people worldwide and ranking as 
one of the leading causes of disability [1]. Recent global 
analyses have highlighted the increasing prevalence of 
depressive disorders, particularly among adolescents and young 
adults, with concerning trends showing a 27% increase in cases 
between 1990 and 2019 [2]. These disorders encompass a 
variety of mental health conditions characterized by persistent 
sadness, decreased interest in activities, and cognitive 
impairments, which can severely impact an individual's quality 
of life. The complexity of these disorders manifests itself in 
various domains, including emotional regulation, cognitive 
function, and social interaction patterns. The diagnosis and 
classification of depressive disorders are fraught with 
challenges due to their multifaceted nature. In [3], the 
fundamental challenges in current classification systems were 

outlined, emphasizing the need for more precise diagnostic 
standards and highlighting the limitations of categorical 
approaches in capturing the spectrum of depressive symptoms. 
The reliance on subjective self-reports and clinical interviews 
introduces significant variability and potential bias in the 
diagnostic process, as demonstrated in a meta-analysis of 
cognitive biases in depression [4]. This research revealed 
systematic patterns in how depressed individuals process and 
report information, potentially affecting diagnostic accuracy. 
Cultural differences and stigma significantly affect the 
diagnostic process [4], while in [5] it was highlighted how 
discrimination influences the delivery of healthcare to 
individuals with mental illness, particularly in diverse cultural 
contexts. These limitations contribute to high rates of 
misdiagnosis or delayed diagnosis, as demonstrated in [6], 
which found misdiagnosis rates ranging from 25% to 50% in 
various clinical settings. 
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Traditional diagnostic approaches have evolved 
significantly with technological advancement. In [7], modern 
depression detection approaches were demonstrated through 
social media analysis, utilizing natural language processing 
techniques to identify linguistic markers of depressive states. In 
[8], the potential of transfer learning in medical applications 
was highlighted. The integration of Deep Learning (DL) 
techniques, as illustrated in [9], has opened new possibilities in 
healthcare diagnostics, allowing automated feature extraction 
and pattern recognition from complex clinical data. However, 
in [10], specific challenges were highlighted in depression 
diagnosis using DL approaches, including data quality, model 
interpretability, and clinical validation requirements. The 
complexity of handling diverse datasets was further 
emphasized in [11], where a comprehensive multimodal dataset 
was presented for mental disorder analysis, demonstrating the 
importance of standardized data collection and integration 
protocols. 

Recent advances in artificial intelligence have transformed 
the landscape of mental health diagnostics. In [12], crucial 
strategies for AI deployment in healthcare practices were 
outlined, addressing both technical and organizational 
challenges in implementation. In [13], the effectiveness of 
specialized language models for mental healthcare applications 
was demonstrated, introducing MentalBERT as a domain-
specific tool to understand psychological contexts. In [14], the 
potential of multimodal sensing techniques was showcased, 
combining audio, video, and text data for depression risk 
detection and achieving improved accuracy through cross-
modal feature fusion. In [15], a comprehensive overview of AI 
applications in mental health was presented, examining the 
evolution from rule-based systems to modern DL approaches. 

The integration of multiple diagnostic approaches has 
shown promising results in clinical settings. In [16], the clinical 
applications and barriers of AI in mental healthcare were 
discussed, highlighting the need for a balanced implementation 
that considers both technological capabilities and practical 
limitations. In [17], a hybrid model was proposed, combining 
various DL approaches for depression detection, incorporating 
both supervised and unsupervised learning techniques. In [18], 
the effectiveness of temporal machine learning was 
demonstrated in recognizing depressive patterns, utilizing 
sequential data analysis to track the progression of symptoms 
over time. In [19], the field was advanced through adaptive 
multimodal neuroimage integration, developing sophisticated 
algorithms to combine different types of brain imaging data. In 
[20], valuable insights into transfer learning applications for the 
detection of mental disorders were provided, particularly in 
resource-limited settings where large-scale data collection may 
be impractical. 

To address these gaps, this study proposes a novel 
framework that leverages advanced ML and DL models for the 
diagnosis and classification of depressive disorders. The 
framework integrates multimodal data analysis, combining 
facial image-based features with dual embedding techniques 
(GloVE and BERT) and hierarchical attention mechanisms to 
extract meaningful representations from high-dimensional data. 
This approach employs a hybrid architecture of Long Short-

Term Memory (LSTM) networks and Convolutional Neural 
Networks (CNNs) in parallel processing streams, enabling the 
recognition of both temporal and spatial patterns. The proposed 
framework was designed to process data from the SAMM 
(Spontaneous Micro-Facial Movement) dataset [21], which 
contains 11,800 high-speed (200 fps) video recordings 
capturing spontaneous facial expressions. Facial features are 
particularly valuable for analyzing microexpressions, as they 
capture subtle emotional cues and involuntary facial 
movements that occur in fractions of a second. The primary 
contributions of the proposed work are: 

 Novel multimodal feature extraction: The proposed 
framework integrates dual embedding methods (GloVe and 
BERT) with hierarchical attention mechanisms to extract 
meaningful patterns from textual and visual data, enhancing 
the understanding of depressive disorder indicators. 

 Hybrid DL architecture: The proposed framework employs 
a parallel processing approach using LSTM and CNN 
models, enabling robust pattern recognition across 
multimodal datasets, thus improving diagnostic accuracy 
and reliability. 

 Scalable and interpretable solution: By providing an 
efficient, interpretable, and scalable diagnostic framework, 
the proposed approach addresses the need for objective and 
standardized tools in psychiatric care, facilitating broader 
clinical adoption and potential real-world applications. 

II. PROPOSED METHOD  

The proposed framework uses a multimodal approach to 
enhance the diagnosis and classification of depressive disorders 
by integrating facial image data, textual features, and 
hierarchical attention mechanisms. It employs a hybrid 
architecture consisting of CNNs for spatial pattern recognition 
and LSTM networks for sequential data modeling. The 
proposed framework implements a novel architecture for 
depression diagnosis through the integration of advanced 
natural language processing and DL techniques. As shown in 
Figure 1, the framework consists of three primary stages: 
feature extraction, DL modules, and fusion-based 
classification. This hierarchical design enables comprehensive 
analysis of input data while maintaining computational 
efficiency and model interpretability. The framework processes 
input data through parallel streams, each specialized for 
different aspects of depression manifestation, before combining 
them through an adaptive fusion mechanism. The modular 
design ensures extensibility and allows for independent 
optimization of each component while maintaining end-to-end 
training capabilities. The proposed framework consists of the 
following modules. 

A. Data Preprocessing 

The SAMM dataset [21] was used, which consists of high-
resolution images of spontaneous facial expressions. The 
preprocessing steps included: 

 Image normalization: Each image was normalized to have 
zero mean and unit variance: 
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�� = ���
�   

where � is the original image, � is the mean pixel value, and 
	 is the standard deviation. 

 Text embedding preprocessing: Textual features, if 
available (e.g., self-reported symptoms), are tokenized and 
transformed into embeddings using GloVe and BERT: 


token = ��token  

where � represents the embedding function for each token. 

 

 
Fig. 1.  Architecture of the proposed system. 

B. Feature Extraction 

1) CNN for Facial Image Feature Extraction 

Facial images are processed through a CNN to extract 
spatial features: 

�image = CNN���  

where �image ∈ ���  represents the spatial feature vector 

extracted from the image. The CNN model consists of 
convolutional layers with ReLU activation: 

�� = ReLU��� ∗ ���� + ��  

where ∗ is the convolution operation, �� and �� are the weights 
and biases of the �-th layer, and ��  is the feature map at layer �. 
2) Text Embedding Using GloVe and BERT 

Textual features are embedded using GloVe and BERT 
embeddings: 

�text-glove  =  GloVe�Text   
�text-bert  =  BERT�Text   
These embeddings are concatenated to form a unified 

textual feature vector: 

����� = �������� !� ⊕ ����#$  

C. Hierarchical Attention Mechanism 

To focus on the most relevant features, a hierarchical 
attention mechanism is applied to both facial and textual 
features. The attention weights %& are calculated by: 

%& = ��'()*
+!,

∑ ��'.)/
+!0/

  

where 1&  is the feature vector at time step 2, and 3 is a learnable 
context vector. The weighted feature representation is then 
calculated by: 

�attn = ∑ %&1&&   

D. Hybrid LSTM-CNN Architecture 

The framework processes the multimodal features through 
parallel LSTM and CNN streams: 

 LSTM for Sequential Data: 

ℎ� = 5678��9��:, ℎ���  

where ℎ� is the hidden state at time <. 

 CNN for Spatial Features: 

�='9�&9� = >??��9�  

The outputs of the LSTM and CNN streams are concatenated: 

�@&:9� = ℎA ⊕ �='9�&9�  

E. Classification Layer 

The final feature representation �@&:9�  is fed into a fully 

connected layer with a softmax activation to predict the 
probability of depressive states: 

BC = DE�<FGH�@ ⋅ �@&:9� + �@J  

where �@  and �@J are the weights and biases of the fully 

connected layer, and BC represents the predicted class 
probabilities. 

F. Loss Function 

The framework uses categorical cross-entropy loss to 
optimize the model: 

ℒ = − �
M ∑ ∑ B&,J

N
JO� log(BS,JT ,M

&O�   

where ? is the number of samples, > is the number of classes, 

B&,J  is the ground truth label, and BS,JT  is the predicted 

probability for class V. 

III. IMPLEMENTATION  

The implementation of the proposed framework involves a 
series of systematic steps, including data preprocessing, feature 
extraction, model design, training, and evaluation. This section 
outlines the methods and technologies used to develop and 
deploy the ML and DL models for diagnosing and classifying 
depressive disorders. 

A. Dataset Characteristics and Experimental Setup 

The dataset consists of 11,800 high-resolution facial images 
collected from participants in a controlled laboratory 
environment. The dataset was curated to ensure diversity across 
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age groups (19-68 years), gender distributions, and ethnic 
backgrounds, with participants from various cultural 
backgrounds, including European, Asian, and African [21].  

B. Feature Extraction 

The feature extraction process utilizes a dual embedding 
approach that combines the strengths of both GloVE and BERT 
architectures. The mathematical foundation begins with the 
GloVE embeddings, learned through a weighted least-squares 
objective: 

W = ∑ ᵢ , ⱼ���ᵢⱼ .ZᵢᵀZⱼ̃ + �ᵢ + �ⱼ̃ − �E]��ᵢⱼ0
^
 (1) 

where Xᵢⱼ represents word co-occurrence frequencies. An 
adaptive weighting function is employed to prevent the 
dominance of rare co-occurrences: 

��H = �H/Hₘₐₓᵅ 2� H < Hₘₐₓ;  1 E<ℎghZ2Dg (2) 

The BERT component enhances these representations 
through transformer layers, calculating self-attention via: 

i<<gj<2Ej�k, l, m = DE�<FGH(klᵀ/√op,m (3) 

This extends to multi-head attention for capturing diverse 
semantic relationships: 

81�<2qgGo�k, l, m = >EjVG<�ℎgGo�, … , ℎgGoₕ�t 
      (4) 

The integration of visual and textual information is 
systematically accomplished through a feature extraction and 
fusion algorithm. This algorithmic approach ensures robust 
feature extraction while maintaining the complementary nature 
of different modalities, crucial for accurate depression 
detection. 

Algorithm 1: Multi-Head Attention 

Processing 

Input: Data sample D (image, text) 

Output: Fused feature vector F 

 

I = PreprocessImage(D.image) 

T = TokenizeText(D.text) 

Vimg = CNNEncoder(I) 

Vtxt = BERTEncoder(T) 

A = ComputeAttention(Vimg, Vtxt) 

Fimg = A * Vimg 

Ftxt = A * Vtxt 

F = ConcatAndNormalize(Fimg, Ftxt) 

return F 

 
The training process is orchestrated through a hierarchical 

attention mechanism, formalized in Algorithm 2. The dataset 
was divided into training and testing sets with an 80:20 ratio to 
ensure that the model was trained on a substantial portion of 
the data while retaining sufficient samples for unbiased 
evaluation. This approach ensures effective feature learning 
across multiple levels of abstraction, which is essential for 
capturing subtle indicators of depression. 

 

Algorithm 2: Hierarchical Attention 

Training 

Input: Feature set X, Labels Y 

Output: Trained model M 

 

Initialize model weights W randomly 

for each batch b in (X, Y) do 

  H = BiLSTM(b) 

  Aword = WordAttention(H) 

  Asent = SentenceAttention(Aword) 

  F = FuseFeatures(H, Asent) 

  loss = CrossEntropyLoss(F, Y) 

  UpdateWeights(W, loss) 

return M 

 

C. Hierarchical Attention Mechanism 

The attention mechanism implements a sophisticated 
hierarchical structure, processing information at both word and 
sentence levels. The word-level attention weights are calculated 
by: 

1ᵢₜ = <Gjℎ��Zℎᵢₜ + �Z   (5) 

%ᵢₜ = gHv�1ᵢₜᵀ1Z/ ∑ gHv�1ᵢₜᵀ1Z  (6) 

These weights contribute to the sentence representation: 

Dᵢ = ∑ %ᵢₜℎᵢₜ     (7) 

The final document representation is obtained via: 

3 = ∑ %ᵢDᵢ     (8) 

D. Feature Fusion and Optimization 

The fusion mechanism implements an adaptive strategy for 
feature combination: 

�@)=�� = ∑ ᵢ%ᵢ�ᵢ    (9) 

where fusion weights are dynamically calculated using: 

%ᵢ = DE�<FGH(�ᵤ<Gjℎ��ᵥ�ᵢ,  (10) 

The final classification probability is determined through: 

y�B|H = DE�<FGH��ᶜ��1Dgo + �ᶜ  (11) 

The entire framework is optimized using a carefully designed 
multiobjective loss function: 

5 = |� 5Vg + |^ 5G<< + |} 5hg]  (12) 

IV. RESULTS AND DISCUSSION 

The performance of the proposed framework was evaluated 
using Accuracy, Precision, Recall, F1-Score, and ROC-AUC. 
The framework was benchmarked against state-of-the-art 
models and demonstrated superior performance across all 
metrics. 

A. Baseline Model Architecture 

The comparative analysis employed several baseline 
models, each with distinct architectural characteristics designed 
to process different aspects of the multimodal data. The 
Random Forest model implemented an ensemble learning 
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approach utilizing 100 decision trees with bootstrap 
aggregation for robust prediction capabilities [22]. Each tree 
was constructed using a random subset of features, with feature 
importance analysis providing model interpretability and 
stratified sampling to handle class imbalance. 

The GBM model employed a sequential ensemble method 
with 150 base estimators, implementing an iterative boost 
process with a learning rate of 0.1 and a maximum tree depth 
of 8 [23]. Early stopping mechanisms monitored validation 
performance to prevent overfitting, while feature subsampling 
at each split improved model robustness. The architecture 
incorporated second-order derivatives in the loss function 
optimization for precise updates during the boosting process. 

The LSTM network consisted of two stacked LSTM layers, 
each containing 128 memory units, designed to capture long-
term dependencies in sequential data [24]. This architecture 
implemented sophisticated gating mechanisms including input, 
forget, and output gates, controlling information flow through 
the network. Dropout layers with a rate of 0.3 were placed 
between the LSTM layers and before the output layer for 
regularization. 

The CNN model, optimized for audio data processing, 
featured three convolutional blocks with increasing filter sizes 
(32, 64, 128) [25]. Each convolutional layer employed 3×3 
kernels with stride-2 operations, followed by batch 
normalization and ReLU activation. The final layers comprised 
two dense layers with dropout (0.4) for regularization, allowing 
better capture of long-range patterns in the audio spectrograms. 

The BERT implementation used a pre-trained base model 
with 12 transformer layers, each containing 12 attention heads 
and 768 hidden units [26]. The model incorporated positional 
embeddings to maintain sequence order information and 
segment embeddings to distinguish different types of input text. 
The implementation used layer-wise learning rate decay and 
was optimized using AdamW optimizer, with a weight decay 
of 0.01 and linear learning rate scheduling. 

Table I shows the comparative study analysis of the 
proposed framework with baseline models. The proposed 
framework achieved the highest accuracy of 92.8%, precision 
of 93.5%, recall of 91.4%, F1-score of 92.4%, and ROC-AUC 
of 0.96, outperforming both traditional ML models and 
individual DL architectures. 

TABLE I.  PERFORMANCE COMPARISON BETWEEN THE 
PROPOSED FRAMEWORK AND BASELINE MODELS: 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

ROC-

AUC 

Random Forest 85.6 86.2 84.1 85.1 0.87 

Gradient Boosting 

(GBM) 
87.3 88.5 85.9 87.2 0.89 

LSTM (Sequential 

data) 
89.7 90.2 88.4 89.3 0.91 

CNN (Audio 

Data) 
88.1 89.0 87.0 88.0 0.90 

BERT (Text Data) 90.5 91.2 89.7 90.4 0.92 

Proposed 

Framework 
92.8 93.5 91.4 92.4 0.96 

 

B. Performance Analysis Across Modalities 

The proposed framework's multimodal fusion strategy 
integrates features from various modalities, significantly 
enhancing its performance. Table II provides a detailed 
breakdown of performance across individual modalities. 

TABLE II.  PERFORMANCE ACROSS INDIVIDUAL 
MODALITIES 

Modality Accuracy (%) F1-Score (%) ROC-AUC 

Clinical data 83.4 82.7 0.85 

Behavioral data 84.6 84.2 0.86 

Physiological data 85.9 85.4 0.88 

Text data 90.5 90.4 0.92 

Audio data 88.1 88.0 0.90 

Multimodal 

(proposed) 
92.8 92.4 0.96 

 
Figure 2 presents a comparison of accuracy, precision, 

recall, and F1-score across all models. The multimodal fusion 
model consistently outperformed other approaches, achieving 
an accuracy of 94%, precision of 92%, recall of 93%, and an 
F1-score of 92.5%. In contrast, the BERT model, the second-
best performer, achieved an accuracy of 91% and an F1-score 
of 89.5%. This visualization highlights the robustness and 
reliability of the multimodal fusion framework in delivering 
superior predictive performance across critical measures, 
significantly surpassing traditional and standalone DL models. 

 

 
Fig. 2.  Comparison across models. 

 

Fig. 3.  AUC-ROC comparison across models. 

Figure 3 presents a line graph depicting the AUC-ROC 
scores for all models. The multimodal fusion model achieved 
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the highest AUC-ROC score of 0.96, showcasing its 
exceptional ability to distinguish between depressive and non-
depressive cases. The BERT model followed closely with an 
AUC-ROC of 0.94, while Random Forest and Gradient 
Boosting exhibited lower scores of 0.88 and 0.89, respectively. 
This graph underscores the effectiveness of the multimodal 
fusion framework in reducing misclassifications, particularly in 
scenarios that demand high sensitivity and specificity. 

The classification results of the multimodal fusion model 
were further analyzed using the confusion matrix in Figure 4. 
The model correctly identified 90 depressive cases (true 
positives) and 95 non-depressive cases (true negatives) while 
maintaining low misclassification rates with only 10 false 
positives and 5 false negatives. These results emphasize the 
ability of the model to minimize diagnostic errors, a crucial 
factor in clinical settings where both overdiagnosis and 
underdiagnosis can have significant consequences. 

 

 
Fig. 4.  Confusion matrix: multimodal fusion. 

Figure 5 shows a line graph that tracks the performance of 
all models across multiple metrics, including accuracy, 
precision, recall, and F1-score. The multimodal fusion model 
consistently outperformed the other models, demonstrating 
steady and significant improvements in all metrics. This 
visualization underscores the incremental advancements 
achieved through multimodal integration, effectively 
leveraging complementary information from diverse data 
modalities to enhance predictive accuracy and reliability. 

 

 
Fig. 5.  Performance improvement through metrics. 

Figure 6 presents a direct comparison between the 
multimodal fusion and the baseline Random Forest model. The 

multimodal fusion model achieved a substantial performance 
boost across all metrics, recording an accuracy of 94% 
compared to 84% for Random Forest, a precision of 92% 
compared to 82%, a recall of 93% compared to 80%, and an 
F1-score of 92.5% compared to 81%. These results highlight 
the remarkable achievements of the multimodal fusion 
framework, particularly in improving recall and F1-score, 
which are critical for minimizing false negatives and achieving 
balanced and reliable classification outcomes. 

 

 

Fig. 6.  Performance improvement: Multimodal fusion vs. Random Forest. 

V. CONCLUSION AND FUTURE SCOPE 

The proposed framework integrates multimodal data 
processing with advanced ML and DL models to improve the 
accuracy and reliability of diagnosing and classifying 
depressive disorders, overcoming the limitations of traditional 
subjective evaluations and unimodal AI approaches. By 
employing a hybrid fusion strategy that combines early and late 
fusion techniques, the proposed framework effectively 
integrates facial image analysis, textual symptom descriptions, 
and hierarchical attention-based feature selection for a 
comprehensive assessment. Unlike previous studies that 
focused on either facial expressions or textual features 
separately, this model simultaneously processes visual and 
linguistic cues, ensuring a more holistic analysis. The novelty 
of this work lies in its transformer-based model with 
hierarchical attention, leveraging BERT embeddings, CNN-
based feature extraction, and LSTM-based sequential modeling 
to achieve deeper contextual understanding. The model 
demonstrated superior performance, achieving 94% accuracy, 
92% precision, 93% recall, 92.5% F1-score, and 0.96 AUC-
ROC, surpassing traditional ML models (SVM, Random 
Forest) and standalone DL architectures (CNN, LSTM). 
Existing single-modality approaches, such as CNN-based facial 
expression analysis, LSTM-based sentiment detection, and 
speech emotion recognition, often suffer from dataset bias, lack 
of interpretability, or dependency on language-specific 
datasets. The proposed hybrid fusion strategy effectively 
addresses these gaps, significantly improving diagnostic 
accuracy and robustness. Future research should focus on 
integrating additional modalities, including EEG signals, 
speech tone analysis, and neuroimaging data, to further refine 
diagnostic accuracy. Expanding clinical validation across 
diverse populations, developing explainable AI (XAI) methods 
for enhanced interpretability, and optimizing the model for 
real-time deployment in mobile and telemedicine applications 
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will ensure greater scalability and practical implementation. By 
advancing AI-driven mental health assessment, this research 
contributes to standardized, scalable, and reliable depression 
diagnostics, bridging a crucial gap in psychiatric care. 
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