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ABSTRACT 

The increasing occurrence of network intrusions calls for the development of advanced Artificial 

Intelligence (AI) techniques to tackle classification challenges in Intrusion Detection Systems (IDSs). 

However, the complex decision-making processes of AI often prevent human security professionals from 

fully understanding the behavior of the model. Explainable AI (XAI) enhances trust in IDSs by providing 

transparency and assisting professionals in interpreting data and reasoning. This study explores AI 

techniques that improve both accuracy and interpretability, strengthening trust management in 

cybersecurity. Integrating performance with explainability improves decision-making and builds 

confidence in automated systems for classifying network intrusions. This study presents an Explainable 

Artificial Intelligence Kernel Extreme Learning Machine Improved with the Crowned Porcupine 

Optimization Algorithm (XAIKELM-ICPOA) approach. Initially, the proposed XAIKELM-ICPOA 

method preprocesses the data using min-max scaling to ensure uniformity and improve model 

performance. Next, the Kernel Extreme Learning Machine (KELM) model is employed for classification. 

The Improved Crowned Porcupine Optimization (ICPO) method is used to optimize KELM 

hyperparameters, improving classification performance. Finally, SHAP is employed as an XAI technique 

to provide insights into feature contributions and decision-making processes. The XAIKELM-ICPOA 

method was evaluated on the NSL-KDD dataset, achieving an accuracy of 96.82%. 

Keywords-explainable artificial intelligence; kernel extreme learning machine; intrusion detection; crowned 

porcupine optimization; min-max scaling 

I. INTRODUCTION  

In recent years, the increasing frequency of cyber-security 
attacks has raised alarms around the world [1]. Network IDS 
(NIDS) monitor traffic to detect potential risks and alert 
cybersecurity teams [2]. As organizations build more integrated 
cybersecurity ecosystems, managing trust between people, 
technology, and processes is important for defending against 
cyber threats [3]. XAI presents transparency in decision-
making, assisting cybersecurity professionals in understanding 
AI-driven threat detection, unlike conventional black-box AI, 
thus fostering trust in automated systems [4]. XAI improves 
decision-making and responses to cyber threats. Furthermore, 
the rise of XAI models for post-hoc understandability has 
created new cybersecurity roles that include explainability 
layers for human-in-the-loop systems [5]. 

AI and Machine Learning (ML) have advanced across 
various domains, improving tasks such as strategic games, 
visual recognition, and daily life applications [6]. These 
methods, especially Deep Learning (DL), are crucial in science 
for tasks such as prediction and simulation [7]. The growth of 
XAI research has led to domain-specific methods for 
interpreting ML techniques, increasing the popularity of ML 
and DL in business applications [8]. XAI provides 
transparency, helping humans understand decisions made by 
systems [9]. It addresses the need for transparency in ML 
techniques, explaining black-box models [10]. The motivation 
for this research is the growing complexity of cyber threats and 
the increasing need for transparent and explainable systems to 
allow professionals to make informed decisions and strengthen 
cybersecurity defenses. 
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This study presents an Explainable Artificial Intelligence 
for Kernel Extreme Learning Machine using the Improved 
Crowned Porcupine Optimization Algorithm (XAIKELM-
ICPOA) approach. Initially, the proposed XAIKELM-ICPOA 
method preprocesses the data using min-max scaling to ensure 
uniformity and improve model performance. Next, the Kernel 
Extreme Learning Machine (KELM) model is employed for 
classification. The Improved Crowned Porcupine Optimization 
(ICPO) model is used to optimize KELM hyperparameters, 
enhancing classification performance. Finally, SHAP is 
employed as an Explainable AI (XAI) technique to provide 
insights into feature contributions and decision-making 
processes. The performance of the XAIKELM-ICPOA method 
was evaluated on the NSL-KDD dataset. The major 
contributions of the proposed method are as follows: 

 Min-max scaling is used to normalize the input data, 
ensuring that all features fall within a consistent range. This 
improves the efficiency and accuracy of KELM by 
eliminating scale-related biases. 

 KELM is used to classify cybersecurity threats, integrating 
kernel methods with ELM to handle complex, nonlinear 
patterns in data. This allows more accurate detection of 
diverse and growing attack scenarios. 

 ICPO optimizes KELM hyperparameters, improving threat 
detection performance and efficiency. This also ensures a 
more accurate and robust classification, specifically in 
dynamic cybersecurity environments. 

 SHAP is used as an XAI technique to provide detailed 
insights into the contributions of features and decision-
making processes of the model. This improves transparency 
and trust in model predictions. 

 The novelty of this approach lies in the integration of ICPO 
to optimize the KELM hyperparameters and SHAP to 
provide explainability, providing a model that is both 
highly accurate and transparent. This incorporation ensures 
a robust and interpretable system for detecting 
cybersecurity threats. 

II. RELATED WORKS 

In [11], DL was utilized for intrusion detection. A filter-
based method was used to detect key features and reduce 
complexity, with dual DL techniques, namely DNN and CNN, 
applied to the dataset. XAI was used to explain the techniques, 
using LIME for DNN transparency and SHAP for additional 
insights. In [12], the XAI Enabled Intrusion Detection Model 
for Secure Cyber-Physical Systems (XAIID-SCPS) model was 
proposed, using the Hybrid Enhanced Glow Worm Swarm 
Optimizer (HEGSO) for feature selection, Improved Elman 
Neural Network (IENN) with an Enhanced Fruitfly Optimizer 
(EFFO) for intrusion detection, and LIME to improve model 
interpretability. In [13], XAI methods were used for local and 
global explanations and feature extraction to identify key 
intrusion aspects. In [14], an IDS used XAI and ML models to 
classify cyberattacks, utilizing Apache Spark, Kafka, SHAP, 
and Scikit-learn, with XAI providing a rationale for each 
classification. In [15], a Hybrid Adaptive Ensemble for 
Intrusion Detection (HAEnID) technique was proposed, 

utilizing Stacking Ensemble (SEM), Conditional Ensemble 
Method (CEM), and Bayesian Model Averaging (BMA) 
models. In [16], XAI was integrated into an ML-based IDS, 
using SHAP for global explanations and reevaluating low-
credit results with subsequent classifiers. In [17], an end-to-end 
XAI structure for NIDS was proposed, evaluating global and 
local explanations using LIME and SHAP with six diverse 
metrics. 

III. MATERIALS AND METHODS 

The main intention of the XAIKELM-ICPOA method is to 
provide a robust intrusion detection framework that integrates 
XAI with advanced optimization techniques. Figure 1 presents 
the workflow of the XAIKELM-ICPOA model. 

A. Stage I: Data Normalization  

Primarily, the proposed XAIKELM-ICPOA method utilizes 
a data preprocessing stage with min-max scaling to ensure 
uniformity and enhance model performance. Normalization is a 
significant preprocessing stage that ensures that every feature 
contributes similarly to the method [18]. It prevents features 
with additional wide ranges from overlooking the learning 
procedure. Min‐max scaling converts all features within the 
range of [0, 1]: 

���,	 = ��,������:,�
�����:,�������:,�   (1) 

This scaling is beneficial when the data does not have 
important outliers and the features are almost equally spread. 

B. Stage II: KELM-based Classification Process  

Next, the KELM model, a recent approach, is employed for 
the classification process [19]. ELM, proven effective in many 
real-world applications, is used for single-hidden layer feed-
forward Neural Networks (NNs). It operates in generalized 
SLFNs without fine-tuning the hidden layer parameters. The 
output function for ELM in general SLFNs is given by: 

����� = ∑ ��ℎ���� = ℎ��������    (2) 

� ! ||$� − &||' (!) *|�|*   (3) 

$ = [ℎ����ℎ��'�ℎ��+�] =  

 ,ℎ����� ⋯ ℎ�����⋮ ⋱ ⋮ℎ���0� ⋯ ℎ���0�1   (4) 

� = $2&     (5) 

34�5 = $$6: 34�5�7,� =  

ℎ���� ⋅ ℎ��	� = 9��� , �	�   (6) 

where � is the output weighting vector and ℎ��� is the hidden 
layer output for input � . ELM minimizes training error and 
output weight norm (3). The matrix $  in (4) represents the 
hidden layer outputs, and � is calculated using the least squares 
method in (5). The kernel matrix 34�5  is defined in (6) for 
unknown feature maps or multiple classes. ℎ���  refers to a 
functional map that ensures the data is linearly independent in 
the hidden layer feature space $ . The orthogonal projection 
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model calculates the Moore-Penrose generalized inverse of the 

matrix, $2 = $6�$$6���, and a positive constant : is added 
to the diagonal of $$6 . Finally, the output operation of the 
ELM is defined as: 

 ;��� = ℎ� = ℎ���$2 <�
= + $$2?�� & =  

     = [9��, ��� …  9��, �0� ]6 <�
= + 34�5?�� & (7) 

The HL feature maps can include various kernels, with the 
Radial Basis Function (RBF) kernel being commonly used. The 
RBF kernel is defined as 9��, ��� = A�B�|� − ��||'�, where C 
and penalty parameter : are key parameters in the kernel. 

 

 

Fig. 1.  Workflow of the XAIKELM-ICPOA model. 

C. Stage III: ICPO-based Parameter Tuning 

ICPO [20] is employed to optimize the hyperparameters of 
KELM and achieve superior classification performance. The 
CPO model is an optimization approach inspired by the 
defensive behaviors of crowned porcupines. It uses four 
defense mechanisms: auditory (warning sounds), visual (sharp 
spines), physical (spines for conflict), and olfactory (foul 
smells). These behaviors are divided into two main phases: 
exploitation and exploration. 

1) Exploration Phase 

The CPO model explores solutions using porcupine defense 
mechanisms. The first defense approach mimics the porcupine 
raising its feathers to deter predators, represented by: 

���DEEEEE⃗ � = �G�EEE⃗ + H� ×→ K2 × H' × �=M�EEEEEE⃗ − NG�EEEE⃗ K  (8) 

where �=M�EEEEEE⃗  is the best solution at iteration O , H�  is a random 
number from a standard distribution, H' is a value in [0, 1], and NG�EEEE⃗  is the average of �G�EEE⃗  and �P�EEEE⃗ , with Q being a random index in 
the population. The second defense simulates the porcupine 
producing alert sounds as: 

���DEEEEE⃗ � =  

�1 − R�EEEE⃗ � × ��� + REE⃗ � ×→ SN⃗ + H+ × <�PT�EEEEE⃗ − �PU�EEEEE⃗ ?V (9) 

where REE⃗ � refers to a binary randomly generated vector using 
values of 0 or 1, Q� and Q' are dual randomly formed integers 
amongst [1, W] , with W  denoting the population size. H+ 
signifies a randomly generated value between �0,1). 

2) Exploitation Phase 

In the exploitation phase, the model uses physical and odor-
based defense mechanisms. The third defense approach mimics 
the porcupine releasing foul odors, represented by: 

���DEEEEE⃗ � = �1 − REE⃗ �� × �G�EEE⃗ + REE⃗ � ×→  

   <�PT�EEEEE⃗ + XG�EEE⃗ × <�PU�EEEEE⃗ − �PY�EEEEE⃗ ? − H+ × Z⃗ × C� × X��? (10) 

where XG�EEE⃗  characterizes the odor diffusion feature, C�  denotes 

the defense feature, and Z⃗ influences the search direction. The 
fourth defense simulates a physical attack by the porcupine, as 
shown in: 

���DEEEEE⃗ � = �=M�EEEEEE⃗ + �[�1 − H\� + H\� →× <Z × �=M�EEEEEE⃗ − �G�EEE⃗ ? −
          H] × Z × C� × ;G�EEEE⃗      (11) 

where [  is the convergence speed factor, and H\  and H]  are 

random values in [0, 1]. ;G�EEEE⃗  is the average strength applied to 
predators. The CPO model faces slower convergence and 
computational challenges due to its reliance on exploration. To 
address these challenges, two key improvements were made. 
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3) Logistic Chaotic Mapping (LCM) for Population 
Initialization 

To address CPO's limited search space, this study uses 
LCM for population initialization. LCM is a simple, dynamic 
1D nonlinear method, defined by: 

��D� = _���1 − ���    (12) 

where _ = 4, and �a is randomly generated in �0, 1�, iterating 
100 times to determine the model parameters. 

4) Elite Preservation Approach 

To address CPO's limitation in losing high-quality 
solutions, this study introduces an elite preservation approach. 
The elite set b� at an iteration O is defined by: 

b� = ���� ≤ ��N�   
for all N ∈ e� ∖ b�  and   |b�| = ⌈Q ⋅ |e�|⌉   (13) 

where e� is the population at iteration O, |e�| is its size, ��� is the  �i individual, and ���� is the Fitness Function (FF). Q is the 
elite ratio, and j ranks the population based on fitness: 

j�e�� = <����k� ��'�k� … , ��|M�|�� ?   (14) 

Now, ������� � ≤ ����	�� � for every  < m. The elite set is defined 

in (15), and the updated population is given by (16): 

b� = ����� |1 ≤  ≤ ⌈Q ⋅ |e�|⌉   (15) 

e�D� = b� ∪ X�     (16) 

where X�  epitomizes a solution set produced by the normal 
ICPO processes, and |X�| = |e�| − |b�|. The particular phases 
are given below: 

i) Initializing population ea. 
ii) For all iterations O: 
    (a) Estimate the fitness ���� for every � ∈ e� .  
    (b) Sort the population: �e��. 

    (c) Select the elite set: b� = ����� |1 ≤  ≤ ⌈Q ⋅ |e�|⌉. 
    (d) Generate novel solution: Update X� utilizing ICPO.  

    (e) Update the population: e�D� = b� ∪ X� . 
iii) Repeat the above-mentioned phases till the termination 
conditions are encountered. 

The ICPO technique generates an FF to improve 
classification performance. It uses a positive value to indicate a 
better outcome for the candidate solution. In this context, the 
FF is based on minimizing the classifier's error rate. Its 
mathematical formulation is given by: 

� O!Aoo���� = :p(oo � AQbQQqQr(OA����=  

   = �s.st ��uvw�uu�t�xy u��zwxu
6s��w �s.st u��zwxu × 100  (17) 

D. Stage IV: XAI-based SHAP 

Finally, SHAP is utilized as an XAI technique to provide 
insights into feature contributions and decision-making 

processes [21]. SHAP integrates Shapley values and LIME, 
combining a solid theoretical foundation for interpreting black-
box models. LIME fits an interpretable model around a specific 
sample, contrasting with global substitution models. It focuses 
on explaining important attributes of a data sample for better 
predictions. The description of an observation �  in LIME is 
given by: 

b��� = {��, |, )�� + 3�|�   (18) 

In LIME, | is an interpretable model used to explain black-
box predictions, with 3�|�  representing its complexity. The 
loss function {��, |, )�� measures the difference between the 
surrogate model and the original model. LIME creates 
synthetic data to reduce complexity, while Shapley values, 
from game theory, measure each feature's contribution to 
predictions, ensuring fairness and significance. 

}	�~(p� = ∑ |�|!���|�|���!
�! [~(p�X ∪ {m}� −�⊆5∖{	}         ~(p�X�] ,    m = 1 … �    (19) 

In Shapley values, X  is a subset of features, |X|  is the 
number of features in X , and �  is the total feature set. m 
represents a specific feature, with ~(p�X�  and ~(p�X + m� 
indicating the model outputs for the subsets of features X and X ∪ {m} , respectively. The Shapley value includes four 
properties: Dummy, Efficiency, Additivity, and Symmetry. 
Efficiency ensures feature contributions match the difference 
between the average and actual predictions. 

∑ }��~(p� = ~(p�������    (20) 

 Symmetry: if features  �i  and ��i  are similar in subset X , 
then: 

~(p�X +  � = ~(p�X + ��, X ⊆ � ∖ { , �}  (21) 

Equation (21) specifies that the dual features  �i  and ��i 
give as just like promising coalitions. As a result, the 
support of dual features must be equivalent and the function } is symmetrical: 

}��~(p� = }��~(p�    (22) 

 Dummy: If a feature does not affect the prediction, its 
Shapley value is 0: 

~(p�X +  � = �(p�X�,   X ⊆ �\{ }  (23) 

Then }��~(p� = 0    (24) 

 Additivity: the improvement by a combination of dual 
functions ~(p  and ~(p�  is equivalent to the calculation of 
individual achievements from all functions for all features  �i: 

}��~(p + ~(p�� = }��~(p� + }��~(p��  (25) 

SHAP provides a unified model for explaining black-box 
predictions. It connects Shapley values and LIME via a linear 
approach. For a sample �, the explanation is: 

|���� = }a + ∑ }�������� ,    �� ∈ {0,1}�  (26) 

In SHAP, �  is the coalition size, |  is the explanation 
method, ��  are streamlined attributes, and }�  is the Shapley 
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value for the  �i  feature. SHAP spreads effects more evenly 
than LIME, which weighs samples based on their distance to 
the original. SHAP uses the SHAP kernel for weighting. 

������ = �����
�� |�k| �  |��|�� − |��|�   (27) 

The SHAP value calculation for a sample �  involves 
several stages. First, sample data ��� ∈ {0,1}�  are collected. 
Next, predictions are obtained for all ���  by transforming them 
to the feature space and applying the model ��ℎ����� ��, where ℎ�: {0,1}� → r . The weight for each ���  is calculated using 
(27). Then, a linear model | is trained by minimizing the loss 
function {  using training data � . Finally, the Shapley values 
and coefficients are returned based on the results of the linear 
model. The loss function is given by: 

{��, |, ��� = ∑ ���ℎ������ − |�����'�������k∈�  (28) 

IV. PERFORMANCE VALIDATION  

The performance of the XAIKELM-ICPOA approach was 
evaluated using the NSL-KDD dataset [22-23]. The dataset 
comprises 125973 rows under two class labels, such as normal 
and anomaly, as shown in Table I. The proposed technique was 
simulated using Python 3.6.5 on a PC with an i5-8600k, 250GB 
SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The 
parameter settings were: learning rate: 0.01, activation: ReLU, 
epoch count: 50, dropout: 0.5, and batch size: 5. 

TABLE I.  DATASET DETAILS 

Labels Counts 

Normal 67343 

Anomaly 58630 

Total 125973 

TABLE II.  RESULTS OF XAIKELM-ICPOA 

Methods ����� ����� ����� ������ 

XAIKELM-ICPOA 96.82 96.86 96.75 96.80 

 
Compared to existing techniques in [12, 24], the proposed 

XAIKELM-ICPOA method shows promising results, achieving (���   of 96.82%, BQA��  of 96.86%, QA�(w  of 96.75%, and ;uvsPx of 96.80%. 

V. CONCLUSION 

This study presented the XAIKELM-ICPOA method, 
which is a robust intrusion detection framework that integrates 
XAI with advanced optimization techniques. A data 
preprocessing stage with min-max scaling was used to ensure 
uniformity and enhance model performance. The KELM 
method was employed for classification, while the ICPO 
method optimized KELM's hyperparameters for superior 
performance. Finally, SHAP was used as an XAI technique to 
provide insights into feature contributions and decision-
making. The XAIKELM-ICPOA method was evaluated using 
the NSL-KDD dataset. The performance validation of the 
XAIKELM-ICPOA method illustrated an accuracy of 96.82%. 
The limitations of the XAIKELM-ICPOA model include its 
reliance on a specific dataset, limiting generalizability, and 
challenges with scalability due to computational complexity. 

Future work will focus on using diverse datasets, real-time data 
integration, and enhancing efficiency for large-scale systems. 
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