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ABSTRACT 

Natural language processing is one of the most trending fields in research, with sentiment analysis being 

one of the well-known problems in the field. Many methods have been proposed to handle text-based 

sentiment data, with social networks acting as one of the main data sources and research targets. An 

important step in designing a text-based model is the embedding method, which helps in the representation 

of the inputs. This study presents a novel static text embedding method to represent text inputs and 

compares its sentiment classification performance with some well-known text embedding methods. The 

results are on par with existing embedding methods, achieving a promising classification accuracy of 

90.66%. 

Keywords-sentiment analysis; representation; word2vec; fast-text; word embedding; sparse vector; contextual 

embedding model 

I. INTRODUCTION  

Identifying the sentiment in a given text has become a 
widely researched area, as most industries are working on 
models to automate the process of understanding the market 
sentiment to make appropriate decisions. With an appropriate 
model, sentiment analysis can be used to understand the intent 
or opinion of a person behind a particular statement. The 
problem can be described as identifying sarcasm or the polarity 
of a statement. The problem can be anything that deals with 
identifying the actual meaning behind the targeted sentence. 
During text analysis, one of the most important steps is the 
representation, and word embedding is one of the widely 
known text representation methods. Word embeddings are 
methods where each word is represented by a vector. There are 
multiple ways to obtain the embedding vector, which can be 
classified as static embedding and contextual embedding 
methods. In static embedding, a vector is generated for each 
word and remains the same irrespective of the context of a 
sentence, whereas in contextual embedding the vector of the 

same word changes depending on the context of the sentence. 
Some of the most popular static word embedding methods are 
Word2Vec, Glove, and Fast-text, and some of the well-known 
methods to obtain contextual embeddings are Embeddings 
from Language Models (ELMo), Bidirectional Encoder 
Representations from Transformers (BERT), Transformer-XL, 
etc. As this work focuses mainly on static embedding methods, 
the following definitions give the basic idea behind each static 
embedding algorithm. 

Word2Vec embedding uses a shallow network to obtain the 
representation on a large corpus. It has two approaches, namely 
Skip-gram and Continuous Bag of Words (CBOW). Glove 
stands for Global Vectors for Word Representation, where the 
representation is obtained by factorizing the co-occurrence 
matrix of the words. It also considers global word co-
occurrence and, hence, the name global vectors. Fast-text 
embedding generates the vectors even at the subword levels (n-
grams), thus helping in handling the words that are out of 
vocabulary. 
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II. CURRENT STATE ANALYSIS 

In [1], the performance of word2vec embedding was 
examined when combined with Convolutional Neural 
Networks (CNNs) for classification. Comparing CBOW and 
skip-gram showed that the former performs better on texts that 
follow a uniform format, such as news articles, while the latter 
performs well for non-uniform scenarios that are best seen in 
social media posts such as Twitter. In [2], a new approach was 
proposed, adding Bidirectional LSTM (BiLSTM) and attention 
layers with CNNs to improve classification performance. In 
[3], word2vec was combined with Long-Short-Term Memory 
(LSTM) for sentiment analysis. The skip-gram approach 
outperformed CBOW, as the data was not in a uniform format. 
In contrast to classic word2vec, a novel method was proposed 
in [4], called W2C-CL, to scale the effective training of large 
corpora with an adjustable number of iterations and a large 
batch size, while treating high-frequency and low-frequency 
words equally. In [5], a combination of word2vec 
hyperparameters was presented, which can contribute to 
improved performance of sentiment analysis, while an increase 
in dimensions can reduce performance. However, this study 
concluded that hyperparameter combinations are mostly task-
specific. 

In [6], an optimization of Glove embedding was proposed 
with the help of constraints by incorporating more information, 
so that neighboring and similar words are as close as possible 
in the resultant vector space. In [7], the performance of Glove 
embedding was compared with the well-known Bidirectional 
Encoder Representations from Transformers (BERT) model for 
sentiment analysis, showing that embedding methods such as 
Glove outperform BERT, although the latter provides better 
contextual-based vectors. In [8], Glove was combined with 
LSTM to identify emotions in tweets. In [9], Glove was 
combined with CNN to identify features, which were then fed 
to BiLSTM, showing how a word embedding method is used in 
brief text for sentiment analysis. In [10], an LSTM-Gated 
Recurrent Unit (LSTM-GRU) model was combined with Glove 
for sentiment analysis, enhancing LSTM capability with one of 
the positive aspects of GRU to avoid resource waste.  

In [11, 12], Fast-text embedding with CNN was examined 
along with its impact on text processing and sentiment analysis, 
evaluating its performance against benchmark datasets. In [13], 
the ability of Fast-text embedding to extract features even in 
non-standard word representations was shown and combined 
with SVM for sentiment analysis. In [14], a new hybrid method 
was presented, where the ability of Fast-text embedding was 
extended with parts-of-speech tagging and word position 
information for word embedding. In [15], the performance of 
the Word2Vec, Glove, and Fast-text embedding methods was 
compared, concluding that Fast-text was more accurate than the 
other two. In [16], dense uninterpretable word embeddings 
were transformed into a sparse and interpretable space using 
sparse coding, resulting in human-understandable embeddings. 
In [17] the word embeddings of some well-known methods, 
such as word2vec, glove, and LSA, were augmented into four 
feature sets, each representing the similarity and dissimilarity 
of the pair of words, and then feeding an SVM for 

classification. This approach had some shortcomings while 
providing decent classification performance.  

During the implementation of these embedding techniques, 
it was observed that current methods have embedded vectors 
with a dimension of at least 100 and most of them must be 
loaded before use. This presents an issue when the system has 
limited memory available. The following are the contributions 
of the proposed work: 

 The proposed method considers a lesser-dimensional vector 
compared to some of the existing embedding methods, 
which in turn reduces the model complexity.  

 Obtains the embedding dynamically instead of working on 
pre-trained embeddings.  

 Achieves better sentiment classification results.  

III. PROPOSED WORK 

A. Dataset 

A Twitter dataset is created for the experiment by 
combining two distinct labeled datasets: one is a sentiment 
dataset with labels that have positive or negative polarities [19], 
while the labels in the other dataset are essentially non-polar by 
nature, such as sarcasm, figurative language, and regular 
statements [20]. The samples from both datasets were 
randomly sampled so that each category can have close to 
17000 to 20000 samples. The final dataset consists of 97000 
samples with 5 labels, resulting in the combination of polarity 
and emotion-based labels. The challenge expected in this 
dataset is to identify and distinguish the ambiguity offered by 
the polarity and emotion in a given text statement. 

TABLE I.  DATASET DETAILS 

Class Number of samples 

Positive 20000 

Negative 20000 

Regular 17000 

Sarcasm 20000 

Figurative 20000 

 

B. Sentiment Weights 

Weights are used to obtain the degree of sentiment 
possessed by a word related to a particular class sentiment [18]. 
The sentiment weight has two approaches: 

 Odds Ratio (OR): This metric ranks the words based on 
their relevance to a particular class with the help of their 
occurrence frequency. Positive odds ratio indicates a 
stronger tendency of that word's usage in a class. Frequency 
calculation and OR are represented as follows: 

��∗��(�� , �
  )  ≈ ��� ���∗��������������
(������)∗ ���

  (1) 

where �
  denotes the document, �  is a class, ��
  is the 
number of documents that contain the word �� and belong 

to a class, ��
 is the number of documents that contain the 
word ��  but do not belong to the class, �
  is the total 
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number of documents in the class, and the sentiment weight 
 !(��)  can be obtained by: 

 !(��) = max &��(�� , �' ), ��(�� , �( )) (2) 

 Weighted Odds (WO): This metric applies weight to odds 
ratio to obtain the amount of variance in word frequency 
across the full collection of documents. In some cases, the 
WO outperforms OR [18]. Frequency calculation and WO 
is given by: 

��∗!�(�� , �
  )  ≈ *���
��

+
,

��� *���(��������)
 �����

+
'�,

 (3) 

and the sentiment weight  !(��) is: 

 !(��) = max &!�(�� , �' ), !�(�� , �( )) (4) 

C. Method 

The proposed method generates a sparse vector for each 
given word. To generate the sparse vector, each character is 
associated with its own predefined indices, which can be seen 
in Table II. 

TABLE II.  CHARACTERS AND THEIR INDEXES 

Character 0 1 2 3 4 5 6 7 8 9 

Index 0 1 2 3 4 5 6 7 8 9 

Character a b c d e f g h i j 

Index 10 11 12 13 14 15 16 17 18 19 

Character k l m n o p q r s t 

Index 20 21 22 23 24 25 26 27 28 29 

Character u v w x y z - ’ , . 

Index 30 31 32 33 34 35 36 37 38 39 

 
Since the proposed experiment focuses only on the English 

language, only the English alphanumeric characters are 
considered. The steps involved in generating the vector are 
presented in Algorithm 1. 

Algorithm 1: Creating Sparse Embedding 

Vector 

function GENERATE_SPARSE_VECTOR(word); 

Input: word w, consisting of n number of 

characters with c being the character 

Output: A sparse vector of dimension 40 

n_normalized_positions ←  

  get_normalize_positions(word) 

for c, c_pos_norm in word,   

  n_normalized_positions do 

  onehot_encoding  ←  

    get_onehot_encoding(c) 

    augmented_vector  ← onehot_encoding   

      * index(c) * c_pos_norm 

    w_vector  ← w_vector +  

      augmented_vector 

end for 

word_vector ← w_vector +  

  sentiment_polarity(word)  

weighted_word_vector ← word_vector *  

  sentiment_weight(word) 

return weighted _word_vector 

As can be seen in the algorithm, a word � is considered a 
collection of characters -, and the number of characters in each 
word is represented by .. For any given word, the working 
principle of the proposed algorithm is explained as follows: 

 The normalized vector of character positions is obtained. 
The positions are normalized to scale down the respective 
positional coefficient values to range between 0 to 1. 

 The one-hot encoding of each character is obtained, whose 
length is equal to the number of characters under 
consideration. It can be observed from Table II that the 
number of characters is 40. Hence the dimension of the 
vector will be 40, and in the resultant vector, the value at 
the index corresponding to the respective character will be 
1 (one). 

 The scalar product of one-hot encoded vectors of each 
character, the index of the respective character, and their 
corresponding normalized positional coefficients are 
obtained, and the resulting vectors are summed up to form a 
single vector to get a vector of dimension 40. One of the 
main reasons for scalar products of the character's 
normalized positional coefficients is to avoid any 
duplication of the vectors for different words with the same 
characters, such as "bat" and "tab". 

i. For better understanding, let us consider a 3-
dimensional vector for the characters, where � =
&1,0,0) , � = &0,1,0) , and � = &0,0,1) . Now, vector 
summation is performed, and &1,1,1)  is obtained for 
both "bat" and "tab".  

ii. Considering the scalar product approach, the resultant 
vectors will be different for both words. For example, 
let's consider the positional coefficients without 
applying normalization, i.e., &1,2,3)  for first, second, 
and third characters, respectively, then the resultant 
vector for "bat" will be &2,1,3), whereas for "tab" will 
be &3,1,2).  

 Then the polarity of the word is added to the resultant 
vector. Python offers various libraries to obtain the polarity 
of the word, such as VADER  and SpaCy. In the proposed 
method, polarity is obtained using the SpaCy library. 

 Finally, scalar multiplication is performed, where the 
resultant vector is multiplied by the Sentiment Weight (SW) 
of the word. 

1) Example 

Let's consider the word "sad" for demonstration purposes. 
The vector is obtained as follows: 

 The normalized position values for each letter in the word 
are: 

Letter Position Normalized position values 

s 1 0.26726124 

a 2 0.53452248 

d 3 0.80178373 

 

 The index vector of dimension 40 for each letter in the 
word, based on Table II, for the letter will be: 
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Letter Index vector for the letter 

s 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

a 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

d 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

 

 The resultant vector obtained by the product of the index 
vector and the normalized positional values of each letter 
will be: 

Word Resultant sparse vector 

sad 

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.345224, 0.0, 0.0, 

10.423188, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 

0.0, 7.483314, 0.0, 0.0, 0 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] 

 
In this implementation, the decimal value is considered up 
to 6 positions.  

 The polarity for the word "sad" is -0.5, and the scalar 
addition will result in the following vector: 

Word Resultant vector after adding word polarity 

sad 

[-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 4.84522484, 

-0.5, -0.5, 9.92318843, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -

0.5, -0.5, -0.5, -0.5, -0.5, 6.98331477, -0.5, -0.5, -0.5.0, -0.5, -0.5, 

-0.5, -0.5, -0.5, -0.5, -0.5] 

  

 Finally the sentiment weights for the word "sad" are: 

Sentiment weight type Odds ratio Weighted odds 

Sentiment weights  1.1887 0.067 

 
The final resultant embedding vectors for the word "sad" 
after performing the scalar product are as follows, 

Sentiment 

weight 
Resultant embedding vectors 

Odds ratio 

[-0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -0.59435, 

-0.59435, -0.59435, -0.59435, -0.59435, 5.759518, -0.59435, 

-0.59435, 11.795694, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435, 8.301066, -0.59435, 

-0.59435, -0.59435.0, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435] 

Weighted 

odds 

[-0.03385, -0.03385, -0.03385, -0.03385, -0.03385, -0.03385, 

-0.03385, -0.03385, -0.03385, -0.03385, 0.328021, -0.03385, 

-0.03385, 0.671799, -0.03385, -0.03385, -0.03385, -0.03385, 

-0.03385, -0.03385, -0.03385, -0.03385, -0.03385, -0.03385, 

-0.03385, -0.03385, -0.03385, 0.472770, -0.03385, -0.03385, 

-0.03385.0, -0.03385, -0.03385, -0.03385, -0.03385, -

0.03385, -0.03385, -0.03385] 

 

 

Fig. 1.  Workflow of the model. 

Figure 1 shows the workflow of the experimental 
implementation. The implementation follows a straightforward 

flow, where the input first undergoes preprocessing to obtain 
the clean text, with commonly known steps such as stop-word 
removal, lemmatization, etc., and then it is fed to the core 
model consisting of embedding and classification steps. 

IV. RESULTS AND DISCUSSION 

The proposed sparse vector-based embedding was 
compared with some well-known static embedding algorithms, 
such as Glove, Word2Vec, and Fast-Text. The results showed 
that the proposed method achieved fairly good training and 
validation accuracies compared to those of the aforementioned 
embedding methods. Figure 2 shows that existing methods start 
to overfit after a certain point. The performance of the 
proposed embedding method was verified using three well-
known machine learning models, namely SVM, Radial Basis 
Function Neural Network (RBF-NN), and LSTM. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. 2.  Training and validation accuracies of: (a) Proposed method,  

(b) Glove embedding, (c) Fast-text embedding, (d) Word embedding. 
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A. Classification Performance using SVM 

SVM is a well-known linear classification model. Table III 
presents the classification performance of each embedding 
method using SVM. With Term Frequency (Fr) calculation of 
Odds Ratio (OR) and Weighted Odds (WO) being represented 
as Fr*OR and Fr*WO respectively, it is observed that the 
proposed embedding method outperforms the existing ones.  

TABLE III.  CLASSIFICATION PERFORMANCE OF THE 
PROPOSED APPROACH USING SVM 

C
la

ss
if

ie
r 

Embedding 

approach 

Embedding 

dimensions 

Sentiment 

types 

Accuracy 

using  

Fr*OR 

Accuracy 

using 

Fr*WO 

S
V

M
 (

L
in

er
 K

er
n

el
) 

 

V
al

u
e
 o

f 
C

 =
 0

.9
 a

n
d

 G
am

m
a 

=
 1

.0
 –

 E
m

p
ir

ic
al

ly
 s

e
t 

Fast-Text 

(FT) 

embedding 

300 

Positive 69.83 78.54 

Negative 71.14 79.34 

Figurative 65.58 72.34 

Sarcasm 71.76 79.10 

Regular 73.25 76.42 

Overall 
Accuracy 

70.31 77.14 

Glove 

embedding 
100 

Positive 75.91 78.35 

Negative 78.66 76.52 

Figurative 71.23 74.56 

Sarcasm 80.19 81.22 

Regular 79.59 81.48 

Overall 

Accuracy 
77.11 78.42 

Word2vec 100 

Positive 82.35 83.13 

Negative 81.52 81.96 

Figurative 80.25 81.24 

Sarcasm 83.19 85.51 

Regular 81.54 82.68 

Overall 

Accuracy 
81.77 82.90 

Proposed 

Method 
40 

Positive 83.12 84.42 

Negative 81.91 82.34 

Figurative 84.54 84.91 

Sarcasm 88.67 89.56 

Regular 79.54 80.53 

Overall 

Accuracy 
83.55 84.35 

 

B. Classification Performance using RBF-NN 

RBF-NN is known to have a strong tolerance to input noise 
and the ability to generalize. Table IV shows the classification 
performance of each embedding method with RBF-NN. It can 
be observed that the proposed embedding method surpassed all 
others using the Fr*OR approach, with an overall classification 
accuracy of 84.55%. It also performed on par with word2vec 
(w2v), using the Fr*WO approach, where the w2v embedding 
method achieved 87.66% classification accuracy. These results 
indicate that the proposed method has promising performance 
in combination with RBF-NN. 

C. Classification Performance using LSTM 

LSTM is an RNN that is specifically designed to handle 
sequential data. As shown in Table V, the proposed embedding 
method outperformed the other existing methods. 

 

TABLE IV.  CLASSIFICATION PERFORMANCE OF THE 
PROPOSED APPROACH USING RBF-NN 

C
la

ss
if

ie
r 

Embedding 

approach 

Embedding 

dimensions 
Sentiment types 

Accuracy 

using 

Fr*OR 

Accuracy 

using 

Fr*WO 

R
B

F
-N

N
 

P
ar

am
et

er
s 

b
e
in

g
 α

i 
=

 0
.1

 ,
 β

i 
=

 1
.0

 (
E

m
p

ir
ic

al
) 

Fast-Text 

(FT) 

embedding 

300 

Positive 84.86 87.85 

Negative 83.22 86.75 

Figurative  80.68 86.80 

Sarcasm  81.96 85.50 

Regular 83.74 84.40 

Overall Accuracy  82.89 86.26 

Glove 

embedding 
100 

Positive 83.23 86.18 

Negative 81.87 86.69 

Figurative  83.16 86.34 

Sarcasm  81.25 85.91 

Regular 84.06 86.88 

Overall Accuracy  82.71 86.40 

Word2vec 100 

Positive 81.80 87.91 

Negative 86.95 87.14 

Figurative  81.43 87.20 

Sarcasm  85.67 88.81 

Regular 86.15 87.24 

Overall Accuracy  84.40 87.66 

Proposed 

Method 
40 

Positive 84.16 85.21 

Negative 86.58 85.00 

Figurative  83.75 88.51 

Sarcasm  83.27 88.58 

Regular 85.01 85.76 

Overall Accuracy  84.55 86.61 

TABLE V.  CLASSIFICATION PERFORMANCE OF THE 
PROPOSED APPROACH USING LSTM 

C
la

ss
if

ie
r 

Embedding 

approach 

Embedding 

dimensions 
Sentiment types 

Accuracy 

using 

Fr*OR 

Accuracy 

using  

Fr*WO 

 

Fast-Text 

(FT) 

embedding 

300 

Positive 84.18 83.97 

Negative 82.19 83.66 

Figurative 84.14 84.75 

Sarcasm 82.99 83.29 

Regular 84.88 85.35 

Overall Accuracy 83.67 84.20 

L
S

T
M

  

P
ar

a
m

et
er

s 
a
re

 E
m

p
ir

ic
al

ly
 s

e
t 

Glove 

embedding 
100 

Positive 87.66 86.81 

Negative 84.02 88.96 

Figurative 84.28 84.50 

Sarcasm 85.45 87.64 

Regular 87.87 88.19 

Overall Accuracy 85.85 87.22 

Word2vec 100 

Positive 86.51 87.28 

Negative 88.68 87.29 

Figurative 88.99 88.22 

Sarcasm 86.89 88.94 

Regular 85.34 89.70 

Overall Accuracy 87.28 88.28 

Proposed 

Method 
40 

Positive 90.26 90.43 

Negative 89.07 92.83 

Figurative 88.62 89.20 

Sarcasm 88.39 90.85 

Regular 90.95 90.01 

Overall Accuracy 89.45 90.66 

 
Figure 3 shows the overall performance of the proposed 

method across the three models. It can be observed that the 
proposed approach performs very well with the LSTM model, 
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achieving an overall maximum classification accuracy of 
90.66. The proposed approach drastically reduces the number 
of trainable parameters, thus effectively using the available 
resources. Unlike the other existing methods that require 
loading an embedding dictionary, in the proposed approach, the 
embedding can be generated dynamically, thus making it both 
a CPU- and storage-efficient approach. 

 

 

Fig. 3.  Classification performance of the proposed method with different 

models. 

D. Embedding Dimensions and Performance 

This section provides an overview of how the size of a 
dimension might affect classification by comparing the 
performance of several embedding algorithms and their 
corresponding embedding dimensions. Figure 4 depicts the 
different models' behavior with different embedding 
dimensions. 

 

(a) 

 

(b) 

 

Fig. 4.  Classification performance of the proposed method with:  

(a) Fr*OR-based sentiment weights, (b) Fr*WO-based weights. 

V. CONCLUSION 

This study presented a sparse vector-based embedding 
technique, comparing its classification performance with some 
popular embedding techniques. Essentially, each word's vector 
is created by combining one-hot encoded vectors with 
mathematical calculations. The results showed that despite the 
proposed embedding technique using a lesser-dimensional 
vector, it provides a higher classification accuracy compared to 
existing embedding methods. The primary goal of this study 
was to develop an approach in which vectors and their values 
are interpretable while having an efficient vector dimension. 
This is in contrast to the traditional non-interpretable 
embedding methods that are thought to be generated by a 
black-box method, where the vectors are not human-
understandable. The experimental results are promising, 
showing that an embedding vector can be created in an 
interpretable manner with appropriate traditional mathematical 
calculations. Future work will progressively increase the 
accuracy of the vector to accommodate considerably more 
grammatical and linguistic information and better manage the 
uncertainty that develops during sentiment classification. 
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