
Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21225

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

Unenhanced Sparse Vector-based Embedding

Method for Sentiment Analysis

G. R. Kishore

Department of Information Science and Engineering, JSS Science and Technology University, Mysuru,

Karnataka, India

kkishorkumar12@gmail.com

B. S. Harish

Department of Information Science and Engineering, JSS Science and Technology University, Mysuru,

Karnataka, India.

bsharish@jssstuniv.in (corresponding author)

C. K. Roopa

Department of Information Science and Engineering, JSS Science and Technology University, Mysuru,

Karnataka, India.

ckr@jssstuniv.in

Received: 31 December 2024 | Revised: 23 January 2025 | Accepted: 7 February 2025

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.10098

ABSTRACT

Natural language processing is one of the most trending fields in research, with sentiment analysis being

one of the well-known problems in the field. Many methods have been proposed to handle text-based

sentiment data, with social networks acting as one of the main data sources and research targets. An

important step in designing a text-based model is the embedding method, which helps in the representation

of the inputs. This study presents a novel static text embedding method to represent text inputs and

compares its sentiment classification performance with some well-known text embedding methods. The

results are on par with existing embedding methods, achieving a promising classification accuracy of

90.66%.

Keywords-sentiment analysis; representation; word2vec; fast-text; word embedding; sparse vector; contextual

embedding model

I. INTRODUCTION

Identifying the sentiment in a given text has become a
widely researched area, as most industries are working on
models to automate the process of understanding the market
sentiment to make appropriate decisions. With an appropriate
model, sentiment analysis can be used to understand the intent
or opinion of a person behind a particular statement. The
problem can be described as identifying sarcasm or the polarity
of a statement. The problem can be anything that deals with
identifying the actual meaning behind the targeted sentence.
During text analysis, one of the most important steps is the
representation, and word embedding is one of the widely
known text representation methods. Word embeddings are
methods where each word is represented by a vector. There are
multiple ways to obtain the embedding vector, which can be
classified as static embedding and contextual embedding
methods. In static embedding, a vector is generated for each
word and remains the same irrespective of the context of a
sentence, whereas in contextual embedding the vector of the

same word changes depending on the context of the sentence.
Some of the most popular static word embedding methods are
Word2Vec, Glove, and Fast-text, and some of the well-known
methods to obtain contextual embeddings are Embeddings
from Language Models (ELMo), Bidirectional Encoder
Representations from Transformers (BERT), Transformer-XL,
etc. As this work focuses mainly on static embedding methods,
the following definitions give the basic idea behind each static
embedding algorithm.

Word2Vec embedding uses a shallow network to obtain the
representation on a large corpus. It has two approaches, namely
Skip-gram and Continuous Bag of Words (CBOW). Glove
stands for Global Vectors for Word Representation, where the
representation is obtained by factorizing the co-occurrence
matrix of the words. It also considers global word co-
occurrence and, hence, the name global vectors. Fast-text
embedding generates the vectors even at the subword levels (n-
grams), thus helping in handling the words that are out of
vocabulary.

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21226

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

II. CURRENT STATE ANALYSIS

In [1], the performance of word2vec embedding was
examined when combined with Convolutional Neural
Networks (CNNs) for classification. Comparing CBOW and
skip-gram showed that the former performs better on texts that
follow a uniform format, such as news articles, while the latter
performs well for non-uniform scenarios that are best seen in
social media posts such as Twitter. In [2], a new approach was
proposed, adding Bidirectional LSTM (BiLSTM) and attention
layers with CNNs to improve classification performance. In
[3], word2vec was combined with Long-Short-Term Memory
(LSTM) for sentiment analysis. The skip-gram approach
outperformed CBOW, as the data was not in a uniform format.
In contrast to classic word2vec, a novel method was proposed
in [4], called W2C-CL, to scale the effective training of large
corpora with an adjustable number of iterations and a large
batch size, while treating high-frequency and low-frequency
words equally. In [5], a combination of word2vec
hyperparameters was presented, which can contribute to
improved performance of sentiment analysis, while an increase
in dimensions can reduce performance. However, this study
concluded that hyperparameter combinations are mostly task-
specific.

In [6], an optimization of Glove embedding was proposed
with the help of constraints by incorporating more information,
so that neighboring and similar words are as close as possible
in the resultant vector space. In [7], the performance of Glove
embedding was compared with the well-known Bidirectional
Encoder Representations from Transformers (BERT) model for
sentiment analysis, showing that embedding methods such as
Glove outperform BERT, although the latter provides better
contextual-based vectors. In [8], Glove was combined with
LSTM to identify emotions in tweets. In [9], Glove was
combined with CNN to identify features, which were then fed
to BiLSTM, showing how a word embedding method is used in
brief text for sentiment analysis. In [10], an LSTM-Gated
Recurrent Unit (LSTM-GRU) model was combined with Glove
for sentiment analysis, enhancing LSTM capability with one of
the positive aspects of GRU to avoid resource waste.

In [11, 12], Fast-text embedding with CNN was examined
along with its impact on text processing and sentiment analysis,
evaluating its performance against benchmark datasets. In [13],
the ability of Fast-text embedding to extract features even in
non-standard word representations was shown and combined
with SVM for sentiment analysis. In [14], a new hybrid method
was presented, where the ability of Fast-text embedding was
extended with parts-of-speech tagging and word position
information for word embedding. In [15], the performance of
the Word2Vec, Glove, and Fast-text embedding methods was
compared, concluding that Fast-text was more accurate than the
other two. In [16], dense uninterpretable word embeddings
were transformed into a sparse and interpretable space using
sparse coding, resulting in human-understandable embeddings.
In [17] the word embeddings of some well-known methods,
such as word2vec, glove, and LSA, were augmented into four
feature sets, each representing the similarity and dissimilarity
of the pair of words, and then feeding an SVM for

classification. This approach had some shortcomings while
providing decent classification performance.

During the implementation of these embedding techniques,
it was observed that current methods have embedded vectors
with a dimension of at least 100 and most of them must be
loaded before use. This presents an issue when the system has
limited memory available. The following are the contributions
of the proposed work:

 The proposed method considers a lesser-dimensional vector
compared to some of the existing embedding methods,
which in turn reduces the model complexity.

 Obtains the embedding dynamically instead of working on
pre-trained embeddings.

 Achieves better sentiment classification results.

III. PROPOSED WORK

A. Dataset

A Twitter dataset is created for the experiment by
combining two distinct labeled datasets: one is a sentiment
dataset with labels that have positive or negative polarities [19],
while the labels in the other dataset are essentially non-polar by
nature, such as sarcasm, figurative language, and regular
statements [20]. The samples from both datasets were
randomly sampled so that each category can have close to
17000 to 20000 samples. The final dataset consists of 97000
samples with 5 labels, resulting in the combination of polarity
and emotion-based labels. The challenge expected in this
dataset is to identify and distinguish the ambiguity offered by
the polarity and emotion in a given text statement.

TABLE I. DATASET DETAILS

Class Number of samples

Positive 20000

Negative 20000

Regular 17000

Sarcasm 20000

Figurative 20000

B. Sentiment Weights

Weights are used to obtain the degree of sentiment
possessed by a word related to a particular class sentiment [18].
The sentiment weight has two approaches:

 Odds Ratio (OR): This metric ranks the words based on
their relevance to a particular class with the help of their
occurrence frequency. Positive odds ratio indicates a
stronger tendency of that word's usage in a class. Frequency
calculation and OR are represented as follows:

��∗��(�� , �
) ≈ ��� ���∗��������������
(������)∗ ���

 (1)

where �
 denotes the document, � is a class, ��
 is the
number of documents that contain the word �� and belong

to a class, ��
 is the number of documents that contain the
word �� but do not belong to the class, �
 is the total

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21227

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

number of documents in the class, and the sentiment weight
 !(��) can be obtained by:

 !(��) = max &��(�� , �'), ��(�� , �()) (2)

 Weighted Odds (WO): This metric applies weight to odds
ratio to obtain the amount of variance in word frequency
across the full collection of documents. In some cases, the
WO outperforms OR [18]. Frequency calculation and WO
is given by:

��∗!�(�� , �
) ≈ *���
��

+
,

��� *���(��������)
 �����

+
'�,

 (3)

and the sentiment weight !(��) is:

 !(��) = max &!�(�� , �'), !�(�� , �()) (4)

C. Method

The proposed method generates a sparse vector for each
given word. To generate the sparse vector, each character is
associated with its own predefined indices, which can be seen
in Table II.

TABLE II. CHARACTERS AND THEIR INDEXES

Character 0 1 2 3 4 5 6 7 8 9

Index 0 1 2 3 4 5 6 7 8 9

Character a b c d e f g h i j

Index 10 11 12 13 14 15 16 17 18 19

Character k l m n o p q r s t

Index 20 21 22 23 24 25 26 27 28 29

Character u v w x y z - ’ , .

Index 30 31 32 33 34 35 36 37 38 39

Since the proposed experiment focuses only on the English

language, only the English alphanumeric characters are
considered. The steps involved in generating the vector are
presented in Algorithm 1.

Algorithm 1: Creating Sparse Embedding

Vector

function GENERATE_SPARSE_VECTOR(word);

Input: word w, consisting of n number of

characters with c being the character

Output: A sparse vector of dimension 40

n_normalized_positions ←

 get_normalize_positions(word)

for c, c_pos_norm in word,

 n_normalized_positions do

 onehot_encoding ←

 get_onehot_encoding(c)

 augmented_vector ← onehot_encoding

 * index(c) * c_pos_norm

 w_vector ← w_vector +

 augmented_vector

end for

word_vector ← w_vector +

 sentiment_polarity(word)

weighted_word_vector ← word_vector *

 sentiment_weight(word)

return weighted _word_vector

As can be seen in the algorithm, a word � is considered a
collection of characters -, and the number of characters in each
word is represented by .. For any given word, the working
principle of the proposed algorithm is explained as follows:

 The normalized vector of character positions is obtained.
The positions are normalized to scale down the respective
positional coefficient values to range between 0 to 1.

 The one-hot encoding of each character is obtained, whose
length is equal to the number of characters under
consideration. It can be observed from Table II that the
number of characters is 40. Hence the dimension of the
vector will be 40, and in the resultant vector, the value at
the index corresponding to the respective character will be
1 (one).

 The scalar product of one-hot encoded vectors of each
character, the index of the respective character, and their
corresponding normalized positional coefficients are
obtained, and the resulting vectors are summed up to form a
single vector to get a vector of dimension 40. One of the
main reasons for scalar products of the character's
normalized positional coefficients is to avoid any
duplication of the vectors for different words with the same
characters, such as "bat" and "tab".

i. For better understanding, let us consider a 3-
dimensional vector for the characters, where � =
&1,0,0) , � = &0,1,0) , and � = &0,0,1) . Now, vector
summation is performed, and &1,1,1) is obtained for
both "bat" and "tab".

ii. Considering the scalar product approach, the resultant
vectors will be different for both words. For example,
let's consider the positional coefficients without
applying normalization, i.e., &1,2,3) for first, second,
and third characters, respectively, then the resultant
vector for "bat" will be &2,1,3), whereas for "tab" will
be &3,1,2).

 Then the polarity of the word is added to the resultant
vector. Python offers various libraries to obtain the polarity
of the word, such as VADER and SpaCy. In the proposed
method, polarity is obtained using the SpaCy library.

 Finally, scalar multiplication is performed, where the
resultant vector is multiplied by the Sentiment Weight (SW)
of the word.

1) Example

Let's consider the word "sad" for demonstration purposes.
The vector is obtained as follows:

 The normalized position values for each letter in the word
are:

Letter Position Normalized position values

s 1 0.26726124

a 2 0.53452248

d 3 0.80178373

 The index vector of dimension 40 for each letter in the
word, based on Table II, for the letter will be:

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21228

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

Letter Index vector for the letter

s
[0,

0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

a
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

d
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

 The resultant vector obtained by the product of the index
vector and the normalized positional values of each letter
will be:

Word Resultant sparse vector

sad

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.345224, 0.0, 0.0,

10.423188, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 7.483314, 0.0, 0.0, 0 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

In this implementation, the decimal value is considered up
to 6 positions.

 The polarity for the word "sad" is -0.5, and the scalar
addition will result in the following vector:

Word Resultant vector after adding word polarity

sad

[-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 4.84522484,

-0.5, -0.5, 9.92318843, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -

0.5, -0.5, -0.5, -0.5, -0.5, 6.98331477, -0.5, -0.5, -0.5.0, -0.5, -0.5,

-0.5, -0.5, -0.5, -0.5, -0.5]

 Finally the sentiment weights for the word "sad" are:

Sentiment weight type Odds ratio Weighted odds

Sentiment weights 1.1887 0.067

The final resultant embedding vectors for the word "sad"
after performing the scalar product are as follows,

Sentiment

weight
Resultant embedding vectors

Odds ratio

[-0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -0.59435,

-0.59435, -0.59435, -0.59435, -0.59435, 5.759518, -0.59435,

-0.59435, 11.795694, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435, 8.301066, -0.59435,

-0.59435, -0.59435.0, -0.59435, -0.59435, -0.59435, -

0.59435, -0.59435, -0.59435, -0.59435]

Weighted

odds

[-0.03385, -0.03385, -0.03385, -0.03385, -0.03385, -0.03385,

-0.03385, -0.03385, -0.03385, -0.03385, 0.328021, -0.03385,

-0.03385, 0.671799, -0.03385, -0.03385, -0.03385, -0.03385,

-0.03385, -0.03385, -0.03385, -0.03385, -0.03385, -0.03385,

-0.03385, -0.03385, -0.03385, 0.472770, -0.03385, -0.03385,

-0.03385.0, -0.03385, -0.03385, -0.03385, -0.03385, -

0.03385, -0.03385, -0.03385]

Fig. 1. Workflow of the model.

Figure 1 shows the workflow of the experimental
implementation. The implementation follows a straightforward

flow, where the input first undergoes preprocessing to obtain
the clean text, with commonly known steps such as stop-word
removal, lemmatization, etc., and then it is fed to the core
model consisting of embedding and classification steps.

IV. RESULTS AND DISCUSSION

The proposed sparse vector-based embedding was
compared with some well-known static embedding algorithms,
such as Glove, Word2Vec, and Fast-Text. The results showed
that the proposed method achieved fairly good training and
validation accuracies compared to those of the aforementioned
embedding methods. Figure 2 shows that existing methods start
to overfit after a certain point. The performance of the
proposed embedding method was verified using three well-
known machine learning models, namely SVM, Radial Basis
Function Neural Network (RBF-NN), and LSTM.

(a)

(b)

(c)

(d)

Fig. 2. Training and validation accuracies of: (a) Proposed method,

(b) Glove embedding, (c) Fast-text embedding, (d) Word embedding.

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21229

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

A. Classification Performance using SVM

SVM is a well-known linear classification model. Table III
presents the classification performance of each embedding
method using SVM. With Term Frequency (Fr) calculation of
Odds Ratio (OR) and Weighted Odds (WO) being represented
as Fr*OR and Fr*WO respectively, it is observed that the
proposed embedding method outperforms the existing ones.

TABLE III. CLASSIFICATION PERFORMANCE OF THE
PROPOSED APPROACH USING SVM

C
la

ss
if

ie
r

Embedding

approach

Embedding

dimensions

Sentiment

types

Accuracy

using

Fr*OR

Accuracy

using

Fr*WO

S
V

M
 (

L
in

er
 K

er
n

el
)

V
al

u
e
 o

f
C

 =
 0

.9
 a

n
d

 G
am

m
a

=
 1

.0
 –

 E
m

p
ir

ic
al

ly
 s

e
t

Fast-Text

(FT)

embedding

300

Positive 69.83 78.54

Negative 71.14 79.34

Figurative 65.58 72.34

Sarcasm 71.76 79.10

Regular 73.25 76.42

Overall
Accuracy

70.31 77.14

Glove

embedding
100

Positive 75.91 78.35

Negative 78.66 76.52

Figurative 71.23 74.56

Sarcasm 80.19 81.22

Regular 79.59 81.48

Overall

Accuracy
77.11 78.42

Word2vec 100

Positive 82.35 83.13

Negative 81.52 81.96

Figurative 80.25 81.24

Sarcasm 83.19 85.51

Regular 81.54 82.68

Overall

Accuracy
81.77 82.90

Proposed

Method
40

Positive 83.12 84.42

Negative 81.91 82.34

Figurative 84.54 84.91

Sarcasm 88.67 89.56

Regular 79.54 80.53

Overall

Accuracy
83.55 84.35

B. Classification Performance using RBF-NN

RBF-NN is known to have a strong tolerance to input noise
and the ability to generalize. Table IV shows the classification
performance of each embedding method with RBF-NN. It can
be observed that the proposed embedding method surpassed all
others using the Fr*OR approach, with an overall classification
accuracy of 84.55%. It also performed on par with word2vec
(w2v), using the Fr*WO approach, where the w2v embedding
method achieved 87.66% classification accuracy. These results
indicate that the proposed method has promising performance
in combination with RBF-NN.

C. Classification Performance using LSTM

LSTM is an RNN that is specifically designed to handle
sequential data. As shown in Table V, the proposed embedding
method outperformed the other existing methods.

TABLE IV. CLASSIFICATION PERFORMANCE OF THE
PROPOSED APPROACH USING RBF-NN

C
la

ss
if

ie
r

Embedding

approach

Embedding

dimensions
Sentiment types

Accuracy

using

Fr*OR

Accuracy

using

Fr*WO

R
B

F
-N

N

P
ar

am
et

er
s

b
e
in

g
 α

i
=

 0
.1

 ,
 β

i
=

 1
.0

 (
E

m
p

ir
ic

al
)

Fast-Text

(FT)

embedding

300

Positive 84.86 87.85

Negative 83.22 86.75

Figurative 80.68 86.80

Sarcasm 81.96 85.50

Regular 83.74 84.40

Overall Accuracy 82.89 86.26

Glove

embedding
100

Positive 83.23 86.18

Negative 81.87 86.69

Figurative 83.16 86.34

Sarcasm 81.25 85.91

Regular 84.06 86.88

Overall Accuracy 82.71 86.40

Word2vec 100

Positive 81.80 87.91

Negative 86.95 87.14

Figurative 81.43 87.20

Sarcasm 85.67 88.81

Regular 86.15 87.24

Overall Accuracy 84.40 87.66

Proposed

Method
40

Positive 84.16 85.21

Negative 86.58 85.00

Figurative 83.75 88.51

Sarcasm 83.27 88.58

Regular 85.01 85.76

Overall Accuracy 84.55 86.61

TABLE V. CLASSIFICATION PERFORMANCE OF THE
PROPOSED APPROACH USING LSTM

C
la

ss
if

ie
r

Embedding

approach

Embedding

dimensions
Sentiment types

Accuracy

using

Fr*OR

Accuracy

using

Fr*WO

Fast-Text

(FT)

embedding

300

Positive 84.18 83.97

Negative 82.19 83.66

Figurative 84.14 84.75

Sarcasm 82.99 83.29

Regular 84.88 85.35

Overall Accuracy 83.67 84.20

L
S

T
M

P
ar

a
m

et
er

s
a
re

 E
m

p
ir

ic
al

ly
 s

e
t

Glove

embedding
100

Positive 87.66 86.81

Negative 84.02 88.96

Figurative 84.28 84.50

Sarcasm 85.45 87.64

Regular 87.87 88.19

Overall Accuracy 85.85 87.22

Word2vec 100

Positive 86.51 87.28

Negative 88.68 87.29

Figurative 88.99 88.22

Sarcasm 86.89 88.94

Regular 85.34 89.70

Overall Accuracy 87.28 88.28

Proposed

Method
40

Positive 90.26 90.43

Negative 89.07 92.83

Figurative 88.62 89.20

Sarcasm 88.39 90.85

Regular 90.95 90.01

Overall Accuracy 89.45 90.66

Figure 3 shows the overall performance of the proposed

method across the three models. It can be observed that the
proposed approach performs very well with the LSTM model,

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21230

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

achieving an overall maximum classification accuracy of
90.66. The proposed approach drastically reduces the number
of trainable parameters, thus effectively using the available
resources. Unlike the other existing methods that require
loading an embedding dictionary, in the proposed approach, the
embedding can be generated dynamically, thus making it both
a CPU- and storage-efficient approach.

Fig. 3. Classification performance of the proposed method with different

models.

D. Embedding Dimensions and Performance

This section provides an overview of how the size of a
dimension might affect classification by comparing the
performance of several embedding algorithms and their
corresponding embedding dimensions. Figure 4 depicts the
different models' behavior with different embedding
dimensions.

(a)

(b)

Fig. 4. Classification performance of the proposed method with:

(a) Fr*OR-based sentiment weights, (b) Fr*WO-based weights.

V. CONCLUSION

This study presented a sparse vector-based embedding
technique, comparing its classification performance with some
popular embedding techniques. Essentially, each word's vector
is created by combining one-hot encoded vectors with
mathematical calculations. The results showed that despite the
proposed embedding technique using a lesser-dimensional
vector, it provides a higher classification accuracy compared to
existing embedding methods. The primary goal of this study
was to develop an approach in which vectors and their values
are interpretable while having an efficient vector dimension.
This is in contrast to the traditional non-interpretable
embedding methods that are thought to be generated by a
black-box method, where the vectors are not human-
understandable. The experimental results are promising,
showing that an embedding vector can be created in an
interpretable manner with appropriate traditional mathematical
calculations. Future work will progressively increase the
accuracy of the vector to accommodate considerably more
grammatical and linguistic information and better manage the
uncertainty that develops during sentiment classification.

REFERENCES

[1] B. Jang, I. Kim, and J. W. Kim, "Word2vec convolutional neural
networks for classification of news articles and tweets," PLOS ONE, vol.
14, no. 8, Aug. 2019, Art. no. e0220976, https://doi.org/10.1371/
journal.pone.0220976.

[2] B. Jang, M. Kim, G. Harerimana, S. Kang, and J. W. Kim, "Bi-LSTM
Model to Increase Accuracy in Text Classification: Combining
Word2vec CNN and Attention Mechanism," Applied Sciences, vol. 10,
no. 17, Aug. 2020, Art. no. 5841, https://doi.org/10.3390/app10175841.

[3] P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, "Sentiment
Analysis Using Word2vec And Long Short-Term Memory (LSTM) For
Indonesian Hotel Reviews," Procedia Computer Science, vol. 179, pp.
728–735, 2021, https://doi.org/10.1016/j.procs.2021.01.061.

[4] B. Li, A. Drozd, Y. Guo, T. Liu, S. Matsuoka, and X. Du, "Scaling
Word2Vec on Big Corpus," Data Science and Engineering, vol. 4, no. 2,
pp. 157–175, Jun. 2019, https://doi.org/10.1007/s41019-019-0096-6.

[5] T. Adewumi, F. Liwicki, and M. Liwicki, "Word2Vec: Optimal
hyperparameters and their impact on natural language processing
downstream tasks," Open Computer Science, vol. 12, no. 1, pp. 134–141,
Mar. 2022, https://doi.org/10.1515/comp-2022-0236.

[6] F. Sakketou and N. Ampazis, "A constrained optimization algorithm for
learning GloVe embeddings with semantic lexicons," Knowledge-Based
Systems, vol. 195, May 2020, Art. no. 105628, https://doi.org/10.1016/
j.knosys.2020.105628.

[7] A. Khatri and P. P, "Sarcasm Detection in Tweets with BERT and
GloVe Embeddings," in Proceedings of the Second Workshop on
Figurative Language Processing, 2020, pp. 56–60,
https://doi.org/10.18653/v1/2020.figlang-1.7.

[8] P. Gupta, I. Roy, G. Batra, and A. K. Dubey, "Decoding Emotions in
Text Using GloVe Embeddings," in 2021 International Conference on
Computing, Communication, and Intelligent Systems (ICCCIS), Greater
Noida, India, Feb. 2021, pp. 36–40, https://doi.org/10.1109/
ICCCIS51004.2021.9397132.

[9] A. Pimpalkar and J. R. Raj, "MBiLSTMGloVe: Embedding GloVe
knowledge into the corpus using multi-layer BiLSTM deep learning
model for social media sentiment analysis," Expert Systems with
Applications, vol. 203, Oct. 2022, Art. no. 117581,
https://doi.org/10.1016/j.eswa.2022.117581.

[10] R. Ni and H. Cao, "Sentiment Analysis based on GloVe and LSTM-
GRU," in 2020 39th Chinese Control Conference (CCC), Shenyang,
China, Jul. 2020, pp. 7492–7497, https://doi.org/10.23919/CCC50068.
2020.9188578.

Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21225-21231 21231

www.etasr.com Kishore et al.: Unenhanced Sparse Vector-based Embedding Method for Sentiment Analysis

[11] M. Umer et al., "Impact of convolutional neural network and FastText
embedding on text classification," Multimedia Tools and Applications,
vol. 82, no. 4, pp. 5569–5585, Feb. 2023, https://doi.org/10.1007/
s11042-022-13459-x.

[12] I. N. Khasanah, "Sentiment Classification Using fastText Embedding
and Deep Learning Model," Procedia Computer Science, vol. 189, pp.
343–350, 2021, https://doi.org/10.1016/j.procs.2021.05.103.

[13] D. A. Wibowo and A. Musdholifah, "Sentiments Analysis of Indonesian
Tweet About Covid-19 Vaccine Using Support Vector Machine and
Fasttext Embedding," in 2021 4th International Seminar on Research of
Information Technology and Intelligent Systems (ISRITI), Yogyakarta,
Indonesia, Dec. 2021, pp. 184–188, https://doi.org/10.1109/
ISRITI54043.2021.9702871.

[14] F. Alotaibi and V. G. Gupta, "Sentiment Analysis System using Hybrid
Word Embeddings with Convolutional Recurrent Neural Network," The
International Arab Journal of Information Technology, vol. 19, no. 3,
2022, https://doi.org/10.34028/iajit/19/3/6.

[15] S. Khomsah, R. D. Ramadhani, and S. Wijaya, "The Accuracy
Comparison Between Word2Vec and FastText On Sentiment Analysis
of Hotel Reviews," Jurnal RESTI (Rekayasa Sistem dan Teknologi
Informasi), vol. 6, no. 3, pp. 352–358, Jun. 2022, https://doi.org/
10.29207/resti.v6i3.3711.

[16] A. Templeton, "Word Equations: Inherently Interpretable Sparse Word
Embeddingsthrough Sparse Coding." arXiv, 2020,
https://doi.org/10.48550/ARXIV.2004.13847.

[17] S. Selva Birunda and R. Kanniga Devi, "A Review on Word Embedding
Techniques for Text Classification," in Innovative Data Communication
Technologies and Application, vol. 59, J. S. Raj, A. M. Iliyasu, R.
Bestak, and Z. A. Baig, Eds. Springer Singapore, 2021, pp. 267–281.

[18] S. Prakash, T. Chakravarthy, and E. Kaveri, "Statistically weighted
reviews to enhance sentiment classification," Karbala International
Journal of Modern Science, vol. 1, no. 1, pp. 26–31, Sep. 2015,
https://doi.org/10.1016/j.kijoms.2015.07.001.

[19] M. Michailidis, "Sentiment140 dataset with 1.6 million tweets." Kaggle,
[Online]. Available: https://www.kaggle.com/datasets/kazanova/
sentiment140.

[20] J. Nikhil, "Tweets with Sarcasm and Irony." Kaggle, [Online].
Available: https://www.kaggle.com/datasets/nikhiljohnk/tweets-with-
sarcasm-and-irony.

