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ABSTRACT 

Advanced 3D Printing (A3P) revolutionizes manufacturing with precision, speed, and innovation, 

unlocking limitless design possibilities and superior material performance for next-generation industrial 

and creative applications. A3P epitomizes a paradigm shift in manufacturing, seamlessly merging additive 

fabrication with advanced 3D printing to construct intricate geometries unattainable through conventional 

methods. However, inherent challenges persist, including structural deformations in Stereolithography 

(SLA) and nozzle occlusions in Fused Deposition Modeling (FDM), necessitating intelligent intervention. 

This study introduces LoRe-GRNN, a groundbreaking Deep Learning (DL) framework for real-time 

anomaly detection and stress distribution prediction. Leveraging a novel fusion of Longformer-Reformer 

(LoRe) architectures with Gated Recurrent Neural Networks (GRNN), the system optimizes feature 

extraction and predictive accuracy. A meticulously curated 3D model repository, synergized with Finite 

Element (FE) simulations, enhances SLA stress predictions, while an integrated multisensory module 

ensures FDM process monitoring. The hybrid approach demonstrates unparalleled precision, achieving 

99.23% anomaly detection accuracy, significantly mitigating computational overhead compared to 

traditional FE simulations. This transformative framework enhances the resilience of additive 

manufacturing, heralding an era of intelligent, high-fidelity, and resource-efficient 3D printing systems. 

Keywords-advanced 3D printing; deep learning; stereolithography; anomaly detection; longformer and 

reformer; stress distribution prediction; Gated Recurrent Neural Networks (GRNN) 

I. INTRODUCTION  

Rapid advances in Additive Manufacturing (AM) have 
allowed the fabrication of complex geometries, overcoming the 
limitations of traditional methods. However, challenges such as 
part deformation, nozzle clogging, and operational anomalies 
in Stereolithography (SLA) and Fused Deposition Modeling 
(FDM) processes hinder consistent print quality [1]. 
Addressing these issues requires innovative solutions for real-
time monitoring and accurate stress prediction. Using filaments 
or materials such as plastic, metal, and resins allows one to 
produce specific parts using 3D printers. This process is 
applied for the quick fabrication of prototypes or completed 
items since it helps to simplify mold production. Industrial 
machinery can use metal or plastic [2]. As industrial-grade 
machinery and equipment are too expensive and time-
consuming for prototype development, mass production is not 
suitable. 

Using 3D printers results in considerable time to complete 
the fabrication process [3]. Errors might arise during the 

printing process. Printing errors are quite likely, and usually, 
the output is useless. Usually, the 3D printer will keep on 
printing even in cases of a problem since it cannot manage 
errors on its own. Ongoing printing runs the danger of 
damaging the 3D printer as well as wasting either the output or 
the materials [4]. A common printing error is a clogged nozzle. 
Many researchers are striving to address these problems. 
Regarding quality control, in-process monitoring is a crucial 
element that is often overlooked, but researchers argue for its 
relevance. The basis of quality control during the 
manufacturing process is the ongoing observation of 3D 
printing throughout the process. One can visually monitor or 
use data collected through sensors [5]. This method usually 
uses cooperative sensors to improve quality prediction and 
defect detection capacity. 

Statistical analysis and Acoustic Emission (AE) are used to 
precisely detect cases of filament breakage [6]. This results in 
nozzle clogging during the printing process, causing the nozzle 
to malfunction. Using this approach, one tracks the extruder 
motor's current flow. An increase in amperage readings 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21671-21677 21672  
 

www.etasr.com Alghamdi: LoRe-GRNN: A Hybrid Deep Learning Framework for Real-Time Anomaly Detection and … 

 

suggests that the extruder motor is heating, and hence the 
nozzle tip is also getting full. Then, a Proportional Integral 
Derivative (PID) controller can control the cooling fan [7], 
maintaining the temperature of the nozzle and avoiding nozzle 
clogging that could cause product warping. A physics-based 
model can help to achieve additional validation of these 
conclusions [1, 8, 9]. The filament extrusion speed depends on 
the nozzle temperature, which affects the rheological properties 
of the material and the probability of nozzle clogging that can 
cause printing failure.  

Several studies have aimed to reduce or eliminate the 
adhesion force present in 3D printing. Silicon films, such as 
PDMS silicone, help to remove the cured layer from the 
surface of the vat more easily. However, the use of this kind of 
film does not stop the emergence of important forces [10]. 
EnvisionTec Inc. developed a peeling mechanism that raises 
one edge of the platform to help remove the component from 
the bottom of the container [11, 12]. This mechanism reduces 
the force needed to remove the cured layer, but it is only 
beneficial for components with geometries creating a 
significant cross-sectional area. In [13], a two-channel system 
was designed to significantly decrease the separation force. 
Half of the vat sections underwent a PDMS film application, 
while the other half was left uncoated. Two sections separated 
the vat. The component first prints on PDMS film and then is 
moved horizontally until it reaches the uncovered side. Then 
the part's position in the vertical and horizontal planes is 
changed so that the next layer can cure it. This arrangement 
reduces the separation forces caused by the main shear force 
applied to the cured layer during the first horizontal movement 
[15]. Conversely, extra horizontal movement causes shear 
stresses, which bend the component in a horizontal direction 
and extend the fabrication time. Although this system reduces 
the separation force, the forces are still enough to induce 
component deformation and failure [15]. This has led many 
researchers to work on predictive models to monitor the 
printing process in real time.  

Recently, researchers have built intelligent monitoring 
frameworks using machine learning algorithms in in-process 
monitoring systems. Machine learning algorithms are applied 
to classify, predict, and minimize the consequences of printing-
related faults. Researchers collect data from an FDM machine 
[16, 17], such as using an AE technique. The hidden semi-
Markov model and the Support Vector Machine (SVM) 
distinguish signals between the normal state of the FDM printer 
and the nozzle-clogged state. The techniques applied to assess 
printing quality use a wide spectrum of sensors. Many 
machine-learning techniques are used to detect any anomalies 
during the printing process [18]. Among these systems are 
probabilistic neural networks, naïve Bayesian clustering, and 
SVM, which use data from thermocouples, accelerometers, and 
infrared sensors.  

This study proposes a deep learning-based data-driven 
monitoring system to support AM in-process quality control, as 
a solution to the need for continuous production and 
operational status monitoring [10-21]. Temporal Convolutional 
Networks (TCN) are used to distinguish between safe and 
erroneous values. The main goal of this design is to build a 

device that can track the temperature and air quality inside the 
3D printing chamber. If the device fails, it signals that the 3D 
printer is in safe printing condition and that the output is error-
free. The system alerts the operators to stop producing to 
prevent waste and damage to the printer [22].  

Current techniques [23] rely heavily on Finite Element (FE) 
simulations, which are computationally expensive, or 
conventional machine learning models that lack real-time 
adaptability. Advanced neural networks [24] have shown 
promise but fall short in handling large-scale data or 
identifying anomalies effectively. Hybrid models [22] that 
combine feature extraction and predictive accuracy emerge as 
transformative solutions. This survey critically examined 
previous approaches, identified gaps in computational 
efficiency and anomaly detection accuracy [22], and 
highlighted the need for an optimized real-time framework 
such as the proposed Longformer-Reformer Gated Recurrent 
Neural Network (LoRe-GRNN). LoRe-GRNN is a hybrid deep 
learning framework integrating Longformer, Reformer, and 
hybrid Recurrent Neural Networks (GRNN). By leveraging 
advanced feature extraction and prediction capabilities, the 
framework offers robust real-time anomaly detection and stress 
distribution prediction, improving efficiency and reliability in 
AM processes. 

II. MATERIALS AND METHODS 

Although A3P is an innovative technology that leads to 
creating intricate geometries by enhancing efficiency, it is 
limited by problems including part deformation, nozzle 
clogging, and stress distribution anomalies. This study presents 
a hybrid deep learning framework called LoRe-GRNN to 
address these problems. This system detects anomalies in SLA 
and FDM and precisely predicts stress distributions using a 3D 
model database, FE simulations, and real-time multisensory 
data. Figure 1 shows the architecture that ensures consistent 
and high-quality A3P outputs while reducing computational 
costs, opening the path for more reliable and intelligent 
manufacturing systems. 

 

 
Fig. 1.  Proposed LoRe-GRNN framework for stress prediction and 
anomaly detection in AM. 

Figure 1 illustrates a framework for improving AM 
processes using a hybrid deep learning approach. It starts with 
a 3D model dataset and FE simulations, which provide 
essential data for understanding the stress distribution and 
anomalies during printing. These data are processed through 
the GRNN and LoRe components, forming part of a hybrid 
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deep learning framework. Real-time data from a multisensor 
system (capturing operational anomalies such as nozzle 
clogging) also feed into this framework. The system outputs 
two critical predictions: Stress distribution prediction for SLA 
processes and an anomaly detection module to identify issues 
in FDM processes. These predictions are then evaluated in a 
performance evaluation stage to assess and enhance the overall 
reliability and efficiency of the A3P processes. The diagram 
emphasizes an integrated real-time approach to improve print 
quality while reducing resource waste and computational cost. 
The Longformer and Reformer models were chosen for their 
ability to efficiently process long-term dependencies in 
complex geometries, reducing computational overhead. GRNN 
complements this by effectively capturing temporal patterns in 
sequential data, enhancing prediction accuracy in dynamic 
printing processes. 

A. Data Acquisition 

Data acquisition involves collecting and preparing the 
necessary dataset for training and validating the proposed 
LoRe-GRNN framework. For the SLA process, FE simulations 
are used to model stress distribution under various geometric 
and process conditions. FE simulations are used to model the 
distribution of stress during the SLA printing process. This is 
mathematically expressed as: 

�������������	��
�, �
 = �(�, �, �, �)  (1) 

�(�, �, �, �) = � ∑ (�� , ��) ±  � ∑ (�� . �� + �� . ��)�� ! +"� !
            #(�, �, �) + $(%, &)   (2) 

where �(�, �, �, �) represents the stress found at a spatial point 
(�, �, �) considering time �. � is Young's modulus, particularly 
meant for a material, � is the Poisson's ratio, and '(�, �, �, �) 
represents the strain contained at the same spatial point that 
constitutes #(�, �, �), where it shows the geometric parameters 
that are derived from the 3D model dataset. The anomaly is 
indicated by ( , which is detected in real time multisensory 
data. To achieve better predictive accuracy, the LoRe-GRNN 
framework includes a specific function represented by �. These 
simulations generate datasets that link input parameters, such 
as geometry and printing conditions, to output stress 
distributions. For the FDM process, real-time data are captured 
using a multisensory system that records parameters such as 
nozzle temperature, pressure, filament flow, and system 
vibrations. This uses multisensory data to capture nozzle 
clogging with respect to operational anomalies. The time-series 
data taken for the research are formulated as: 

) = ∑ *��(�) + +�(�) + ,�(�)-.� !   (3) 

These time-series data help identify operational anomalies, 
such as nozzle clogging. The data acquired from both processes 
form a comprehensive training and validation dataset, ensuring 
that the model can predict stress distributions and detect 
anomalies with high accuracy and robustness. 

B. Data Preprocessing 

Data preprocessing can ensure the cleanliness of the raw 
data with certain normalized terms to enhance training. 
Considering the whole dataset, the normalization process scales 

the features into a uniform range to improve training 
convergence. The normalized range is specified as: 

/" = ∑ 012342
52

+ 6(()78
9 !    (4) 

where / represents the feature set, : is the mean, and � is the 
standard deviation. Since most data are time series data, the 
windowing method is applied as: 

); = ∑ ��(�), ∀�∈ [+, 6]@� !    (5) 

This is implied to capture the temporal dependencies, and 
the outlier in the detection mode removes the anomalous values 
using a threshold:  

|�� − :| ≥ %. D    (6) 

where % is a sensitivity factor. Finally, the dataset is divided 
into two sets: 60% for training and 40% for testing. This is 
mathematically expressed as: 

EF�F���, E = E.9G�" ∪ E.IJ.   (7) 

C. Design of 3D Model Dataset 

The design of a 3D model dataset is crucial for training and 
validating the proposed framework. The dataset must capture a 
diverse range of geometric features and stress conditions to 
ensure generalizability across various AM processes. To create 
3D models using any platform, such as computer-aided design 
software, geometric parameters are represented by # =
∑ K@(�) + LM.@ !  to include a greater number of predicted 
variations. A variation in the thickness and curvature is prone 
to stress concentrations. The printing speed and its 
corresponding laser power are tested for SLA and supported 
enough for testing with nozzle temperature and extrusion rate 
specifically for FDM. Using FE, the stress distribution � for is 
calculated as: 

� = �NO(#, P)     (8) 

where P is given as P = ∑ +�(�)�� ! . This includes the printing 
speed and laser power for SLA, the nozzle temperature, and the 
extrusion rate for the FDM printing process. The conditions 
offered for the FE simulations are given as: 

�� = Q�R , �S , �T , URS , UST,UTRV    (9) 

Assuming labeling and the structural models, the dataset is 
organized as: 

EW
 = ∑ *(#� , P� , ��)-X� !    (10) 

where Y is the number of samples that contain geometry and 
process parameters in addition to the corresponding stress data. 
Then the 3D dataset is validated by comparing the total 
simulated stress distributions along with the experimental 
results from both the SLA and FDM prints. The calculation of 
the Mean Absolute Error (MAE) is given by: 

Z[� = !
X ∑ \�]� − ��\X� !    (11) 

The same approach for the design of the 3D database of the 
3D model by covering the most diverse features gives:  

E = ∑ *(#� , ��)-X� !     (12) 
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where Y  is the total number of samples. Longformer and 
Reformer are combined to generate a deep learning framework 
where the feature extraction is obtained from large-scale input 
sequences. The attention mechanism for the Longformer is 
expressed as: 

[@^_G@ = �
�� `F� abcd
efg

h   (13) 

where i  and j  are the query and key matrices. The local 
attention mechanism improves computational efficiency. Then 
the reformer-based Local Sensitive Hashing (LSH) attention is 
handled as: 

[klm = �
�� `F� abcd
efg

h   (14) 

The temporal pattern modeling the recurrent equations for 
real time prediction are: 

ℎ. = � ∑ (nℎℎ.3! + nT�.) + �ℎ(�)". !   (15) 

where ℎ.  is the hidden state, and the weight matrices are np 
and nR. The activation function and the bias term are denoted 
by � and �p. For appropriate stress distribution prediction, the 
geometric features # are combined with the process parameters 
P given as input to the LoRe-GRNN: 

�] = �k^ qI 3rqXX(#, P)    (16) 

where � is the predicted stress distribution and �k^qI3rqXX  is 
the neural network mapping function. The anomaly score is 
given by: 

[�
`Fs��t
�� = ‖vw 3v‖x
‖v‖x

   (17) 

where )w  denotes the predicted sensor values and ) denotes the 
actual sensor values. 

III. RESULTS AND DISCUSSIONS 

The performance of the proposed LoRe-GRNN framework 
was evaluated under experimentation. This gives clear 
structured statistical results in addressing the challenges that 
occur in advanced 3D printing processes. The effectiveness of 
the framework was analyzed for stress distribution prediction 
and real-time anomaly detection in the SLA and FDM 
processes. Statistical metrics, such as accuracy, precision, 
recall, and computational cost, are used to validate its 
performance against traditional FE simulations and standard 
neural network models. Furthermore, a comparative analysis 
demonstrates the advantages of the proposed approach in terms 
of computational efficiency and prediction accuracy, offering 
insights into its applicability to improve the reliability of 3D 
printing. The data acquisition process for the LoRe-GRNN 
framework involved creating tailored datasets for SLA and 
FDM processes. For SLA, a 3D model dataset was developed, 
incorporating diverse geometric shapes and features. FE 
simulations modeled the stress distribution under varying 
printing conditions, generating detailed stress maps. For FDM, 
real-time data was collected using a multisensory system, 
including thermal, force, pressure, optical, and vibration 
sensors. These sensors captured time-series data during normal 
and anomalous operations, such as nozzle clogs or misaligned 

layers. Preprocessing, including normalization and data 
augmentation, ensured consistency and diversity, enabling 
robust training and validation of the framework. The proposed 
LoRe-GRNN model predicted the stress distributions more 
accurately, as shown in a comparative analysis with traditional 
FE simulations and deep learning methods in Table I. 

TABLE I.  STRESS PREDICTION ACCURACY (%) 

Method SLA Process FDM process 
Average 

accuracy 

Traditional FE 97.12 96.89 97 
Standard RNN 92.45 91.87 92.16 
LoRe-GRNN 

(proposed) 
99.23 99.11 99.17 

 
LoRe-GRNN outperformed both FE and standard RNN, 

achieving 99.17% average accuracy, with a notable reduction 
in computational cost. Figure 2 shows the stress distribution 
predictions across different layers of the 3D-printed model.  

 

 
Fig. 2.  Stress distributions across layers. 

 
Fig. 3.  Confusion matrix (anomaly detection). 

The module evaluates nozzle clogging and other 
operational anomalies in FDM processes. Figure 3 shows the 
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detection results using a confusion matrix. Performance was 
evaluated using Precision, F1 score, and Recall: 

Precision=
True PositiveJ

True Positives+False Positives
= 487

487+2
=0.997  

Recall=
True Positives

True Positives+False Negatives
= 487

487+3
=0.994  

F1-score=2×
Precision×Recal@
Precision+Recall

=0.995  

The proposed LoRe-GRNN framework demonstrated an 
exceptional accuracy of 99.23%. This high accuracy is 
reflected in the detection of nozzle clogging and operational 
irregularities during FDM printing. The model effectively 
distinguished between normal and malfunctioning states, 
minimizing false positives and negatives, thus ensuring reliable 
real-time monitoring. The anomaly detection metrics are shown 
in Table II. Figure 4 shows the anomaly detection accuracy 
over a number of training iterations. 

TABLE II.  ANOMALY DETECTION METRICS 

Metric 
LoRe-GRNN 

(proposed) 

Standard 

RNN 
FE simulations 

Accuracy (%) 99.23 95.67 97.12 
Precision (%) 99.7 94.12 96.8 

Recall (%) 99.4 95.21 96.5 
F1-score (%) 99.5 94.65 96.65 

 

 
Fig. 4.  Anomaly detection accuracy over training iterations. 

The computational cost analysis highlights the efficiency of 
the LoRe-GRNN framework, reducing simulation time by 
approximately 87% compared to traditional FE methods, as 
shown in Table III. 

TABLE III.  COMPUTATIONAL COST (SECONDS PER 
SIMULATION) 

Method SLA process FDM process Average cost (s) 

Traditional FE 120.45 115.89 118.17 
LoRe-GRNN 
(proposed) 

15.23 14.89 15.06 

 
The computational efficiency of LoRe-GRNN was 

compared to traditional FE simulations. LoRe-GRNN reduces 
computational time by approximately 87.25%, making it 
suitable for real-time applications. With an average processing 

time of 15 seconds per simulation, the framework allows real-
time stress prediction and anomaly detection, significantly 
enhancing the practicality of additive manufacturing processes. 
Figure 5 shows a graph of computational cost versus model 
complexity. 

  

 
Fig. 5.  Computational cost vs. model complexity. 

As the model parameter count increases, the computational 
cost decreases due to the optimized LoRe-GRNN architecture. 
Despite handling up to 1M parameters, the framework 
maintains an average cost of 15 seconds, demonstrating its 
scalability and efficiency for real-time additive manufacturing 
applications. Figure 6 shows the stress distributions in real time 
during the printing process. 

 

 

Fig. 6.  Real time stress monitoring. 

Figure 7 shows the distribution of prediction errors in the 
3D printing process. Figure 8 showcases the correlation 
between nozzle temperature and anomaly detection in FDM 
printing. Anomalies were identified at temperatures exceeding 
230°C, showcasing the sensitivity of the detection module. 
This real-time monitoring ensures prompt identification of 
irregularities, reducing the risk of process failures and 
enhancing manufacturing reliability. 
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Fig. 7.  Stress prediction errors' distribution. 

 
Fig. 8.  Sensor data vs anomalies. 

IV. CONCLUSION 

The proposed LoRe-GRNN framework marks a significant 
advancement in the domain of Advanced 3D Printing (A3P), 
seamlessly integrating AM and 3D printing technologies. By 
effectively addressing critical challenges, such as part 
deformation and stress distribution anomalies in SLA and 
nozzle clogging in FDM, the framework ensures consistent and 
high-quality prints while minimizing resource waste. The 
integration of the Longformer, Reformer, and GRNN 
architectures enhances feature extraction and prediction 
accuracy, allowing real-time monitoring and anomaly detection 
with exceptional sensitivity. The framework leverages a 
comprehensive 3D model dataset, paired with FE simulations, 
for accurate stress prediction in SLA processes.  

Additionally, a multisensory system captures real-time data 
during FDM operations, allowing early detection of nozzle 
clogs and other anomalies. Experimental results highlight the 
superior performance of the LoRe-GRNN framework, 
achieving an anomaly detection accuracy of 99.23% while 
significantly reducing computational costs compared to 
conventional FE simulations. Specifically, the average 
computational cost was recorded at 15.06 seconds across SLA 
and FDM processes (15.23 seconds and 14.89 seconds, 
respectively). This innovative and cost-effective approach 
enhances the reliability, efficiency, and sustainability of A3P 
processes, setting a new benchmark in leveraging artificial 

intelligence for advanced manufacturing technologies. By 
addressing both operational and computational challenges, the 
LoRe-GRNN framework paves the way for smarter, more 
scalable, and sustainable manufacturing systems.  

Key challenges in this research include sensor calibration 
inaccuracies, material-dependent variations in stress 
distribution, and real-time adaptability to diverse printing 
conditions. Additionally, data imbalance in training datasets 
may affect model generalization. Future enhancements could 
incorporate adaptive learning models, multimaterial analysis, 
and advanced edge computing for real-time processing, 
improving scalability and robustness. 
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