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ABSTRACT 

Reinforcement Learning (RL) can lead to effective Load-Balancing (LB) mechanisms, as traditional 

methods cannot always provide an optimal solution in cellular networks. This study proposes an RL-based 

LB scheme for a dense network that uses radio over fiber infrastructure. The proposed technique is based 

on LB constraints in the action space that maintain zero violation during the learning process. In this 

technique, a Deep Q-Network agent was chosen to search for an optimal policy to maximize the expected 

cumulative long-term reward to satisfy the constraints. This study uses the number of user entities per 

base station in the dense network as constraints to maintain average throughput based on the Signal-to-

Noise Ratio (SNR) generated from the radio frequency signals of the network. The proposed method 

outperformed at an SNR of 38 dB with a throughput of 32 Mbps for a 20 MHz channel bandwidth for 

macro- and microcells in the dense network. Furthermore, this study examined the effect of different 

learning rates as hyperparameters in the system. The proposed approach shows that when the agent was 

trained with a learning rate of 1e-3, the network performed well by obtaining a higher CDF compared to a 

learning rate of 1e-5. In addition, the system achieved higher rewards for a learning rate of 1e-3 with or 

without LB constraints, confirming the efficiency of the proposed scheme. The simulation results showed 

that CDF was 4% higher when using constraints compared to without constraints. 

Keywords-RoF; dense network; radio over fiber; load balancing; reinforcement learning; learning rate 
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I. INTRODUCTION  

Cellular networks can be uneven when the cell has an 
unconventional traffic distribution. An overloaded cell cannot 
satisfy user requirements and can cause problems with 
throughput, delay, blocking, and drop [1]. In addition, there is a 
waste of network resources for the underloaded cell. A 
relatively small network coverage can reduce the system's 
performance due to the frequent movement of the users. 
Considering the issue of small cell coverage with a high traffic 
load, a Load Balancing (LB) scheme is very crucial to address 
the problems of traffic load distribution in dense cellular 
networks [2].  

Radio over Fiber (RoF) technology has gained a lot of 
interest in handling massive data traffic [3, 4]. A RoF network 
is a hybrid optical wireless network that allows for extremely 
high bandwidth, and due to the characteristics of the wireless 
network, user mobility is not affected [5]. These networks can 
have a hundred times more traffic handling capacity than 4G 
networks, gigabit service capability per user, low latency, and 
high spectral efficiency [6-8]. 

In conventional LB techniques, researchers are using 
different rule-based techniques, such as the swap-based LB 
approach between access points [9], multi-depth offloading 
algorithm considering the radio resource allocation [10], and 
metaheuristic algorithm, in radio access networks [11]. In 
addition, new techniques such as Reinforcement Learning (RL) 
have shown effectiveness in solving LB issues in 
communication [12]. RL attempts to learn control policies by 
interacting with the environment. However, RL-based 
techniques have inherent challenges. RL requires frequent 
interactions with the environment to learn a satisfactory policy 
and a reward function to achieve the desired performance [12]. 
Based on a distributed multi-agent Deep Q-network (DQN), the 
LB mechanism in [13] focused on user association for dense 
networks. It used a matching game-based policy for LB, where 
each base station maintained a preference list to make 
association decisions using the sum data rate and a learning rate 
for the system of 0.001. Another RL-based LB scheme was 
presented in [14] for a heterogeneous LiFi WiFi network, using 
three different RL reward functions to maximize average 
network throughput and user satisfaction in terms of user data 
rate, with a learning rate of 0.01. 

Although different LB techniques were reported in [11, 15-
18] for different networks, to the best of our knowledge, LB for 
RoF infrastructure based on RL utilizing DQN and focusing on 
different learning rates has not been reported yet. Therefore, 
this study proposes an LB technique using an RL algorithm for 
the RoF infrastructure that adopts a DQN agent. The objectives 
of this study can be summarized as follows: 

 Proposes an RL-LB technique for dense networks based on 
RoF infrastructure.  

 Utilizes a DQN agent for the RL-LB scheme. 

 Applies two different learning rates to evaluate the 
performance of the RL-LB scheme.  

II. ROF NETWORK ARCHITECTURE 

A fiber wireless-based dense RoF system was designed by 
adopting the network parameters of 3GPP TR 38.913 [19]. For 
simulating the dense cellular network, two cells, macro and 
microcell, were used, operating at 4 GHz and 30 GHz RF 
signals. The RoF dense network was simulated using 
Optisystem v21, and Figure 1 shows its schematic diagram. 
The control station consists of a Laser Diode (LD) with a 
wavelength of 1550 nm to generate continuous optical light 
waves, producing an output power of -10 dBm. The signal was 
transmitted to a Li-Nb-MZM, driven by a 2 GHz and a 15 GHz 
RF signal. It was then launched into a 10 km Single Mode 
Fiber (SMF) with a loss of α = 0.21 dB/km, and chromatic 
dispersion D = 16 ps/nm/km. At the base station, the optical 
signal was detected by a high-speed PD with a 3 dB bandwidth 
of 4 GHz and 30 GHz and a responsivity of 0.6 A/W. The PD 
output was fed into a spectrum analyzer to be monitored and 
measured. To achieve transmission at the minimum bias point, 
VDC1 was set to 4 V, VDC2 was set to 0 V, and the LO 
modulation index was 0.7. At the receiving end, the optical 
receiver consisted of a PIN Photodetector (PD) to convert the 
optical field to current, followed by a Transimpedance 
Amplifier (TIA) for amplification, and then demodulated by 
Amplitude (AM) demodulators for obtaining the electrical 
signals. The generated photocurrent was analyzed by the RF 
spectrum analyzer and the BER analyzer showing the BER 
performance. Table I shows the design parameters of the dense 
network environment. 

 

 

Fig. 1.  Schematic diagram of the RoF network.. 

TABLE I.  DESIGN PARAMETERS OF  DENSE NETWORK 

Parameters Values 

RF signals 
4 GHz (Macrocell) 

30 GHz (Microcell) 

Number of UE 10 UE per BS 

UE distribution Uniform random distribution 

Threshold value of SNR 10 dB 

Channel bandwidth, BW 20 MHz 
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The RoF system can be evaluated utilizing several 
performance-analyzing characteristics and factors, such as 
Signal to Noise Ratio (SNR), Bit Error Rate (BER), and 
Quality (Q) factors to find out whether or not the system is 
operating appropriately or not [20]. This study evaluated the 
performance of the RoF dense network in terms of SNR, which 
was calculated by comparing the received signal power with 
the noise power of the RF signal. The following equation was 
adopted to calculate SNR [21, 22]: 

ℽ � ℜ �  ℕ      (1) 

where ℽ, ℜ, and ℕ represent SNR (dB), received signal power 
(dBm), and noise power (dBm), respectively.  

III. PROPOSED RL-LB METHOD 

LB aims to balance the load across available network 
resources to improve network performance. Most existing LB 
techniques are designed and tuned manually, where near-
optimality is difficult to achieve. Additionally, rule-based 
methods are difficult to adapt to rapidly changing traffic 
patterns in real-world environments. RL algorithms gain 
success in many application domains because of their 
adaptability to dynamic changes in network load patterns [12]. 
This section presents the LB method for the RoF dense 
network and the RL-LB technique. This scheme is based on a 
DQN agent. Figure 2 shows the block diagram of the RL-LB 
technique. 

 

 
Fig. 2.  A block diagram of the RL-LB scheme. 

The goal is to evaluate the performance of the RL-LB 
controller in the RoF network environment. The main objective 
of the controller is to balance the load on the network. In this 
study, the number of User Entities (UE) under a Base Station 
(BS) was treated as load in the network. As DQN operates on a 
discrete action space, so in the RL-LB scheme, the action space 
has to be discretized. Two types of actions were modeled in the 
scheme: (i) the number of UE is within the range, and (ii) the 
number of UE is out of range, considering the acceptable SNR 
value between the UE and BS. The load constraint of the 
proposed LB technique is the number of UE per BS. By 
restricting the number of maximum UE at each BS, it can 
balance loads among all BSs in a dense wireless network [14]. 

Throughput was considered as a performance metric, 
measured with [14, 23-25]: 

� �  �	 ∗ ��  �1 �  ℽ�   (2) 

where �  represents throughput, ℽ  denotes the SNR derived 
from (1), and BW is the channel bandwidth (20 MHz). The 
agent, state, action, and reward of RL-LB are presented in the 
following section. 

A. Agent 

A single agent �, which is either a macrocell or microcell 
BS, learns the condition of the SNR of the UE from (1). Hence, 
the agent in RL-LB is UE per BS and denoted as �, where: 

� ∈ �1, 2, 3, . . . , 10�;    �1 �  � � 10�   (3) 

B. State 

The state   represents the condition of a � within the cell 
based on the ℽ. The set of   of a � can be represented as  

  ∈ � 0, 1�.   

If  ℽ ! 1  then   � 0, and if ℽ � 40 then   �  1  (4) 

C. Action 

The action �# is based on the calculated � using (2). The 
set of �t can be represented as  

�# ∈ � 0, 1�.   

If � ! 1  then �# � 0, and if � � 1 then  �# � 1 (5) 

D. Reward 

Reward $ is defined in (6), inspired by [26], and controls 
the learning process to achieve the acceptable throughput (�). 
$  has a maximum value of 1 when the �  is exactly at the 
maximum and reduces to 0 when it is away from it. 

$ � �1 � |10 ∗ ���|�    (6) 

After each trial, �  updates the mapping to maximize the 
reward. This process continues until �  learns an optimal 
mapping to maintain a balanced network.  

Algorithm 1 presents the working steps of the proposed RL-
LB approach. An RL policy is a mapping of an environment 
observation to a probability distribution of the actions to be 
executed. A value function is a mapping from an environment 
observation to a policy value. The policy value is defined as its 
expected discounted cumulative long-term reward. Agents use 
parameterized policies and value functions, which are 
implemented by function approximators called actors and 
critics, respectively. During training, the actor learns the policy 
that selects the best action to take. It does so by tuning its 
parameters to assign a higher probability to actions that yield 
higher values. The critic learns the value function that estimates 
the value of the current policy. The DQN learning policy is a 
discrete-action stochastic policy, which returns stochastic 
actions given an input observation, according to a probability 
distribution. 

Algorithm 1 RL-LB scheme 

Initialize the agent A based on (3) 

For each episode: 

  Reset the environment based on (4) 

  Get the initial observations ( 0) from 
  the environment 

  Calculate the initial action �#0 based  
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  on (5) 

  Set the current �# to the initial action  

  (�# ← �#0), and set the current 
  observation to the initial observation  

  ( ←  0). 

  Initialize the critic '� , �; (�, ) �  
  random parameter values 

  Initialize the actor *� ; +�, + = random 
  parameter values 

  While the episode is not finished or  

  terminated, perform the following steps: 

    For the current observation  , select 

    action �# �  *� ; +� 

    Apply �# to the environment and obtain  

    the next observation  ′ and the reward 
    R using (6) 

    Compute the next �#′ 

    Update the current �# with the next 

    action (�# ← �#′) and update the current  
    observation with the next observation  

    ( ←  ′) 
  Terminate the episode if the termination  

  conditions defined in the environment  

  are met. Otherwise, begin the next  

  episode. 

 
The RL-LB scheme was simulated on Matlab R2023b, and 

Table II presents the simulation parameters. Each agent's RL 
structure is constructed with three hidden layers with the 
Rectified Linear Unit (ReLU) activation function, with 64, 32, 
and 32 hidden nodes, respectively. In each time step, the 
weights of RL-LB are updated using the Adam optimizer with 
a mini-batch of size 64, and the weights are updated at each 
time step for training steps of 1000. The learning rate α is the 
most important hyperparameter while configuring the RL 
network. Hence, it is important to know how to investigate the 
effects of α on model performance [27]. The learning rates of 
RL-LB were chosen based on [13, 28] as 1e-3 and 1e-5, 
respectively, with a discount factor -  = 0.99. However, the 
default learning rate for the ADAM optimizer is 1e-3 [29]. 

TABLE II.  SIMULATION PARAMETERS OF RL-LB SCHEME 

Parameters Values 

Rectified Linear Unit (ReLU) 3 layers 

Activation function of 3 layers (64, 32, 32) 

Learning rate, . 1e-5, 1e-3 

Optimizer Adam 

Mini batch size 256 

Number of episodes 500 

Time steps per episode 1000 

Discount factor, - 0.99 

Gradient decay 0.9 

Gradient threshold  1 

 

IV. PERFORMANCE ANALYSIS 

This study examined how the number of UE performs 
based on SNR maintaining throughput in the system while 

satisfying the LB constraint. The learning was carried out in 
episodes, where each episode contains multiple learning time 
steps. During each episode, the DQN is learning and updating 
every time step, and each UE is carried out once per episode. 

Figure 3 shows the system performance in terms of 
throughput with respect to SNR (1) for two cells. The graph 
shows that the throughput of the cells gradually increases with 
increasing SNR. At 10 dB SNR, the throughput for two cells is 
within 20 Mbps. The proposed method outperforms at an SNR 
value of 38 dB with a throughput of 32 Mbps for 20 MHz 
channel bandwidth for macro and microcells in the dense 
network. This behavior suggests that throughput increases with 
the increase of SNR, achieving good system performance [30]. 

 

 
Fig. 3.  Performance analysis: Throughput to SNR. 

To validate the RL-LB scheme, the correlation between the 
Cumulative Distribution Function (CDF) and the number of 
episodes was examined. CDF is a statistical method to describe 
the distribution of random variables for a given set of 
parameters. CDF was defined by [31, 32]: 

/ (0, 1, 2)  =  1/√(2*)56(768)9/9:9  (10) 

where μ is the mean of the distribution, σ
2
 is the variance and x 

is the set of values. The CDF values range over the interval [0, 
1] [33]. 

Furthermore, the performance of RL-LB was examined 
using two values for . as a hyperparameter of the system. A 
high value of . implies the willingness of the agent to learn 
from its environment and tends to yield higher rewards [34]. 

Figure 4 shows the correlation between the CDF and the 
number of episodes. The CDF of the user load becomes higher 
in each episode step. This situation is observed from CDF 
values of 0.3 to 1, for episodes 1 to 500, respectively. The 
values are gradually increasing in each episode and as a result, 
this verifies that the distribution of user load in the network is 
balanced [34]. It is also visible that the learning rate of 1e-3 
performed better compared to 1e-5. 

Figure 5 shows the performance analysis of the RL-LB 
scheme in terms of rewards (6). This figure shows the average 
rewards of the system for the two learning rates. The learning 
rate of 1e-3 obtained a higher reward compared to 1e-5. The 
two curves show how the model can learn the system well with 
a learning rate of 1e-3, and slower with a learning rate of 1e-5 
[27]. With the designed model configuration, the results 
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suggest a moderate learning rate of 1e-3 results in good model 
performance on the RL-LB scheme. The graph also shows the 
impact of LB constraints for the proposed RL-LB scheme 
according to (3) and (4). The numerical analysis shows that 
with or without LB constraints, again the learning rate 1e-3 
achieves better performance than 1e-5. 

 

 

Fig. 4.  Performance analysis of RL-LB: CDF vs number of Episodes. 

 

Fig. 5.  Performance analysis of RL-LB scheme: Rewards vs number of 

Episodes. 

Finally, Figure 6 shows the impact of the RL-LB scheme 
with or without LB constraints for a learning rate of 1e-3. The 
graph presents that the higher value of the CDF curve was 
around 0.86 for LB constraints and 0.86 without LB 
constraints. Therefore, it can be stated that using LB 
constraints, the proposed RL-LB scheme obtained a 4% higher 
CDF.  

 

 
Fig. 6.  Performance analysis of the proposed RL-LB scheme with and 

without using the LB constraints. 

The proposed RL-LB scheme was compared with two 
recent approaches, as shown in Tables III and IV. 

TABLE III.  COMPARATIVE ANALYSIS 

Method Application Design parameters Performance metrics 

Multi-Agent 

Deep Q-

Learning [13] 

Dense network 

Sum data rate, 

signal-to-

interference plus 

noise ratio (SINR) 

Spectral efficiency, 

time steps 

RL method 

with 3 reward 

functions [14] 

LiFi/WiFi 

network 

Signal-to-Noise 

Ratio (SNR) 

Throughput, 

Complementary 

Cumulative 

Distribution Function 

(CCDF) 

RL-LB 

(proposed) 

RoF dense 

network 

Signal-to-Noise 

Ratio (SNR) 

Throughput, 

Cumulative 

Distribution Function 

(CDF), average 

rewards 

TABLE IV.  QUALITATIVE COMPARISON OF NETWORK 
DESIGN COMPLEXITY 

Method Computation complexity Time complexity 

Multi-Agent Deep Q-

Learning [13] 
Complex High 

RL method with 3 reward 

functions [14] 
Medium Medium 

RL-LB (proposed) Medium Medium 

 

V. CONCLUSION 

This study presented an RL-based LB scheme for a dense 
RoF network. To improve efficiency, this study adopted deep 
learning using a DQN agent. The agent searches for an optimal 
policy that maximizes the expected cumulative long-term 
reward to satisfy the LB constraint. The numerical results show 
that the proposed RL-LB scheme provides comparable 
performance in terms of SNR and throughput. The proposed 
RoF network can obtain an acceptable SNR value, and as the 
SNR increases, throughput also increases, resulting in better 
system performance. The results showed that the network can 
achieve an SNR value of 10 dB, which is required for efficient 
signal transmission, and achieve a throughput of 20 Mbps. The 
proposed method achieved an SNR value of 38 dB with a 
throughput of 32 Mbps for 20 MHz channel bandwidth for 
macro and microcells in the dense network. Furthermore, the 
RL-LB approach shows that, when the agent is trained with a 
learning rate of 1e-3, the network performs well by obtaining a 
higher CDF compared to a learning rate of 1e-5. In addition, it 
exhibits similar behavior in terms of system rewards for two 
learning rate scenarios. Finally, this study suggests the learning 
rate as 1e-3 for the RL-LB scheme, as it provides good results. 
Using the learning rate of 1e-3, the proposed scheme was 
evaluated with and without LB constraints for CDF per number 
of episodes. The results show that the CDF value was 4% 
higher when using LB constraints compared to without LB 
constraints.  

This work is limited to software simulation only and does 
not include any experimental analysis. In the future, the 
proposed method may offer an LB learning strategy in 
heterogeneous networks considering traffic patterns in real-
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world experiments. The technique of employing varying 
learning rates for various optimizers, such as stochastic 
gradient descent with momentum and root mean squared 
propagation, in addition to the adaptive movement estimation 
optimizer, will be further examined in the following phase. 
Future research could examine various optimizations to 
evaluate network scalability, including performance criteria 
such as block error rate and fairness index in the network. 
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