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ABSTRACT 

This study develops a refined beam theory that improves upon classical models by accurately capturing 

transverse shear deformation without requiring shear correction factors. The proposed approach 

maintains the simplicity of the Bernoulli-Euler theory while achieving higher precision in predicting 

transverse deflections, axial stresses, and shear stresses. A linearly elastic, homogeneous, and isotropic 

material with a uniform rectangular cross-section is assumed. The accuracy of the proposed theory is 

validated through comparisons with advanced shear deformation theories, showing that it provides 

reliable results with reduced computational complexity. Furthermore, the theory's applicability is 

demonstrated through case studies, showcasing its effectiveness in practical structural design and analysis 

Numerical comparisons indicate minimal percentage differences, with a maximum deviation of -0.37% for 

simply supported beams and -0.82% for fully clamped beams in transverse deflection predictions. The 

results align well with advanced shear deformation theories and two-dimensional elasticity solutions, 

confirming the model’s reliability. This theory enhances structural analysis, particularly for thick and 

shear-deformable beams, with potential extensions to anisotropic materials, dynamic loading, and complex 

boundary conditions in future research. 

Keywords-refined beam theory; structural analysis; transverse displacement; axial stress; transverse shear 

stress; thick beams; analytical solutions 

I. INTRODUCTION  

The analysis of beam bending is a key characteristic of 
structural mechanics and engineering design, forming the basis 
for understanding the behavior of beams under various loading 
conditions. Classical theories, such as these developed by 
Euler-Bernoulli and Timoshenko, have long provided robust 
frameworks for analyzing bending mechanics [1-2]. However, 
these theories are built on simplifying assumptions, including 
the neglect of transverse shear deformation and rotational 
inertia effects. While effective for slender beams, these 
limitations reduce their applicability to thick beams or 
materials with complex mechanical properties, highlighting the 
need for more advanced models. To address these challenges, 
researchers have developed the Higher-Order Shear 
Deformation Theories (HSDTs). Compared to classical 
theories, HSDTs incorporate additional terms to capture the 

effects of transverse shear deformation more accurately. 
Significant advancements include the parabolic shear 
deformation theories proposed by [3-8]. These theories provide 
a better way to understand how beams bend without needing 
extra adjustments for shear stress at the top and bottom 
surfaces. This leads to a more accurate way of modeling how 
beams deform. 

Transverse shear deformation is important when analyzing 
thick or slender beams. Unlike thin beams, shear deformation 
can significantly increase deflections and reduce buckling loads 
and vibrational frequencies. To measure these effects, it is 
essential to employ nondimensionalization, as mentioned by 
authors in [9]. Furthermore, studies such as [10-12] emphasize 
the critical role of transverse shear in accurately predicting 
deformation behavior. To address the limitations of first-order 
shear deformation theories, researchers have developed 
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numerous HSDTs [13-15], providing more accurate estimations 
of beam deformation while they introduce additional equations 
and unknown functions, increasing computational demands. 
Authors in [16], noted that the complexity of these models can 
be an obstacle to their practical application, emphasizing the 
importance of balancing accuracy and computational 
efficiency. Based on this, in [17] a hyperbolic shear 
deformation theory for static and dynamic analysis was 
proposed, while in [18-20] trigonometric models were applied 
to analyze flexural behavior under various loading and support 
conditions. A noteworthy contribution to the field is the 
research of authors in [21], who developed an analytical model 
for static bending of thick isotropic rectangular beams with 
diverse boundary conditions. They utilized a combination of 
Fourier series and shear deformation theories, to find solutions 
for stress and displacement. However, their study did not cover 
some areas, like the bending and shear stress at the built-in 
ends, indicating the potential of future work. 

Comprehensive reviews by [22-23] highlight the 
domination of Navier-type, closed-form solution for simply 
supported beams in the literature. Analytical solutions for 
beams with built-in ends or specialized loading conditions 
remain limited, emphasizing the need for continued innovation 
in this domain. Alternative methodologies have also developed, 
such as splitting transverse displacement into sub-components. 
Authors in [24] introduced a system of two governing 
equations, inertially coupled in dynamic cases and decoupled 
for static problems. Similar approaches performed in [25-28], 
offering a fresh perspective on addressing shear deformation. 
Significant research has been conducted to develop finite 
elements resistant to shear locking, as supported in [29-30]. 
Recent studies highlight the continuing evolution of shear 
deformation theories, focusing their importance in modern 
structural analysis [31-37]. These advancements ensure that the 
field remains active, with researchers continuously improving 
models and broaden their use to solve complex engineering 
problems. 

Future research can expand this theory for wider use. It 
provides a solid foundation for analyzing the behavior of 
beams on an elastic foundation [38-40]. Its application can help 
address complex structural challenges, such as accounting for 
foundation stiffness and interaction effects, while maintaining 
computational efficiency. Additionally, it can be adapted to 
study more advanced cases, including non-uniform foundations 
or dynamic loading conditions 

The purpose of this work is to develop an advanced theory 
that addresses the gaps of classical theory and presents 
fundamental relationships in a simple and practical form for 
implementation. The derivations are focused on plane elements 
with rectangular cross-sections. However, by adjusting the 
geometric characteristics, the theory can be applied to elements 
with arbitrary cross-sections. Analytical solutions for the static 
bending of beams with built-in boundary conditions are 
derived. To demonstrate the effectiveness of the proposed 
theory, illustrative examples of the static bending of shear-
deformable isotropic rectangular beams are provided. The 
numerical results are compared with other refined theories to 
validate the accuracy and reliability of the proposed approach. 

II. ASSUMPTIONS UNDERLYING THE THEORY 

The assumptions underlying the theoretical formulation of 
the proposed model are as follows: 

 Assumption 1: 

The beam under investigation, illustrated in Figure 1, is located 
in the 0 – x1 – x2 – x3 Cartesian coordinate system and spans the 
region: 

1 2 30 , , ,
2 2 2

b b h
x l x z x z z          

where x1, x2, and x3 represent the Cartesian coordinates, while l 
and b denote the beam's length and width in the x1 and x2 
directions, respectively. The thickness of the beam along the 
x3-axis is represented by h. 

 

 

Fig. 1.  Geometry of the beam and the coordinate system. 

 Assumption 2: 

The beam consists of a homogeneous, linearly elastic, 
isotropic material and the applied loads are static and uniformly 
or non-uniformly distributed along the beam. 

 Assumption 3: 

The beam's boundary conditions are defined at the ends x1 = 
0 and x1 = l, where variationally consistent conditions are 
applied. 

 Assumption 4: 

The deformation and stress distribution along the x3-axis 
follow predefined laws, ensuring consistency with the refined 
beam theory framework. 

 Assumption 5: 

The transverse shear deformation varies according to a 
prescribed function, capturing its dependence on the thickness 
coordinate. 

 Assumption 6: 

The horizontal displacement component U1 does not 
experience any tensile or compressive deformation, 
maintaining the integrity of the beam's axial behavior. 
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III. CURRENT THEORY: DISPLACEMENT 

FUNCTION, STRAINS, STRESSES, CROSS-SECTIONAL 

BENDING MOMENT, AND SHEARING FORCE 

A. Theory Development 

The stress-strain state in the exact formulation is defined by 
the following relationships of elasticity theory [1, 2]. 
Equilibrium equations expressed in terms of stress components: 
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where: 
1 3,   are the normal stresses directed along the 

coordinate axes 
1 3,x x , 

13  is shear stress perpendicular to these 

axes X, Z are the components of the body force acting along the 
coordinate planes. 

Kinematic relations (Cauchy): 
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where 
1 3,   are the linear strains, 

13  is the shear strain, and 

1 3,U U  are the displacement components along the coordinate 

axes 1 3,x x  

Physical relations (Hooke's law): 
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where E is the modulus of elasticity of the material, and   is 

Poisson's ratio. This theory is based on the integral 
characteristics of stresses and displacements: 
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where Mσ, Nσ are the bending moment and axial force due to 
normal stress σ3, N is the axial force, W0 and θ are the normal 

displacement and the angle of cross-sectional rotation, 1 1,U U 
 

are the horizontal displacements 
1 1 3( , )U x x  along the x3 = z and 

x3 = -z axes, respectively. 

By integrating (1) and considering (4) in the absence of 
body forces, the equilibrium equations are obtained in terms of 
internal forces:  

3

1 1

0, 0,
z

z

dM dQ
Q q q
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
       (5) 

Thus, from Hooke's law (3) and the notations (4), the 
following expressions are derived:  

0
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where EJ represents the flexural rigidity, while A denotes the 
shear rigidity. 

Substituting (6) into the first equation of system (5) we get: 

2

0

2
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Equation (7) can be rewritten in operator form:  
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where L is a linear operator. 

The solution of (8) can be expressed as follows:  

1

dP

dx

L
    

From here, the components of the displacements are 
obtained: 

2
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    (9) 

From the second equation of (5), considering (6) and (9), 
the governing equation for determining the function W(x1) is 
derived:  

24
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Integrating the unused Hooke's law (3), considering (4), it 
can be obtained: 
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Another integral of the same law can be written as: 
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where 3 3,U U 
 are the vertical displacements 

3 1 3( , )U x x  along 

the x3 = z and x3 = -z axes, respectively. 

From (11) and (12), the displacements 3U 
 and 3U 

 are 

determined. Within the framework of the classical Euler-
Bernoulli beam theory, the stresses can be represented as 
follows [1]:  
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where 
3( )f x  is the transverse shear stress distribution 

function, 3( )x  is the normal transverse stress distribution 

function. Assuming the stress σ3 in the form of (13): 
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B. The Displacement Field 

Based on the aforementioned assumptions and results, the 
displacement field of the present beam theory is defined as 
follows:  
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 (14) 

where W(x1) is the deflection function, G is the shear modulus 
of the beam material, q is the intensity of external load. 

C. Strain Expressions 

The normal and shear strains, derived within the framework 
of linear elasticity theory from the displacement field described 
by (13) and (14), are expressed as follows:  
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D. Stress Expressions 

Normal bending and transverse shear stresses are 
determined using one-dimensional constitute laws (13) and 
(15) expressed as follows:  
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E. Expression for the Cross-Sectional Bending Moment and 
Shear Force 

The cross-sectional bending moment and shear force for a 
beam are defined as follows:  
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where M and Q are the bending moment and shear force, 
respectively. 

F. Governing Differential Equations and Boundary 
Conditions 

By substituting the second equation of (17) into the second 
equation of (5), the basic equation is obtained: 

4 2 2

4 2

1 110

d W h d q
EJ q

dx dx


     (18) 

The corresponding consistent natural boundary conditions 
are presented in the following form: 

 If the ends of the beam are hinge-supported, the boundary 
conditions are as follows:  

0, 0W M      (19) 

 If the ends of the beam are fixed, the boundary conditions 
are as follows:  

0, 0W        (20) 

 If the ends of the beam are free, the boundary conditions are 
as follows: 

0, 0M Q      (21) 

Thus, this refined theory makes it possible to determine the 
stress-strain state of the beam, resolves the contradictions of the 
classical beam bending theory, and thereby enables calculations 
in a precise formulation. 
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The calculation of any beam using the proposed refined 
theory is carried out according to the following algorithm: 

 The deflection function is determined by solving (18) while 
satisfying one of the boundary conditions specified in (19)-
(21). 

 The displacement components are calculated by (14). 

 The strain components are determined based on (15). 

 The stress components are found by (16). 

 The internal forces in the beam are computed according to 
(17). 

IV. NUMERICAL RESULTS 

This section presents numerical results related to the static 
bending of shear-deformable isotropic prismatic rectangular 
beams, provided both in tabular form and as graphical 
representations. 

The non-dimensional transverse displacement W, non-
dimensional axial stress σ1, and non-dimensional transverse 
shear stress τ13 for the beam are defined as follows:  

131
1 134

0 00

, ,
bbWEJ

W
q qq l


      (22) 

Numerical results for various beam thickness-to-length ratios 
(h/l) from Examples 1-3, calculated using the proposed theory, 
are presented in Tables I to VII. These findings are compared 
with corresponding values obtained from the two-dimensional 
theory of elasticity, single-variable beam theory, two-variable 
theory, Levinson beam theory, Timoshenko beam theory, and 
Bernoulli-Euler beam theory, highlighting the effectiveness of 
the proposed approach. In deriving the results pointed in Tables 
I to VII and Figures 2 to 7, several key considerations were 
considered: 

 The Poisson's ratio μ is assumed to be 0.3. 

 For Examples 1 and 2, the beam has a fixed length of l = 1 
m and a width of b = 1 m. The height of the beam (h) varies 
and is considered for the following values: h = 0.01 m, h = 
0.05 m, h = 0.10 m, and h = 0.15 m. Consequently, the h/l 
are 0.01, 0.05, 0.10, and 0.15. In Example 3, the beam has a 
fixed height of h = 1 m and a width of b = 1 m. The length 
of the beam (l) varies and is considered for the following 
values: l = 4 m and l = 10 m. Consequently, the length-to-
thickness ratio (S = l/h) is equal to 4 and 10. 

 The numerical results for W  based on the Levinson beam 

theory and single-variable beam theory, and for 
1

  and 
13
  

according to the single-variable beam theory [9]. 

 The numerical results for W , 
1 , and 

13 , obtained using 

the two-dimensional theory of elasticity (plane stress), two-
variable theory, Timoshenko beam theory, and Bernoulli-
Euler beam theory, are computed by the authors [36]. 

 Expressions from the respective references cited in the 
tables are used for these calculations. 

 For the Timoshenko beam theory, a shear correction factor 
of 5/6 is applied. 

A. Example 1 

A simply supported beam (SS beam) (Figure 1) subjected to 
a uniformly distributed transverse load. In this case, the beam 
ends at x1 = 0 and x1 = l are simply supported. The boundary 
conditions for W corresponding to the SS beam are: 

1) Boundary conditions at beam end x1 = 0: 
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2) Boundary conditions at beam end x1 = l: 
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TABLE I.  NON-DIMENSIONAL TRANSVERSE 

DISPLACEMENT (W ) FOR EXAMPLE 1 (SIMPLY 

SUPPORTED BEAM, FIGURE 1), COMPUTED USING THE 
PROPOSED THEORY, WITH A COMPARISON TO EXISTING 

RESULTS FOR v=0.3 

Theory 

Non-dimensional transverse displacement at 

)/(,2/ 4

0lqWEJWlx   

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
0.01302 0.01308 0.01329 0.01364 

(0.00 %) (-0.15 %) (-0.22 %) (-0.37 %) 

Bernoulli-Euler [4] 
0.01302 0.01302 0.01302 0.01302 

(0.00 %) (-0.61 %) (-2.25 %) (-4.89 %) 

Timoshenko [4] 
0.01302 0.01310 0.01335 0.01375 

(0.00 %) (0.00 %) (0.23 %) (0.44 %) 

Levinson [9] 
0.01302 0.01310 0.01335 

- 
(0.00 %) (0.00 %) (0.23 %) 

Single variable theory [9] 
0.01302 0.01310 0.01335 

- 
(0.00 %) (0.00 %) (0.23 %) 

Two variable theory [36] 
0.01302 0.01310 0.01335 0.01375 

(0.00 %) (0.00 %) (0.23 %) (0.44 %) 

Theory of elasticity [4] 0.01302 0.01310 0.01332 0.01369 

*Values in parentheses represent the percentage difference 

TABLE II.  NON-DIMENSIONAL AXIAL STRESS (
1

 ) FOR 

EXAMPLE 1, COMPUTED USING THE PROPOSED THEORY, 
WITH A COMPARISON TO EXISTING RESULTS FOR v=0.3 

Theory 

Non-dimensional axial stress at 

011 /)(,2/,2/ qbhzlx    

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
7500.12 300.12 75.12 33.45 

(0.00 %) (0.00 %) (0.00 %) (0.00 %) 

Bernoulli-Euler [4] 
7500.00 300.00 75.00 33.33 

(0.00 %) (-0.07 %) (-0.27 %) (-0.60 %) 

Timoshenko [4] 
7500.00 300.00 75.00 33.33 

(0.00 %) (-0.07 %) (-0.27 %) (-0.60 %) 

Single variable theory [9] 
7500.00 300.26 75.26 

- 
(0.00 %) (0.02 %) (0.08 %) 

Two variable theory [36] 
7500.26 300.26 75.26 33.59 

(0.00 %) (0.02 %) (0.08 %) (0.18 %) 

Theory of elasticity [4] 7500.20 300.20 75.20 33.53 

*Values in parentheses represent the percentage difference 
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TABLE III.  NON-DIMENSIONAL SHEAR STRESS (
13
 ) FOR 

EXAMPLE 1, USING THE PROPOSED THEORY, WITH A 
COMPARISON TO EXISTING RESULTS FOR v=0.3 

Theory 

Non-dimensional shear stress at 

01313 /)(,2/,0 qbhzx    

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
75.00 15.00 7.50 5.00 

(0.00 %) (0.00 %) (0.00 %) (0.00 %) 

Bernoulli-Euler [4] 
75.00 15.00 7.50 5.00 

(0.00 %) (0.00 %) (0.00 %) (0.00 %) 

Timoshenko [4] 
50.00 10.00 5.00 3.33 

(-33.33 %) (-33.33 %) (-33.33 %) (-33.33 %) 

Single variable theory [9] 
75.00 15.00 7.50 

- 
(0.00 %) (0.00 %) (0.00 %) 

Two variable theory [36] 
74.92 14.92 7.42 4.92 

(-0.11 %) (-0.53 %) (-1.07 %) (-1.60 %) 

Theory of elasticity [4] 75.00 15.00 7.50 5.00 

*Values in parentheses represent the percentage difference 

B. Example 2 

A cantilever beam (FC beam) subjected to a uniformly 
distributed transverse load. In this example, the beam end at x1 
= 0 is free, while the beam end at x1 = l is clamped. The 
boundary conditions for W corresponding to the FC beam are 
as follows: 

1) Boundary Conditions at Beam End x1=0:  

1

1

2 2

2

1 0

3 2

3

11 0

(0) 0
10

(0) 0
10

x

x

d W qh
M EJ

dx

d W h dq
Q EJ

dxdx









   

    

  (25) 

2) Boundary Conditions at Beam End x1=l:  

1
1

( ) 0, 0

x l

dW
W l

dx




       (26) 

TABLE IV.  NON-DIMENSIONAL TRANSVERSE 

DISPLACEMENT (W ) FOR EXAMPLE 2 (CANTILEVER 

BEAM, FIGURE 1) USING THE PROPOSED THEORY AND 
COMPARED WITH EXISTING RESULTS FOR v=0.3 

Theory 

Non-dimensional transverse displacement at 

)/(,0 4

0lqWEJWx   

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
0.12500 0.12545 0.12690 0.12858 

(-0.02 %) (-0.06 %) (-0.13 %) (-0.82 %) 

Bernoulli-Euler [2, 4] 
0.12500 0.12500 0.12500 0.12500 

(-0.02 %) (-0.41 %) (-1.62 %) (-3.58 %) 

Timoshenko [3, 4] 
0.12501 0.12533 0.12630 0.12793 

(-0.01 %) (-0.15 %) (-0.60 %) (-1.32 %) 

Levinson [9] 
0.12502 0.12549 0.12695 

- 
(0.00 %) (-0.02 %) (-0.09 %) 

Single variable 

theory [9] 

0.12502 0.12549 0.12695 
- 

(0.00 %) (-0.02 %) (-0.09 %) 

Two variable theory 

[36] 

0.12501 0.12533 0.12630 0.12793 

(-0.01 %) (-0.15 %) (-0.60 %) (-1.32 %) 

Theory of elasticity 

[41] 
0.12502 0.12552 0.12706 0.12964 

*Values in parentheses represent the percentage difference 

TABLE V.  NON-DIMENSIONAL AXIAL STRESS (
1

 ) FOR 

EXAMPLE 2 DETERMINED USING THE PROPOSED 
THEORY AND COMPARED WITH EXISTING RESULTS FOR 

v=0.3 

Theory 

Non-dimensional axial stress at 

011 /)(,2/, qbhzlx    

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
-29999.88 -1199.88 -299.88 -133.21 

(0.00 %) (0.01 %) (0.03 %) (0.06 %) 

Bernoulli-Euler [2, 4] 
-30000.00 -1200.00 -300.00 -133.33 

(0.00 %) (0.02 %) (0.07 %) (0.15 %) 

Timoshenko [3, 4] 
-30000.00 -1200.00 -300.00 -133.33 

(0.00 %) (0.02 %) (0.07 %) (0.15 %) 

Single variable theory [9] 
-29999.74 -1199.74 -299.74 

- 
(0.00 %) (-0.01 %) (-0.02 %) 

Two-variable theory [36] 
-30000.00 -1200.00 -300.00 -133.33 

(0.00 %) (0.02 %) (0.07 %) (0.15 %) 

Theory of elasticity [41] -29999.80 -1199.80 -299.80 -133.13 

*Values in parentheses represent the percentage difference 

TABLE VI.  NON-DIMENSIONAL SHEAR STRESS (
13
 ) FOR 

EXAMPLE 2 DETERMINED THE PROPOSED THEORY AND 
COMPARED WITH EXISTING RESULTS FOR v=0.3 

Theory 

Non-dimensional shear stress at 

01313 /)(,0, qbzlx    

h/l= 0.01* h/l= 0.05* h/l = 0.10* h/l = 0.15* 

Present 
-150.00 -30.00 -15.00 -10.00 

(0.00 %) (0.00 %) (0.00 %) (0.00 %) 

Bernoulli-Euler [2, 4] 
-150.00 -30.00 -15.00 -10.00 

(0.00 %) (0.00 %) (0.00 %) (0.00 %) 

Timoshenko [3, 4] 
-100.00 -20.00 -10.00 -6.67 

(-33.33 %) (-33.33 %) (-33.33 %) (-33.33 %) 

Single variable theory [9] 
-150.00 -30.00 -15.00 

- 
(0.00 %) (0.00 %) (0.00 %) 

Two variable theory [36] 
-149.92 -29.92 14.92 -9.92 

(-0.05 %) (-0.27 %) (-0.53 %) (-0.80 %) 

Theory of elasticity [41] -150.00 -30.00 -15.00 -10.00 

*Values in parentheses represent the percentage difference 

C. Example 3 

TABLE I.  NON-DIMENSIONAL TRANSVERSE 

DISPLACEMENT (W ) AT 0.25 , 0x l z  , AXIAL 

STRESS (
1

 ) AT 0.25 , / 2x l z h   AND SHEAR STRESS 

(
13
 ) AT 0, 0x z   FOR EXAMPLE 3 USING THE 

PROPOSED THEORY, WITH A COMPARISON TO EXISTING 

RESULTS FOR V=0.3 

Source W  1
  

13
  

S = 4 S =10 S = 4 S = 10 S = 4 S = 10 

Present 0.6865 0.5979 5.4456 32.7212 2.0000 5.0000 

Bernoulli-Euler 

[4] 
0.5811 0.5811 5.2500 32.8125 - - 

Timoshenko [4] 0.6877 0.5981 5.2500 32.8125 0.3452 0.8631 

Ghugal and 

Sharma [17] 
0.6870 0.5980 5.4406 33.0032 1.9253 4.9159 

Krishna Murty 

[6] 
0.6867 0.5980 5.4403 33.0029 1.9166 4.7917 

Ghugal and 

Dahake [35] 
0.6864 0.5979 5.4517 32.6939 1.9685 5.0646 

 

Simply supported beam subjected to a varying load. The 
simply supported beam originates at the left support and is 
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supported at x1 = 0 and x1 = l, with a varying load 

1

1 0( ) (1 )
x

q x q
l

   applied along its length. The boundary 

conditions for W are defined by (23) and (24). 

 

 
Fig. 2.  Variation of transverse displacement (W) through the thickness of a 

simply supported beam at x = 0.25l and z, subjected to a varying load, for an 

aspect ratio S = 10 (Example 3). 

 

Fig. 3.  Variation of axial stress ( 1 ) through the thickness of a simply 

supported beam at x = 0.25l and z, subjected to a varying load, for an aspect 

ratio S = 10 (Example 3). 

 

Fig. 4.  Variation of shear stress ( 13 ) through the thickness of a simply 

supported beam at x = 0.25l and z, subjected to a varying load, for an aspect 

ratio S = 10 (Example 3). 

 
Fig. 5.  Variation of transverse displacement (W) through the thickness of a 

simply supported beam at x = 0.25l and z, subjected to a varying load, for an 

aspect ratio S = 4 (Example 3). 
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Fig. 6.  Variation of axial stress (
1 ) through the thickness of a simply 

supported beam at x = 0.25l and z, subjected to a varying load, for an aspect 

ratio S = 4 (Example 3). 

 

Fig. 7.  Variation of shear stress ( 13 ) through the thickness of a simply 

supported beam at x = 0.25l and z, subjected to a varying load, for an aspect 

ratio S = 4 (Example 3). 

V. DISCUSSION OF NUMERICAL RESULTS FOR 

STATIC BEAM BENDING 

This section presents a comprehensive analysis of the 
numerical results related to the static bending of isotropic 
prismatic rectangular beams, specifically in Examples 1 to 3, 
while considering shear deformability. Recent research on 
advanced beam theories has highlighted the need for improved 
modeling techniques that account for transverse shear 
deformation effects with high accuracy [42]. 

Tables I-VII present the findings for the dimensionless 

transverse deflection W , the dimensionless axial stress 
1

 , 

and the dimensionless shear stress 
13  of the beam, 

corresponding to SS and FC beams. Based on these results, the 
following observations can be detected: 

 Example 1: For the (SS) beam analyzed using the present 
theory, the maximum percentage difference in predicting 

W  is -0.37% (for h/l = 0.15), in predicting 
1

  is 0.00% 

(for h/l = 0.15), and in predicting 
13
  is 0.00% (for h/l = 

0.15). For other beam ratios (h/l = 0.01, h/l = 0.05, and h/l = 
0.10), the percentage differences are very slight. 

 Example 2: For the FC beam analyzed using the present 
theory, the maximum percentage difference in predicting 

W  is -0.82% (for h/l = 0.15), in predicting 
1  is 0.06% 

(for h/l = 0.15), and in predicting 
13
  is 0.00% (for h/l = 

0.15). For other beam ratios (h/l = 0.01, h/l = 0.05, and h/l = 
0.10),, the percentage differences are minimal, indicating 
the robustness and accuracy of the present theory in 
capturing the behavior of shear-deformable beams under 
this boundary condition. 

 Example 3: For (SS) beam subjected to a non-uniformly 
distributed load and analyzed using the present theory, the 

maximum percentage differences in W , 
1

 , and 
13
  for l/h 

= 4 and l/h = 10 are negligible. These results demonstrate 
the accuracy and reliability of the proposed approach in 
predicting the response of beams under varying load 
conditions. For SS and FC beams, the findings obtained 
using the present theory align excellently with the exact 
solutions derived from the two-dimensional theory of 
elasticity, both for thin and shear-deformable beams. 
Furthermore, the predictions of the current theory match 
well with the corresponding results from the Levinson 
beam theory, the single-variable beam theory, and the two-
variable theory for shear-deformable beams. 

A key feature of the proposed theory is its ability to 
incorporate transverse shear deformation effects, which allows 
for the accurate prediction of transverse shear stresses. These 
stresses vary quadratically through the beam thickness and 

satisfy the stress-free boundary conditions at / 2z h  . This is 

a significant improvement over classical theories like 
Bernoulli-Euler and Timoshenko, which either neglect or 
oversimplify shear deformation effects, resulting in less precise 
stress predictions. Additionally, by eliminating the need for a 
shear correction factor, the present theory offers a more 
physically consistent and reliable framework for analyzing 
shear-deformable beams [43]. 

VI. CONCLUSIONS 

The refined beam bending theory proposed in this study 
provides a significant step forward in addressing the challenges 
associated with classical approaches. By incorporating the 
effects of transverse shear deformation and eliminating the 
reliance on shear correction factors, this theory ensures higher 
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accuracy and broader applicability, particularly for thick and 
shear-deformable beams. 

Numerical results demonstrate the robustness of the 
proposed approach. For Simply-Supported (SS) beams, the 
maximum percentage difference in transverse deflection 
prediction is -0.37% (h/l = 0.15), while axial and shear stress 
predictions show negligible differences. Similarly, for fully 
clamped (FC) beams, the maximum percentage difference in 
transverse deflection is -0.82%(h/l = 0.15), with minimal 
deviations in axial and shear stress calculations. Furthermore, 
in the case of non-uniformly distributed loading on SS beams, 
the proposed theory accurately captures beam responses, with 
negligible percentage differences in transverse deflection and 
stresses for l/h = 4 and l/h = 10. These results validate the 
accuracy of the theory in modeling shear-deformable beams 
under various boundary conditions and loading scenarios. 
Furthermore, comparative analyses with existing refined 
theories and two-dimensional elasticity solutions validate the 
theory's effectiveness, while numerical examples demonstrate 
its applicability to various beam configurations, including 
simply supported, clamped, and cantilever beams under both 
uniform and non-uniform loads. This combination of 
simplicity, accuracy, and practicality highlights the potential of 
the proposed theory to enhance structural modeling and 
engineering design processes. 

Future work will also involve incorporating more complex 
boundary conditions into the framework and applying the 
theory to practical engineering problems, such as the structural 
analysis of beams in multi-layered systems, under thermal 
loads, nonlinear effects, and defect analysis. Additionally, 
beams on elastic foundations will be studied to evaluate the 
influence of foundation stiffness on beam behavior, providing 
valuable insights for engineering design. Finally, optimization 
techniques will be integrated into the framework to enhance the 
design and performance of structural elements while ensuring 
practical applicability in engineering projects. 
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