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ABSTRACT 

Recent advances in obstacle detection and avoidance technologies have significantly enhanced robotic 

navigation capabilities. This study presents a real-time obstacle detection and avoidance system leveraging 

YOLOv8 and RGB-D sensors. The system integrates Microsoft Kinect V1 to capture RGB and depth 

images, employing YOLOv8 for efficient real-time object detection and classification. Depth data are 

utilized to calculate object distances and positions, allowing accurate navigation decisions. Implemented on 

the Pioneer 3DX robot, the system demonstrates high efficiency, reliability, and adaptability. With a 

training dataset, the model achieves exceptional performance, attaining an accuracy of 92.6% across all 

object classes and a mAP@0.5 of 95%, However, the system was primarily tested in structured indoor 

environments, which may limit its generalization to unstructured outdoor settings. This cost-effective 

solution offers a practical approach to enhancing autonomous navigation and obstacle avoidance in real-

world applications. 

Keywords-YOLOv8; Pioneer 3DX robot; autonomous guided vehicles; real-time obstacle detection; RGB-D 

sensors; Microsoft Kinect V1 

I. INTRODUCTION  

In recent years, research on autonomous driving robots has 
gained significant attention in both academia and industry, 
driven by rapid advancements in information and 
communication technologies [1, 2]. This has led to a greater 
exploration of key technologies underlying this revolution, 
such as big data, artificial intelligence, and the Internet of 
Things (IoT). At the same time, industries that were at the 
forefront of previous industrial revolutions are receiving 
renewed focus. Smart factories, in particular, are spearheading 
a wave of innovation driving transformations across numerous 
domains. Researchers are closely monitoring these 
developments, as they are expected to bring substantial changes 
to a variety of sectors [3-5]. Autonomous navigation of robotic 
vehicles refers to their ability to move and operate without 
direct human intervention. This capability is achieved through 
the integration of various sensors, such as cameras, lidar, or 

sonar, which provide detailed data about the environment. 
These data are processed by embedded algorithms to determine 
the vehicle's position and orientation.  

In environments such as manufacturing facilities, 
warehouses, and distribution centers, Autonomous Guided 
Vehicles (AGVs) are commonly used to transport raw 
materials and finished goods [6]. However, AGVs equipped 
only with optical sensors face challenges in navigating complex 
environments independently. Although cameras can capture 
features along a path, AGVs must also identify and avoid 
obstacles in real time, regardless of their shape, size, or color. 
The ability to recognize and adapt to obstacles in real time is 
critical for making decisions such as stopping, slowing down, 
or turning. Therefore, it is essential to develop AGVs capable 
of detecting and avoiding obstacles and recognizing objects in 
a human-like manner to operate autonomously and adaptively 
without human intervention [7, 8]. 
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Convolutional Neural Networks (CNNs) have demonstrated 
exceptional performance in image recognition tasks, including 
object detection. The You Only Look Once (YOLO) algorithm 
is a CNN-based framework that is widely used in computer 
vision applications. YOLOv8 introduced significant 
improvements in accuracy and speed, making it an ideal choice 
for real-time obstacle detection in autonomous systems. This 
study presents a vision-based guidance system for autonomous 
vehicles using YOLOv8. The proposed approach was 
compared with existing deep learning-based control systems, 
emphasizing the advantages of the YOLOv8-based solution. 

In the past decade, numerous techniques have been 
developed and applied in AGV navigation. In [9], these 
approaches were classified into two main types: local 
navigation, also referred to as conventional navigation, and 
global navigation, often relying on heuristic methods for 
pathfinding. In [10], an AGV motion control system was 
proposed based on magnetic tape navigation, where a magnetic 
tape on a floor serves as the guide. This system is notable for 
its ease of implementation, low cost, and high efficiency. 
Similarly, in [11], a navigation system was proposed for 
AGVs, using metal-line sensors for track guidance and RFID 
tags for localization. In [12], an AGV navigation approach used 
double magnetic nails, achieving reliable path tracking and 
stable accuracy through a fuzzy controller. In [13], a two-
wheeled AGV with a laser-based (LIDAR) obstacle avoidance 
system was developed. 

Graph-based heuristic algorithms have also gained 
prominence in AGV navigation, particularly for pathfinding 
tasks [9, 14]. Popular algorithms include A* (A-star), D* Lite, 
and Dijkstra's algorithm [15]. These methods have shown 
effectiveness in various environments, further solidifying their 
role in autonomous navigation. In recent years, image-based 
navigation and object detection have emerged as critical areas 
of research [16-18]. In [19], the Microsoft Kinect sensor was 
integrated with the YOLO algorithm for object detection and 
classification, using the depth sensor to measure object 
distances. Although effective, this approach relied heavily on 
object distance estimation and YOLO-based detection, which 
posed limitations. In [20], a monocular method was proposed 
that combined object detection and distance estimation using an 
R-CNN-based regression network. In [21], a collision warning 
system was capable of identifying specific objects and 
generating alerts when they were within hazardous proximity. 
This system relied on monocular cameras and deep learning 
models, but its performance was highly dependent on 
environmental factors such as lighting and weather conditions. 
Additionally, it required extensive training data and achieved 
only moderate accuracy (60%) in distance estimation. In 
contrast to these approaches, the proposed system leverages 
both RGB and depth sensors, enabling operation in diverse 
environments. It provides accurate distance measurements and 
precise object positions, allowing better navigation control.  

The detection of traffic signs has been an important focus in 
autonomous navigation systems, given their critical role in 
ensuring safe and efficient driving. In [22], an improved Faster 
R-CNN was used for traffic sign detection. This study 
enhanced recognition speed by simplifying the Gabor wavelet 

through a regional suggestion algorithm. Similarly, in [23], 
Faster R-CNN was used as the base detection model while 
Generative Adversarial Networks (GANs) were incorporated 
for data augmentation, improving the robustness of the system 
under varying conditions. In [24], the Libra R-CNN algorithm 
was combined with a balanced feature pyramid to improve the 
detection of traffic signs. This approach allowed the system to 
handle challenges such as occlusions and variations in sign 
appearance, demonstrating its effectiveness in diverse 
scenarios. 

II. SYSTEM DESIGN AND ARCHITECTURE 

Building on these advances, the proposed system integrates 
both RGB and depth sensors to enhance performance in real-
world applications. Unlike traditional methods that rely solely 
on RGB images, the proposed approach leverages depth 
information to achieve precise object distance measurements 
and accurate positioning of traffic signs. This dual-sensor setup 
not only improves detection accuracy but also enhances the 
system's ability to operate effectively in low-light and visually 
challenging environments. Furthermore, the algorithm heavily 
relies on depth sensors to address the limitations of RGB-based 
detection, particularly in scenarios where conventional methods 
struggle due to poor lighting or adverse environmental 
conditions. By combining RGB and depth data, the proposed 
system ensures versatility and reliability for real-time traffic 
sign detection and navigation. This fusion of modalities allows 
the system to better distinguish between obstacles and relevant 
road elements, reducing false positives in object classification. 

A. Architecture of Perception System 

The design of a perception system can vary depending on 
the specific application and requirements. As illustrated in 
Figure 1, the primary sensor used for data acquisition is an 
RGB-D camera, which captures both RGB and depth images. 
The depth images are particularly useful for obstacle 
identification, as they allow the system to detect barriers by 
analyzing variations in distances. This information is essential 
for tasks such as path planning and collision avoidance. 
Additionally, the depth image can calculate the distance to 
objects within a defined area, such as within a bounding box. 
By analyzing depth data in the designated region, the system 
determines how far an object is from the camera, a capacity 
critical for applications such as grasping or object 
manipulation, where distance awareness is crucial. 

On the other hand, the RGB images captured by the camera 
are processed using the YOLO deep learning algorithm. This 
algorithm can recognize and classify objects in real time after 
being trained on extensive datasets. Consequently, the 
perception system performs object recognition tasks by 
identifying and labeling various items in the environment. The 
RGB image also facilitates the creation of bounding boxes 
around detected objects. These bounding boxes define the size 
and boundaries of recognized objects, allowing precise 
localization and tracking. Furthermore, the system can estimate 
an object's size or dimensions based on the bounding box, 
making it suitable for applications that require object 
measurements or size-based analysis. 
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Fig. 1.  System architecture. 

In summary, the perception system in this study integrates 
RGB and depth data to enhance its capabilities. RGB images, 
processed by YOLOv8, are used for object recognition and 
bounding box generation, while depth images provide critical 
information for obstacle detection and distance estimation. 
Together, these components allow the perception system to 
collect and interpret data during the acquisition phase 
effectively. In this implementation, RGB and depth images 
were captured using Microsoft Kinect V1, improving the 
system's ability to perform real-time perception and navigation 
tasks. 

B. YOLO for Bounding Box and Identification 

YOLO is a modern object identification framework that 
offers numerous advantages over traditional methods. One of 
its key strengths is its approach to detection as a regression 
problem, which significantly improves speed. This eliminates 
the need for complex and time-consuming procedures, 
allowing the neural network to make rapid inferences on new 
images.  

Furthermore, YOLO adopts a holistic perspective during 
both training and testing, processing the entire image at once. 
Unlike sliding-window and region-proposal-based approaches, 
YOLO integrates contextual information about object classes 
alongside their visual features, resulting in improved accuracy 
and efficiency. YOLO excels in recognizing common object 
representations, outperforming traditional methods such as 
Deformable Parts Models (DPM) [25]. YOLOv8 introduced 
additional improvements over YOLOv5, featuring enhanced 
functionality, including object identification, image 
classification, and image segmentation. A standout 
improvement is its anchor-free detection mechanism, which 
eliminates the reliance on preset bounding boxes. Instead, 
YOLOv8 determines the precise center of each object, reducing 
computational overhead and increasing speed [26]. 

YOLOv8 is available in five versions for different tasks: 
YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. 
The "x" version delivers the highest accuracy but is slower, 
whereas the "n" version is faster and smaller, ideal for 
resource-constrained applications. This study used the "Sign-
detection dataset," which contains 8,316 images annotated with 
bounding boxes for various road signs (Figure 2) [27]. This 
dataset allowed effective training and testing of the YOLOv8 
model, demonstrating its capacity to handle object detection in 
real-world scenarios. 

 

 

Fig. 2.  Bounding boxes of road sign images. 

C. Object Detection and Distance Estimation 

The YOLO model, originally presented in [28], was 
employed to perform object detection and distance estimation. 
YOLOv8 introduces several architectural advances, including a 
pooling layer and a streamlined convolutional architecture to 
optimize computational efficiency. This model predicts three-
dimensional tensors comprising bounding box coordinates, 
confidence scores, and class identifiers, which are essential for 
robust object detection. 

YOLOv8 builds on the design principles of YOLOv5 and 
YOLOv7 ELAN to improve performance and flexibility. Its 
updated architecture includes a redesigned backbone network, 
an anchor-free detection head, and a novel loss function. These 
features improve the model's scalability and make it suitable 
for various applications. The architecture of YOLOv8 
highlights its backbone, Feature Pyramid Network (FPN), and 
head components [29]. The backbone and neck sections of 
YOLOv8 draw inspiration from YOLOv7 ELAN, 
incorporating adjustments for enhanced performance. In the 
head section, YOLOv8 introduces a decoupled structure, 
separating classification and detection tasks. Additionally, it 
transitions from an anchor-based to an anchor-free detection 
mechanism, reducing dependency on preset bounding boxes 
and improving efficiency. The loss function employs 
TaskAlignedAssigner and DistributionFocalLoss to increase 
detection accuracy. 

For distance estimation, YOLOv8 relies on depth data 
obtained from the RGB-D camera. However, the accuracy of 
depth measurements may vary due to external factors, such as 
lighting conditions and surface properties. To validate the 
depth estimation's reliability, tests were carried out under 
normal conditions. The results, compared to actual physical 
measurements, demonstrate the model's robustness in object 
detection and localization tasks. 

D. Image Processing 

The vision system processes visual data from the embedded 
camera by capturing images and applying a series of 
computational techniques. Several software libraries facilitate 
this process, including Torch3vision, VXL, Library Java VIS 
[30], LIT-Lib, and OpenCV [31]. OpenCV, an open-source 
library developed by Intel, is particularly notable for its 
extensive real-time visual processing capabilities, multi-
language support, and cross-platform compatibility. With more 
than 2,500 optimized algorithms covering areas such as 
machine learning, object tracking, and augmented reality [32, 
33], OpenCV was the main tool used for image processing. 
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To extract meaningful information, the system combines 
bounding box coordinates with depth images calibrated through 
Kinect V1. This integration allows accurate object localization 
and distance calculation, which are essential for depth-based 
applications. By analyzing the bounding box and depth data, 
the system determines the 3D spatial coordinates of detected 
objects ��, �, �), facilitating tasks such as object interaction and 
precise spatial mapping. 

Using the acquired data, object class, distance, and position, 
the system generates velocity commands to control the Pioneer 
3DX robot's movements. These commands regulate linear and 
angular velocities, allowing the robot to navigate effectively by 
moving forward, backward, rotating, or avoiding obstacles as 
required. The flowchart in Figure 3 outlines this process, 
demonstrating how the robot takes precise actions based on the 
collected information. 

 

 

Fig. 3.  Object recognition and location flowchart. 

E. System Implementation 

The aforementioned system was successfully implemented 
and rigorously tested using the Pioneer 3DX model, a wheeled 
mobile robot widely utilized in research and experimentation, 
as shown in Figure 4. The Pioneer 3DX is well-known for its 
versatility, maneuverability, and adaptability, making it an 
ideal platform for validating the functionality and performance 
of the developed system. 

 
Fig. 4.  System implementation of Kinect V1 on the robot Pioneer 3DX. 

Extensive testing on this platform allowed for a 
comprehensive evaluation of the system's capabilities and its 
effectiveness in real-world scenarios. The experiments 
highlighted the system's ability to process data and control the 
robot with precision, demonstrating its reliability and 
consistency in practical applications. By using the Pioneer3DX 
robot, the experimental results were robust and reproducible, 
providing a solid foundation for scientific analysis and 
supporting further advances in the field. The platform's 
established reputation ensured that the results were both 
credible and aligned with industry standards, facilitating future 
applications and developments. 

The Pioneer 3DX robot is equipped with two independently 
driven wheels (one on the right and one on the left) and a rear, 
off-centered orientable wheel that supports mechanical balance 
[34]. The driving wheels have a radius �, and are separated by 
an axle of length �. 

The robot's position in the plane is described relative to an 
inertial reference frame �	�
, �, �
  by the position vector 
[34]: 

� �  ��, �, �, ��, ����    (1) 

where x and y are the Cartesian coordinates of the robot's 
center, � ∈ ���, ��� is the orientation of the robot relative to 
the �-axis, and �� and ��  are the angular displacements of the 
right and left wheels, respectively. 

To integrate the Kinect V1 sensor for capturing RGB and 
depth image data, the "ros-noetic-freenect-launch" package was 
used within the Robot Operating System (ROS). The Kinect 
sensor was calibrated using a checkerboard to align the depth 
and RGB image coordinates accurately. For robot control, the 
ROSARIA node was employed, which provides an interface 
for Adept Mobile Robots, including the Pioneer3DX in this 
case. 
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The aim is to control the linear and angular speeds of the 
robot by controlling the linear speed of the right and left wheels 
[34]:  

������  �  �1 !
"1 � !

"
# $%&'    (2) 

where % and & are the linear and angular speeds of the robot, 
and ��  and �� are the linear speeds of the left and right wheels. 

III. EXPERIMENTAL RESULTS 

Experiments were carried out under two distinct conditions 
to evaluate the system's performance and effectiveness. 

A. Training the YOLOV8 Model 

The training phase of the YOLOv8 model was a critical 
component of the validation process, providing a foundation 
for evaluating its performance before deployment in real-world 
scenarios. This study used a dataset called "Road signs 
Computer Vision Project" [27], published in June 2023, and 

contained 30 different classes. The number of classes was 
reduced to 15, keeping only the classes needed to navigate the 
robot, while the number of images selected is 8316, divided 
into three sets for training, testing, and validation tasks. The 
training phase of YOLOv8 was a critical component of the 
validation process, providing a foundation for evaluating its 
performance before deployment in real-world scenarios. 
YOLOv8 introduces several advances that enhance its 
effectiveness in object detection and distance estimation tasks. 

1) Overall Accuracy 

The model achieved an accuracy of 92.6% across all object 
classes, demonstrating its reliability in detecting diverse 
elements. 

2) mAP@0.5 

With a mean Average Precision (mAP) of 95%, YOLOv8 
surpassed other state-of-the-art algorithms, showcasing its 
potential for real-time object detection tasks. The training 
results, presented in Figure 5, highlight the model's robust 
performance. 

 

 

Fig. 5.  Training the YOLOv8 model. 

3) Loss Curve Convergence 

Rapid and stable convergence of the loss curves reflects the 
effectiveness of the optimization process and the quality of the 
training data. 

4) Distance Estimation Validation 

To complement its object detection capabilities, YOLOv8 
relies on depth data to estimate object distances. However, 
depth measurement accuracy can be influenced by factors such 
as lighting conditions, object surface properties, and sensor 
calibration. To validate the depth estimation accuracy, tests 
were carried out under normal conditions. Table I shows the 
results, comparing depth data with actual physical 
measurements.  

TABLE I.  ESTIMATED DISTANCE USING THE KINECT 
SENSOR 

Test α1 α2 α3 α4 α5 α6 α7 α8 α9 

Depth 

distance (m) 
0.51 0.73 0.85 1.47 1.70 2.01 2.25 3.01 4.21 

Measured 

distance (m) 
0.51 0.74 0.85 1.47 1.70 2.01 2.25 3.00 4.19 

 

These results confirm the reliability of the YOLOv8 model 
for both object detection and distance estimation tasks. Minor 
deviations in depth measurements, such as in α2 and α8, remain 
within acceptable margins, further validating the robustness of 
the model in practical applications. 
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B. Experiments for YOLOV8 in Detecting Objects 

The first condition involved an experiment using the 
YOLOV8 object detection model, which achieved successful 
object detection outcomes. During the experiment, the 
YOLOV8 model demonstrated its ability to detect objects 
accurately within captured images. This model proved effective 
in identifying and localizing various objects of interest. 
Leveraging the advanced algorithms and architecture of 
YOLOv8, the system achieved satisfactory results in terms of 
object detection accuracy and speed. The model's ability to 
handle real-time object detection tasks ensured timely and 
reliable identification of objects in the given context. The 
successful performance of the YOLOv8 model confirms its 
suitability for object detection applications, highlighting its 
potential in various scientific and practical domains. 

1) First Experiment Results (Figure 6) 

 The experiment utilized input from a Kinect camera, which 
provided visual data for further analysis and processing. 

 The distance to the stop sign was accurately measured and 
recorded during the experiment. Utilizing the depth 
information obtained from the Kinect camera, the system 
was able to calculate the precise distance between the robot 
and the stop sign. 

 The speed of the Pioneer 3DX  robot was carefully 
controlled and monitored throughout the experiment. By 
adjusting the robot's velocity parameters, the system 
ensured controlled and consistent movement during data 
collection and subsequent analysis. 

 After the robot was set in motion, new inputs were captured 
by the Kinect camera, providing updated visual data to the 
system. These new inputs allowed the system to 
continuously perceive the environment and adapt its 
operations accordingly. 

 The updated distance from the stop sign was recalculated 
based on the new inputs received after the robot's 
movement. This allowed for real-time assessment and 
tracking of the distance between the robot and the stop sign 
as the robot traversed its environment. 

 The speed of the Pioneer 3DX robot was dynamically 
adjusted in response to changing conditions and input. This 
allowed the system to regulate the robot's movement speed, 
ensuring safe and efficient navigation while maintaining the 
desired experimental parameters. These initial experimental 
results demonstrate the successful integration of the Kinect 
camera input, accurate distance measurement, real-time 
adaptation to new inputs, and dynamic control of the robot's 
speed. This sets the foundation for further analysis and 
exploration in subsequent experiments and reinforces the 
potential of such technologies in scientific research and 
practical applications. According to Figure 7, the robot 
moved at its initial pace for a distance of 1 m before 
detecting a stop sign, at which point it obeyed the command 
and came to a halt. MobileSim was used to sketch the 
robot's path to test the method by placing numerous 
immobile obstacles in the robot's path. 

 

Fig. 6.  Path taken by the robot to avoid obstacles. 

2) Experiments for Objects that Cannot be Detected 

In this experiment, the system was tested against fast-
moving objects and walls that cannot be detected by YOLOv8, 
as well as in low light conditions. The robot was kept safe and 
avoided endangering people or the environment.  

 

  
(a) (b) 

Fig. 7.  Second experiment's results against undetected obstacles. 

In the experimental setup, the robot behavior was 
programmed to respond to the proximity of obstacles within a 
range of 0.6 m. When an obstacle approached within this 
specified range, the robot initiated a stop command and a 
turning motion to find a clear path, as shown in Figure 7(a). 
This adaptive strategy aimed to facilitate obstacle avoidance, 
particularly in the context of navigating near walls. 

Using this reactive approach, the robot effectively stopped 
its forward movement when it detected an obstacle within the 
predetermined range, as shown in Figure 7(b). This temporary 
pause allowed the robot to assess the environment and 
determine the optimal direction for evasive action. By actively 
searching for an unobstructed path through the turning motion, 
the robot aimed to identify a viable route to resume its intended 
trajectory. 

These results highlight the importance of employing 
adaptive techniques to enable autonomous systems, such as the 
robot in this experiment, to respond intelligently to 
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environmental changes. By integrating obstacle detection, 
decision-making algorithms, and appropriate motion control, 
robots can navigate complex environments while minimizing 
the likelihood of collisions and achieving their intended goals.  

IV. CONCLUSION 

The experimental results confirmed the suitability of the 
proposed system for deploying AGVs utilizing RGB-D 
sensors. The proposed approach provides flexibility and 
adaptability for various tasks without relying on predefined 
maps or expensive metal line sensors, as previous studies [11]. 
What sets this work apart is the integration of YOLOv8 with 
RGB-D sensors for real-time obstacle detection and avoidance, 
offering a balance between accuracy, computational efficiency, 
and cost-effectiveness, being an alternative to the more 
expensive LIDAR sensors used in other approaches [13]. By 
incorporating the YOLO object detection algorithm, the system 
ensures efficient object detection across different distances, 
enhancing AGV control and ensuring safe and efficient 
operations. 

Integration of RGB-D sensors allows for precise detection 
and positioning of objects, significantly improving the overall 
maneuverability and control of AGVs. Additionally, the YOLO 
object detection algorithm improves the reliability and 
accuracy of the system, surpassing the capabilities of earlier 
methods [19]. This combination of RGB-D sensors and the 
YOLO algorithm highlights the system's potential for practical 
AGV applications, delivering cost-effective and accurate object 
detection over varying distances. These findings contribute to 
the advancement of autonomous navigation systems for AGVs 
and open opportunities for further research and development in 
this field. 
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