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ABSTRACT 

Liver cancer has significantly high mortality, especially in regions such as Africa and Asia. Early detection 

enhances treatment options, but indications are frequently not apparent until advanced stages. This 

research introduces an explainable AI (XAI) approach using a cascaded Convolutional Neural Network 

(CNN) combined with Gray Level Co-occurrence Matrix (GLCM)-based texture features to segregate non-

cancerous from malicious tumors. The CLD system was used for assessment, and the approach was 

examined using the TCIA dataset, demonstrating higher accuracy and interpretability compared to 

prevailing techniques. XAI methods, such as feature importance and model visualization, were employed 

to provide details on the decision-making process of the model, ensuring transparency and reliability in 

clinical applications. 

Keywords-Hepatocellular Carcinoma (HCC); Metastatic Carcinoma (MC); Convolutional Neural Network 

(CNN); Machine Learning (ML); Explainable Artificial Intelligence (XAI); Gray Level Cooccurrence Matrix 

(GLCM) 
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I. INTRODUCTION  

Hepatocellular Carcinoma (HCC), is a malignant tumor that 
occurs as an outcome of the proliferation of cancer cells in the 
liver, causing serious problems due to high mortality and 
recurrence. Early and accurate identification of tumors with CT 
scan slices is important for good treatment planning and patient 
outcomes. This research focuses on the use of explainable 
Artificial Intelligence (XAI) technology to improve the clarity 
and definition of deep learning models developed for cancer 
diagnosis. The main goal is to identify malignant tissue 
(including the liver and adjacent organs) from CT scan slices to 
facilitate volumetric assessment and evaluation of cancer 
progression due to the need for sophisticated diagnostic tools 
that deliver not only high precision but also clear 
interpretations to aid clinical decision-making. 

This study employs a cascaded CNN combined with 
GLCM texture features to segment and classify liver tumors. 
Additionally, XAI methods are incorporated to provide insights 
into the model execution procedure. This approach aims to 
enhance trust among medical practitioners by providing 
explanations for the results of the model, highlighting the 
significance of feature relevance, and visualizing the 
segmented regions. By integrating XAI techniques, this study 
not only seeks to achieve high diagnostic precision but also 
prioritizes the interpretability of the results, which is essential 
for clinical acceptance and effective treatment planning. Such 
techniques can ensure that the model decision-making 
procedure is transparent and interpretable, fostering trust and 
acceptance in clinical settings. 

TABLE I.  EXPLAINABLE AI (XAI) TECHNIQUES 

Technique Description Application in Study 

Feature 

Importance 

Identifies and ranks the most 

significant features used by 

the model to make 

predictions. 

Used to determine which 

GLCM features and CNN 

layers contribute most to the 

classification of cancer cells. 

Model 

Visualization 

Provides visual 

interpretations of how the 

model processes inputs and 

makes decisions. 

Visualizes the regions of 

interest in CT scans that the 

CNN focuses on, helping to 

understand the areas that 

influence predictions. 

SHAP  

(SHapley 

Additive 

exPlanations) 

Calculates the contribution of 

each feature to the final 

prediction, offering a local 

explanation. 

Applied to explain 

individual predictions by 

illustrating the influence of 

individual features on the 

model's result. 

LIME  

(Local 

Interpretable 

Model-agnostic 

Explanations) 

Creates interpretable models 

approximating the behavior of 

the complex model. 

Used to explain specific 

predictions by 

approximating the complex 

CNN model with a simpler, 

interpretable model. 

Saliency Maps 

Highlights the pixels in the 

input image that most 

influence the model's output. 

Generates heatmaps 

indicating the crucial areas 

of the CT scans that lead to 

classification decisions. 

 
This study discusses various XAI methods, such as SHAP 

and LIME, which are applied to improve the interpretability of 
AI models in cancer classification, specifically for lung and 
colon cancer. In [1], the significance of transparency in AI 
models in building trust among clinicians and ensuring accurate 
diagnoses was highlighted. ML models integrated with XAI 

techniques can effectively predict liver cancer. Techniques 
such as SHAP and Grad CAM are employed to interpret the 
model predictions, making the decision-making process 
transparent and understandable for medical professionals [2]. 
This study surveyed XAI methods used in image classification, 
discussing the trade-offs between model accuracy and 
interpretability, and presenting a taxonomy of XAI methods 
and their applications in medical imaging, including liver 
cancer detection [3]. 

This study proposes a novel approach for diagnosing and 
predicting liver cancer using a Fully Cascaded CNN (FCNN). 
Unlike traditional methods that analyze image patches, this 
FCNN processes whole images, thus improving the efficiency 
and accuracy of segmentation and classification tasks [4]. The 
study highlights the importance of employing XAI techniques 
to make the model's predictions more transparent, which is 
crucial for gaining clinical trust. Additionally, it introduces an 
advanced version of Grad CAM, called Attention Guided Grad 
CAM, which enhances the interpretability of CNN models used 
in medical image classification [5]. This technique is especially 
effective in identifying key areas in liver cancer images, 
facilitating precise diagnosis. Furthermore, it explores how 
integrating GLCM with CNNs can improve the interpretability 
of liver cancer detection models, making the predictions more 
understandable for clinicians [6, 7]. 

In [7], a comprehensive review explored recent 
advancements in XAI within the healthcare sector, particularly 
in clinical settings. This article emphasized the importance of 
AI in creating transparent and reliable models for diagnosing 
and treating diseases such as cancer. LIME and SHAP offer 
visual explanations of model predictions to aid clinicians in 
decision-making processes [8]. This study compared various 
XAI approaches utilized in medical diagnostics, including 
cancer detection, assessing the benefits and drawbacks of each 
approach with an emphasis on improving model transparency 
and interpretability. Additionally, the study discusses different 
CNN methods integrated with XAI to advance cancer 
diagnosis, demonstrating how various tests and interpretative 
techniques can increase the accuracy and clarity of cancer 
diagnoses [9]. 

II. METHODOLOGY 

Figure 1 illustrates a detailed workflow for analyzing and 
classifying CT images using a blend of advanced image 
processing and deep learning methods. The process starts with 
the acquisition of CT scan images, which are then enhanced 
through preprocessing to improve image quality. Subsequently, 
an initial segmentation is performed using a CNN that 
segments the image into various regions or structures of 
interest. This segmentation step is essential for isolating 
specific areas for further analysis. Subsequently, features are 
removed from segmented images using the GLCO method, 
which analyzes texture by examining the spatial relationships 
between pixels to identify patterns and structures within the CT 
images. These topographies are then entered into another CNN 
for classification, allowing the identification of specific 
structures, abnormalities, or other relevant features in the 
images. This two-stage CNN approach ensures both accurate 
segmentation and precise classification. The preliminary 
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segmentations are further refined using the Active Contour 
Method (ACM) and regression methods. ACM enhances object 
detection by evolving curves to align more precisely with the 
boundaries of structures in the images, while regression 
techniques are employed to fine-tune these initial results. The 
final stage incorporates XAI methods, namely saliency maps, 
Grad CAM, or SHAP, to construe and elucidate the results of 
the AI models. This step is crucial to verify model performance 
and ensure that the results are both reliable and interpretable. 

The lower part of the diagram displays the various stages of the 
CT image analysis workflow, illustrating the progression from 
raw data to the final classified and annotated images. Each 
stage signifies different levels of refinement and analysis 
applied to the CT images, emphasizing the detailed and cyclical 
nature of this process. In general, this approach integrates 
traditional image analysis techniques with contemporary deep 
learning methods to deliver a comprehensive and interpretable 
solution for CT image analysis. 

 

 
Fig. 1.  The proposed method. 

A. Step 1: Preprocessing  

Preprocessing of CT scans involves several steps, such as 
converting images to grayscale and applying median filters. 
However, many of the latest automated deep learning methods 
are developed without considering preprocessing techniques, 
which may reduce their reliability, especially when handling 
larger datasets or extended periods. CT scan data typically 
contain various types of noise, including impulse noise, 
Gaussian noise, and quantization noise. To address these 
issues, the first step focuses on optimizing the intensity levels 
of low-contrast CT images, minimizing noise interference, and 
improving the performance of deep-learning models. 

� = ������	
(�)    (1) 

� = ������	
(�, [��� , ���])   (2) 

� = ������	
(�, [��� , ���], [���� , ����]) (3) 

Equation (1) describes the remapping of the intensity levels 
to improve the contrast of the output image. The ������	
() 
function enhances contrast by clipping the top and bottom by 
one percent of pixel intensity readings. Equation 2 uses ��� and 
���  to represent the min and max input intensity readings, 
which are normalized on a scale between 0 and 1. 

Subsequently, (3) encompasses this by recording these 
normalized readings an [���� , ����]  range, effectively 
minimizing noise and reducing image relics. 

B. Step 2: Noise Reduction 

Noise reduction is applied to CT segment volumes and to 
isolate the liver region. This approach builds upon existing 
methods by utilizing a CNN for liver detection and 
segmentation while incorporating temporal phase transitions. 
Figure 2 illustrates how convolutional filters and neural 
network layers work together, playing a key role in achieving 
precise liver analysis. The tailored CNN architecture for 2D 
abdominal liver segmentation allows for accurate identification 
in liver regions. This process uses dual-layer classifiers to 
differentiate between liver and non-liver regions with softmax 
possibilities. This design consists of five layers, integrating 
input with multiple images, and incorporates fully connected 
networks and max pooling techniques to enhance feature 
extraction. The system employs ResNet as an encoder, a Global 
Convolutional Network (GCN) for decoding, and a PatchGAN 
as a classifier to achieve high-resolution segmentation. It was 
initially made as an axial slice and then converted to NIFTI 
format to create 3D volume in DICOM images. Every axial 
slice in the 3D CT was converted to 256×256 pixels for 
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training and testing. The following segment discusses how 
malicious tumors are identified by generating tumor candidates 
within the segmented regions, with Figure 2 showcasing the 
resulting segmentation [10]. 

 

 
Fig. 2.  Segmentation results: green outlines show manually identified 

boundaries, while red outlines indicate automated detection. 

C. Step 3: Extract Region Of Interest (ROI) 

A GLCM-CNN approach is used to effectively excerpt the 
ROI on the segmented liver. This procedure captures a 
dispersal of gray levels, representing pixel radiance readings, 
and gathers texture information by considering spatial 
relationships between pixel pairs at various angles and 
distances (e.g., 0º, 45º, 90º, 120º) [11]. The GLCM matrix is 
calculated based on the occurrence of these pixel pairs. Several 
properties of GLCM are used, such as energy (uniformity), 
homogeneousness (Inverse Difference Moment), and contrast. 

� = ∑ ��,��
�,���

� (! ")#     (4) 

$ = ∑ %!,"#&
!,"'�     (5) 

( = ∑ %!,"
&
!,"'� (� − *)+   (6) 

These GLCM texture features are unified into the input 
layer of the CNN to improve classification accuracy. The 
architecture begins with a 228×344 pixel image derived from 
GLCM features. Additional features, such as the major and 
minor axis lengths, perimeter, and area, are also calculated to 
enhance the model's performance. 

$ = !
"     (7) 

, = (,!," , -./0.[,] = �, 1./0.[,] = *)  (8) 

- = (-!," , -234[-56�] = �, 1234[-56�] = *) (9) 

The GLCM CNN architecture consists of convolutional 
subsampling and output layers. The subsampling function 
averages the values in the input patch window: 

-7 = �89
: ∗ :<-7

�∗� ∗ �(:, :)=   (10) 

The output layer, linked to the final convolutional layer, 
contains four to five neurons corresponding to different cancer 
stages. CNN training aims to reduce the mean squared error 
defined in (11) [12], using a training data sample �  that 
represents the total number of samples in training, a class target 
�7(:), a batch number 1, an output from the �th

 layer >7(:), 

and a normalized squared error $!?.@!0.. 

$!?.@!0. = �
& ∑ (�7A

!'� (:) − >7(:))+  (11) 

D. Step 4: Liver Tumor Identification Refinement 

ACM is used to refine liver tumor identification. This 
model involves contour initiation, regional formulation, and 
boundary formulation to fine-tune tumor identification. The 
region function evaluates the exterior and interior regions, 
while the function � assigns a reading between 0 and 1 to every 
pixel of B. 

��:CD�D�<E 9"|G�|�B + I E ℎ@��BJJ =  (12) 

E. Step 5: XAI 

After refining the liver tumor identification using ACM, the 
results are processed using XAI techniques. XAI enhances the 
interpretability of the GLCM-CNN model's outputs by 
providing intuitions into the executive process. One approach 
involves using SHAP values, which quantify each feature's 
influence on the model's predictions. The SHAP value for a 
feature � is specified by: 

K� = ∑ L ⊆ N
O�PQ|R|!(|T|U|R|U�)!

|T|! V
(W(L ∪ O�P − W(L))   

      (13) 

where L represents a subset of features, Y denotes the complete 
set of features, and W refers to the prediction function of the 
model. This calculation helps to understand which features, 
such as homogeneity, energy, contrast, and perimeter, are most 
influential in classifying the stages of cancer. Additionally, the 
LIME was employed to create locally interpretable 
approximations of the model's predictions. LIME perturbs the 
input data and observes vicissitudes in the predictions to build 
an interpretable model around each one. The weight Z([) of a 
perturbed instance [ in the local neighborhood is defined as: 

Z([) = 6B\(−distance([, [ ′)+ /2g+  (14)
 

where [′ is the instance being explained, and g controls the size 
of the neighborhood. LIME generates explanations for 
individual predictions, highlighting how specific features affect 
the model's output. This phase not only confirms the reliability 
and transparency of the proposed GLCM-CNN model but also 
builds trust in the results among medical professionals. 

F. Dataset  

This study used CT scan images sourced from The Cancer 
Imaging Archive (TCIA), a publicly available medical imaging 
database. A total of 137 cases with annotated liver cancer CT 
scans were selected, covering both cancerous and non-
cancerous instances. To prepare the data for analysis, 
preprocessing steps, such as intensity normalization, noise 
reduction, and resizing, were applied to standardize the images 
to 256×256 pixels. CT slices were organized into 3D nifti 
volumes to facilitate segmentation and classification tasks. This 
dataset was selected due to its high-quality annotations and 
diverse representation of liver cancer cases, allowing the 
effective validation of the proposed method [13-15]. The 
dataset was split into 80:20 for training (110 cases) and testing 
(27 cases). The model achieved a training dice coefficient of 
84.8 ± 13.5% and a testing accuracy of 82.6 ± 13.9%. SHAP 
and LIME were applied to enhance model interpretability and 
clinical transparency. 
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III. RESULTS AND DISCUSSION 

This study thoroughly compared and assessed a range of 
segmentation methods against the proposed approach, 
integrating XAI to enhance interpretability. Through 
scrupulous study and assessment with other methods [15, 16], 
XAI enabled us to elucidate the proposed segmentation 
approach, which significantly outperformed the other methods, 
showing a prominent enhancement in dice precision of 6-11%. 
Classification accuracy was calculated using: 

- = ��i".@ �k l�@@.l� �/.���k�l!����m
���!n ��i".@ �k /!�!   o 100 (15) 

Accuracy computation methods can differ [17]. For an in-
depth understanding, it is proposed to consult the original 
studies for detailed accuracy calculations. Table II provides the 
range of values, including the highest and lowest, for each 
tumor classification. With the incorporation of XAI, these 
outcomes are augmented by enhanced interpretability and 
model transparency. Deprived of detailed data, however, 
precise scores and assessments for every metric cannot be 
provided [18]. Figures 3 and 4 provide a quantitative 
assessment of the proposed segmentation method, comparing 
its performance against both CNN and GLCM-CNN 
techniques. Using an XAI-driven model, GLCM-CNN 
provides better accuracy, underscoring the benefits of 
interpretability in model performance evaluation. 

Table III provides a comprehensive assessment of the 
proposed XAI approach to analyze segmentation outcomes for 
tumors of varying sizes: large, medium, and small. Evaluation 
employed metrics such as the maximum symmetric surface 
distance, the average symmetric surface distance, the relative 
volume differences, the volume overlap error, and the dice 
coefficient per case to measure performance [19, 20]. This 
table allows for a detailed examination of the results and 
provides critical insights into the effectiveness of the proposed 
procedure with different tumor sizes [21]. 

 

Fig. 3.  Graphical representation of classification accuracy of CNN and 

GLCM-CNN. 

 
Fig. 4.  Graphical illustration of scores (Table III). 

TABLE II.  EVALUATION OF THE PROPOSED TUMOR SEGMENTATION TECHNIQUE 

 DICE 
VOE  

 (%) 

RVD  

 (%) 

ASD  

(mm) 

MSD 

 (mm) 

Small tumor 0.89 ± 2.25 37.91 ± 8.26 27.69 ± 5.36  0.78 ± 0.21 0.97 ± 0.30 

Max 0.89 43.66 30.32 0.93 0.93 

Min 0.72 24.13 21.62 0.55 0.70 

Medium  0.83 ± 0.25 39.62 ± 9.62. 24.54 ± 3.72 0.75 ±  0.51 1.15 ±  0.52 

Max 0.92 46.53 27.56 0.85 0.86 

Min 0.74 32.46 19.63 0.57 0.68 

Large tumor 0.92 ± 1.25 38.95 ± 3.62  19.23 ± 2.56 0.78 ±  0.32 1.12 ±  0.84 

Max 0.95 42.54 22.80 0.93 0.87 

Min 0.77 36.32 18.23 0.52 0.67 

Average 0.89 ± 7.08 29.05 ± 5.32 24.25 ± 2.96 0.78 ± 0.56 1.12 ± 0.21 

 

TABLE III.  CLASSIFICATION ACCURACY OF THE 
PROPOSED XAI METHOD 

Iterations CNN Proposed method 

 H E C 

25 67.79 53.17 78.66 89.68 

50 79.26 57.25 88.64 89.63 

100 87.33 70.24 71.66 88.73 

200 88.88 90.92 93.66 91.75 

IV. CONCLUSION 

This study presented a novel cascaded approach for liver 
cancer detection, combining CNN with GLCM texture features 
to improve diagnostic accuracy. This approach addressed the 
gap between model performance and interpretability by 
integrating XAI techniques, such as SHAP and LIME, to 
provide clear insights into the model's decision-making 
process. Unlike existing methods, the proposed approach 
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refined segmentation using ACM and employed detailed 
preprocessing steps tailored for CT scan data, resulting in 
superior dice similarity coefficients and improved classification 
performance. Focusing on interpretability and transparency not 
only advances diagnostic accuracy but also lays a foundation 
for greater clinical trust and adoption of AI in liver cancer 
diagnostics. This process achieved better results, with a dice 
similarity coefficient of 84.8 ± 13.5% for training and 82.6 ± 
13.9% for testing on CT images of 137 patients. The addition 
of XAI methods enhances the model's reliability by providing 
clear and interpretable insights into its operations, further 
supporting its potential clinical adoption. 

This research uniquely integrates radiomic-driven texture 
analysis with deep learning to improve liver cancer detection. 
The application of XAI methods ensures that the decision-
making process is transparent and interpretable, addressing a 
key limitation in AI-driven medical diagnostics. Furthermore, 
the refined segmentation approach using ACM enhances the 
accuracy of lesion localization, contributing to improved 
classification results. The proposed approach significantly 
advances liver cancer diagnostics by providing a highly 
accurate, interpretable, and clinically reliable AI model. By 
leveraging radiomics, deep learning, and XAI, this study not 
only improves classification performance but also enhances 
trust in AI-based diagnostics. The combination of these 
elements lays the foundation for potential real-world clinical 
adoption, bridging the gap between advanced computational 
techniques and practical medical applications. 
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