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ABSTRACT 

In this paper, a novel human-based metaheuristic algorithm called Actor Optimization Algorithm (AOA) 

is introduced. AOA mimics the behaviors of an actor when playing a role. The main idea in designing AOA 

is derived from a specific behavior of the actor including (i) simulating the movements and dialogues of the 

given role and (ii) practicing to better present the assigned role. The theory of AOA is stated and 

mathematically modeled in the phases of exploration and exploitation. The performance of AOA to address 

real-world applications is evaluated on the CEC 2011 test suite. The optimization results show that AOA, 

with its high ability in exploration, exploitation, and balancing during the search process, achieved suitable 

results. In addition, the performance of AOA was challenged by comparing it with 12 known metaheuristic 

algorithms. Result comparison showed that the proposed AOA outperformed the competing algorithms by 

100% (in all 22 optimization problems) of the CEC 2011 test suite. The simulation results show that AOA 

has a successful performance in handling optimization tasks in real-world applications by achieving better 

results in competition with the compared algorithms. 

Keywords-optimization; human-based metaheuristic; actor optimization algorithm 

I. INTRODUCTION  

Optimization is one of the most important concepts in 
science and engineering, which refers to the process of finding 
the best possible solution to a problem in the presence of 
certain constraints [1]. This concept is of great importance in 
fields such as engineering, computer science, economics, and 
biology [2]. Approaches to solving optimization problems are 
generally categorized into two main groups: deterministic and 
stochastic methods [3]. Deterministic approaches such as linear 
programming algorithms and dynamic programming, although 
designed based on exact mathematical models and seeking to 
find the final optimal solution to problems, have limitations 
such as the need for exact models, high computational 
complexity, and sensitivity to small changes [4, 5]. These 
limitations have led researchers to look for alternative methods 
that can solve more complex and realistic problems more 
efficiently. One successful response to these challenges is the 
use of stochastic approaches, and in particular metaheuristic 
algorithms [6]. These algorithms use stochastic processes to 
search the response space instead of using exact models [7]. 
Recently published metaheuristic algorithms that can be used in 
various optimization applications can be mentioned: Potter 
Optimization Algorithm (POA) [8], Carpet Weaving 
Optimization (CWO) [9], Sales Training Based Optimization 
(STBO) [10], Dollmaker Optimization Algorithm (DOA) [11], 
Tailor Optimization Algorithm (TOA) [12], and Sculptor 
Optimization Algorithm (SOA) [13]. Metaheuristic algorithms 
have performed successfully in various applications such as: 
mobile edge computation [14], wireless networks [15], 
dynamic power–latency tradeoff [16], etc. 

The salient features of these algorithms include high 
flexibility, global search capability, and scalability, which have 
made them one of the most widely used tools for solving 
complex optimization problems [17]. Metaheuristic algorithms 
usually start from an initial population and discover better 
answers through several stages of updating. Metaheuristic 
algorithms are built around two key concepts: exploration and 
exploitation. Exploration involves broadly investigating the 
search space without a specific direction, aiming to identify 
promising regions. In contrast, exploitation focuses on refining 
the search within these promising regions to locate the optimal 
solution. Global search emphasizes exploring and covering a 
wider space to avoid being trapped in local optima, whereas 

local search concentrates on exploiting the identified regions to 
converge on the final solution. A significant challenge in 
designing metaheuristic algorithms is achieving a balance 
between exploration and exploitation. Excessive exploration 
can consume substantial computational resources without 
necessarily advancing toward the optimal solution. Conversely, 
overemphasis on exploitation can result in becoming trapped in 
local optima, thereby missing better solutions. To address this, 
metaheuristic algorithms incorporate various mechanisms to 
maintain this crucial balance [18]. 

Despite the numerous metaheuristic algorithms that have 
been developed and introduced, the "No Free Lunch" (NFL) 
theorem states that no single algorithm can outperform all 
others across all optimization problems. This theorem 
highlights that the efficiency of an algorithm is contingent upon 
the specific characteristics of the problem at hand. 
Consequently, given the diversity of optimization problems 
across various domains and the need to address the unique 
conditions and constraints of each problem, the development of 
new algorithms remains essential. Such efforts not only 
enhance performance in specific fields but also contribute to 
the expansion of knowledge and the discovery of novel 
methods for solving complex problems [19]. 

Motivated by the NFL theorem, in this study, a new 
metaheuristic algorithm called Actor Optimization Algorithm 
(AOA) is designed to handle optimization tasks. The main 
contributions of this study are:  

 AOA is designed by taking inspiration from the behaviors 
of actors when playing a role.  

 The theory of AOA is stated and then its steps are 
mathematically modeled in two phases of exploration and 
exploitation.  

 The performance of AOA is compared with the 
performance of twelve well-known metaheuristic 
algorithms.  

 In order to evaluate the effectiveness of the proposed 
algorithm in dealing with real world applications, AOA is 
implemented on 22 constrained optimization problems from 
the CEC 2011 test suite. 
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II. ACTOR OPTIMIZATION ALGORITHM (AOA)  

A. Initialization 

The proposed AOA approach is a population-based 
algorithm that is able to achieve appropriate solutions to 
optimization problems based on the search power of its 
members in an iterative process. Each AOA member is a 
candidate solution to the problem that specifies the values of 
the decision variables of the problem. Therefore, 
mathematically, each AOA member can be modeled using a 
vector. Similarly, the community of AOA members together, 
which is represented by putting these vectors together from a 
mathematical point of view using a matrix, according to (1). 
The initial position of each AOA member in the search space is 
completely randomly initialized using (2). 
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��,� = ��� + � ∙ (��� − ���)    (2) 

where � is the AOA population matrix, ��  is the �th painting 

student (candidate solution), ��,� is its �th dimension in search 

space (decision variable),   is the number of painting students, 
! is the number of decision variables, � is a random number in 
interval "0,1% , ��� , and ���  are the lower bound and upper 
bound of the �th decision variable, respectively. 

Corresponding to each AOA member as a candidate 
solution to the problem, the objective function can be 
evaluated. Therefore, the evaluated values for the objective 
function can be represented using a vector according to (3): 
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where & is the vector of the calculated objective function and 
&�  is the calculated objective function based on the �th painting 
student. 

The evaluated values for the objective function are a 
suitable measure to measure the quality of the candidate 
solutions and consequently the AOA population members. 
Therefore, the best evaluated value for the objective function 
corresponds to the best candidate solution and consequently the 
best population member. Since AOA is an iteration-based 
approach, the positions of the population members are updated 
in each iteration. Following the updating of the positions of the 
population members, the objective function must also be re-
evaluated. Based on the evaluated values for the objective 
function, the best population member is again identified. This 
updating process continues until the last iteration of the 
algorithm and at the end the position of the best population 
member is presented as the AOA solution for the given 
problem. In the AOA design, the positions of the AOA 
members are updated in two separate phases in each iteration. 

In the following, each of these two phases is introduced and 
mathematically modeled. 

B. Phase 1: Simulating the Movements and Dialogues of the 
Given Role (Exploration) 

One of the important steps in filmmaking is selecting the 
right actor to play the role. After the actor is selected for a role, 
he tries to adapt himself to the personality of the given role. 
This actor's behavior leads to extensive changes in his 
behaviors and expression techniques to play the role. 
Simulating these extensive changes in actor behavior leads to 
extensive changes in the position of AOA members in the 
problem-solving space and, as a result, increases the ability to 
explore. In the design of AOA, each member of the population 
is considered as an actor, and each of these actors is assigned a 
specific role according to (4). After determining the role, each 
actor tries to imitate the specified movements and dialogues 
and get close to the assigned role. In AOA design, based on the 
simulation of the actor's effort to get close to the role, a new 
position is calculated for each AOA member using (5). Then, if 
this new position leads to an improvement in the value of the 
objective function, it replaces the previous position of the 
corresponding member according to (6). 

'� = �� + � ∙  (�)*+, − ��)    (4) 

��-� = �� + � ∙ ('� − . ∙ ��), � = 1,2, … ,   (5) 

�� = 1��-�, &�-� < &�
�� ,  else     (6) 

where '�  is the given role for ith AOA member, �)*+,  is the 

location of the best member of AOA population, ��-�  is the 
new suggested position of ith actor based on first phase of 

AOA, &�-� is its objective function value, � is a random number 
with a normal distribution in the range of "0,1%, . is random 
number from set 61,27 , and   is the number of population 
members.  

C. Phase 2: Practice (Exploitation) 

After understanding their role, actors try to bring their 
movements, behaviors, and dialogues closer to the given role 
through practice in order to be able to play the role in the best 
possible way. This behavior of actors includes small, detailed, 
and precise changes in their movements and expression. 
Simulating these small changes in the behavior of actors leads 
to small changes in the positions of AOA members in the 
problem-solving space and, as a result, increases the 
exploitation ability of the algorithm. In the design of AOA, it is 
assumed that, corresponding to the training of each actor, the 
positions of the population members near the location where 
they are located are updated. Accordingly, based on the 
simulation of each actor's training, a new position in the 
problem-solving space is calculated for each AOA member 
using (7). If this new position improves the objective function, 
it replaces the position of the corresponding member according 
to (8).  

��-8 = �� + 91 − 2 ∙ sin (<∙=
8 )> ∙ (?)@A))

,    (7) 
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�� = 1��-8,  &�-8 < &�
�� ,  else      (8) 

where ��-8 is the new suggested position of the �th actor based 

on the second phase of AOA, &�-8  is its objective function 
value, B is the iteration counter of the algorithm, and C is the 
maximum number of algorithm iterations.  

D. Computational Complexity of AOA 

The initialization steps of AOA have a computational 
complexity of O(Nm), where N is the population size and m is 
the number of decision variables of the problem. The updating 
process in AOA has two phases, exploration and exploitation. 
Therefore, the computational complexity of the updating 
process is O(2NmT), where T is the maximum number of 
iterations of the algorithm. Therefore, the total computational 
complexity of AOA is O(NM(1+2T)). 

III. SIMULATION STUDIES 

The performance of the newly introduced AOA was 
rigorously analyzed to determine its efficacy in tackling real-
world optimization problems. The CEC 2011 benchmark suite, 
which encompasses 22 constrained optimization problems 
derived from practical scenarios, served as the evaluation 
platform [20]. The CEC 2011 Test Suite of optimization 
problems is a collection designed to evaluate and compare 
global optimization algorithms. This suite, specifically created 
to test the performance of optimization methods in complex, 
real-world scenarios, consists of problems with various 
dimensions and characteristics such as non-linear constraints, 
varying scales, and the inherent complexity of objective 
functions. It serves as a standard reference for assessing 
optimization techniques in challenging environments. A 
detailed description of each optimization problem included in 
the CEC 2011 Test Suite, along with their titles follows: 

 Parameter Estimation for Frequency-Modulated (FM) 
Sound Waves (C11-F1): This problem involves the 
estimation of parameters for Frequency-Modulated (FM) 
sound waves. The objective is to optimize the model 
parameters to best fit the input data, which is particularly 
useful in signal processing and communication 
applications. 

 Lennard-Jones Potential Problem (C11-F2): This 
problem focuses on the optimization of the Lennard-Jones 
potential, which is used to simulate interactions between 
molecules or atoms in physics and chemistry. It consists of 
30 variables and is specifically designed for simulating 
molecular interactions in complex systems. 

 The Bifunctional Catalyst Blend Optimal Control 
Problem (C11-F3): This optimization problem deals with 
finding the optimal control for the blending of bifunctional 
catalysts. The goal is to determine the best combination and 
control for catalytic processes used in the chemical industry 
and energy production. 

 Optimal Control of a Non-Linear Stirred Tank Reactor 
(C11-F4): This problem involves optimizing the control of 
a non-linear stirred tank reactor. The objective is to 

determine optimal conditions for chemical reactions within 
the reactor to maximize process efficiency and 
performance. 

 Tersoff Potential for Model Si (B) (C11-F5): This 
problem involves optimizing the Tersoff potential for 
modeling silicon (Si) interactions. The goal is to optimize 
models related to the structural and chemical behaviors of 
semiconductor materials. 

 Tersoff Potential for Model Si (C) (C11-F6): Similar to 
the previous problem, this optimization problem focuses on 
the Tersoff potential for modeling interactions in silicon 
(Si) in different configurations, specifically for 
semiconductor and related material behavior. 

 Spread Spectrum Radar Polyphase Code Design (C11-
F7): The objective of this problem is to design a polyphase 
code for spread spectrum radar. It is used in the design of 
radar and communication systems requiring high accuracy 
and noise resistance. 

 Transmission Network Expansion Planning (TNEP) 
Problem (C11-F8): This optimization problem focuses on 
the expansion planning of electrical transmission networks. 
The goal is to optimize the development of energy networks 
by considering production capacities, demand, and 
transportation costs. 

 Large Scale Transmission Pricing Problem (C11-F9): 
This problem addresses the pricing of transmission 
networks on a large scale. The objective is to optimize 
transmission pricing to minimize energy transportation 
costs in electricity grids. 

 Circular Antenna Array Design Problem (C11-F10): 
This problem involves the design of circular antenna arrays. 
The goal is to optimize antenna configurations for 
communication and radar systems that require wide 
coverage. 

 The ELD Problems (C11-F11 to C11-F17): The ELD 
(Economic Load Dispatch) problems are related to the 
economic dispatch of power in electrical systems. This 
includes various problems where the objective is to 
optimally distribute power generation across different units 
while considering cost constraints and operational limits. 

 Hydrothermal Scheduling Problem (C11-F18 to C11-
F20): This problem deals with the joint scheduling of hydro 
and thermal power plants. The objective is to optimize the 
generation of power from both types of plants to meet 
demand at the lowest possible cost. 

 Messenger: Spacecraft Trajectory Optimization 
Problem (C11-F21): This problem involves optimizing the 
trajectory of the Messenger spacecraft for its mission to 
Mercury. The objective is to determine the best route to the 
destination while considering technical constraints and 
resource limitations. 

 Cassini 2: Spacecraft Trajectory Optimization Problem 
(C11-F22): Similar to the previous problem, this 
optimization problem focuses on the trajectory of the 
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Cassini spacecraft for its mission to Saturn. It involves 
greater complexity and multiple route options. 

This suite is designed to test optimization algorithms in 
realistic and complex conditions. These problems are widely 
used for industrial, scientific, and engineering applications to 
evaluate the efficiency and robustness of various optimization 
methods.  

It should be noted that the penalty coefficient strategy has 
been used to deal with the constraints of the problems. To 
provide a robust comparison, the AOA is assessed alongside 12 
well-established metaheuristic algorithms: Genetic Algorithm 
(GA) [21], Particle Swarm Optimization (PSO) [22], 
Gravitational Search Algorithm (GSA) [23], Teaching–
Learning-Based Optimization (TLBO) [24], Multi-Verse 
Optimizer (MVO) [25], Grey Wolf Optimizer (GWO) [26], 

Whale Optimization Algorithm (WOA) [27], Marine Predators 
Algorithm (MPA) [28], Tunicate Swarm Algorithm (TSA) 
[29], Reptile Search Algorithm (RSA) [30], African Vultures 
Optimization Algorithm (AVOA) [31], and White Shark 
Optimizer (WSO) [32]. For the sake of fair comparison, the 
original versions of the MATLAB codes published by the 
original researchers have been used in the simulation studies, 
whereas in the case of PSO and GA, the standard codes 
published by Professor Mirjalili were used. The values of the 
control parameters of the metaheuristic algorithms are specified 
in Table I. Experiments have been implemented on MATLAB 
R2022a using 64-bit Core i7 processor with 3.20 GHz and 16 
GB main memory. The proposed AOA approach and each of 
the competitor algorithms was implemented on the CEC-2011 
functions in 25 independent implementations where each 
implementation contained 150,000 FEs.  

TABLE I.  CONTROL PARAMETERS VALUES  

Algorithm Parameter Value 

GA 

Type Real coded 

Selection Roulette wheel (Proportionate) 

Crossover Whole arithmetic (Probability = 0.8, D ∈ "−0.5, 1.5%) 

Mutation Gaussian (Probability = 0.05) 

PSO 

Topology Fully connected 

Cognitive and social constant (C1, C2)= (2, 2) 

Inertia weight Linear reduction from 0.9 to 0.1 

Velocity limit 10% of dimension range 

GSA Alpha, G0, Rnorm, Rpower 20, 100, 2, 1 

TLBO 
TF: teaching factor TF = round   "(1 + �HI�)% 
Random number rand is a random number between "0 − 1%. 

GWO Convergence parameter (a) a: Linear reduction from 2 to 0. 

MVO 
Wormhole Existence Probability (WEP) Min(WEP) = 0.2 and Max(WEP)=1. 

Exploitation accuracy over the iterations (p) J =  6. 

WOA 

Convergence parameter (a) a: Linear reduction from 2 to 0. 

r is a random vector in "0 − 1%.  

l is a random number in "−1,1%.  

TSA 
Pmin and Pmax 1, 4 

c1, c2, c3  random numbers lie in the range of "0 − 1%. 

MPA 

Constant number P=0.5 

Random vector R is a vector of uniform random numbers in "0, 1%. 
Fish Aggregating Devices (FADs) &LMN=0.2 

Binary vector U= 0 or 1 

RSA 

Sensitive parameter O = 0.01  
Sensitive parameter D = 0.1  

Evolutionary Sense (ES) ES: randomly decreasing values between 2 and −2 

AVOA 

L1, L2 0.8, 0.2 

w 2.5 

P1, P2, P3 0.6, 0.4, 0.6 

WSO 
Fmin and Fmax 0.07, 0.75 

τ, ao, a1, a2 4.125, 6.25, 100, 0.0005 

 

Table II illustrates the outcomes of the comparative 
evaluation of AOA and its competitors on the CEC 2011 test 
suite. A detailed examination of these results reveals that AOA 
consistently delivers superior solutions across all the 
benchmark problems. This persistent outperformance 
underscores AOA's robustness and its capability to navigate the 
complexities of real-world optimization tasks effectively. 
Notably, AOA not only outpaces its counterparts in most of the 
test cases but also establishes itself as the most reliable and 
adaptive optimization method throughout the entire suite of 
problems. To further substantiate the algorithm's efficiency, a 
statistical analysis using the Wilcoxon rank-sum test [33] was 

employed. This test provides critical evidence of the 
statistically significant superiority of AOA over other 
metaheuristics. The statistical findings reinforce the empirical 
results, highlighting AOA’s consistent ability to deliver optimal 
or near-optimal solutions with remarkable reliability. The 
robust performance of AOA, demonstrated through empirical 
data and statistical validation, affirms its potential as a highly 
effective optimization tool for solving challenging problems 
rooted in practical applications. These findings emphasize that 
AOA is not only a competitive algorithm but also a standout 
method for addressing the intricate demands of constrained 
optimization tasks. 
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Fig. 1.  Boxplot diagrams of AOA and competitor algorithms performances on CEC 2011 test suite. 

TABLE II.  PERFORMANCE OF METAHEURISTIC ALGORITHMS ON CEC 2011 TEST SUITE  

 
AOA WSO AVOA RSA MPA TSA WOA MVO GWO TLBO GSA PSO GA 

C11-F1 
mean 6.060906 14.50867 11.94661 16.82667 9.024889 14.90491 12.10467 12.51278 10.81048 14.92222 16.67552 14.65501 17.59306 

std 11.44388 5.44389 7.134568 5.016761 8.329962 3.595306 7.015798 3.884497 8.533319 2.744263 4.410158 6.838221 4.095731 
C11-F2 

 

mean -26.1505 -17.5108 -21.0786 -16.0007 -23.2472 -15.8502 -19.7807 -14.5179 -21.9323 -15.6395 -18.1294 -21.9585 -16.7293 
std 1.123681 1.534562 0.912745 0.471209 1.175746 2.988094 3.698583 1.463674 2.749589 0.695852 4.05249 1.651091 2.228916 

C11-F3 

 

mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 
std 4.22E-16 1.89E-11 2.16E-09 4.25E-11 3.98E-15 2.5E-14 4.74E-15 8.45E-13 3.06E-15 6.5E-14 4.74E-15 4.74E-15 4.74E-15 

C11-F4 

 

mean 21.77385 37.55542 29.57374 44.14282 27.01992 31.97321 37.4845 32.14939 29.19959 59.44759 37.62317 61.01333 55.55381 
std 4.74272 3.7868 4.720156 7.065975 3.828154 4.525298 5.184075 2.342945 2.82177 15.51519 6.46463 11.1058 3.354946 

C11-F5 

 

mean -34.0502 -27.9833 -29.74 -25.4021 -32.4832 -29.2205 -29.4859 -29.1461 -31.58 -20.5064 -29.3359 -19.3532 -19.8113 
std 0.865534 1.556849 0.710277 2.092219 1.384101 4.435949 0.733468 2.496666 3.209775 2.243928 2.21786 2.269966 1.601467 

C11-F6 

 

mean -23.9288 -16.0759 -18.7358 -15.5464 -20.6404 -12.6256 -19.2266 -13.6752 -19.0549 -9.83513 -20.2544 -10.2964 -10.7793 
std 3.666169 1.7275 2.20324 0.907972 2.928836 6.475272 3.310772 7.638024 2.756741 1.602577 2.144739 2.847012 2.476305 

C11-F7 

 

mean 0.865551 1.334319 1.163964 1.500341 0.976465 1.173403 1.407092 0.95077 1.049407 1.393901 1.055783 1.07902 1.405417 
std 0.338766 0.152979 0.233072 0.128194 0.214527 0.324101 0.153903 0.090592 0.197853 0.134328 0.251401 0.174514 0.350253 

C11-F8 

 

mean 220.4118 260.2616 236.6343 281.7171 227.0622 245.5691 250.2229 227.928 229.6596 227.928 239.7541 358.2487 227.0862 
std 1.215489 37.81879 26.43022 33.6512 17.76889 74.3264 43.52786 14.52281 21.93127 23.12572 46.68994 142.0197 15.76169 

C11-F9 

 

mean 9423.886 311325.5 216263.6 579564.5 25919.09 50380.02 214315.2 86065.94 38047.19 232361.9 452731.5 590439.6 1047597 
std 6341.454 111673.7 27764.15 222230.7 9997.841 16561.78 176850.4 48102.25 23371.46 74877.95 69645.33 221391.4 85297.97 

C11-F10 

 

mean -21.4106 -15.8331 -17.3994 -14.935 -18.5169 -16.0558 -15.2506 -16.2214 -15.9041 -14.4086 -15.3995 -14.4616 -14.3047 
std 0.792645 1.324702 0.676684 0.657044 0.555863 3.335252 0.67312 3.737495 0.187382 0.59553 0.397845 0.607102 0.618633 

C11-F11 

 

mean 631002.5 4387542 1833671 6010198 2188212 4463119 1952755 2002056 3342245 4073008 2056656 4078888 4557575 
std 421060.4 522469.2 370804.5 356859.1 349781.6 1083623 323985.9 661029.8 338246.2 272957.2 377625.2 278394.2 234290.6 

C11-F12 

 

mean 1242058 5557279 2895575 8128552 1780612 3773384 4190147 1808679 1859949 8708609 4176792 2332158 8794009 
std 71681.04 239661 59990.78 647007.9 57794.18 182308.8 252310.2 107248.5 110158.7 569725.8 186289.4 152006.8 97750.11 

C11-F13 

 

mean 15444.71 15675.41 15457.87 15915.81 15465.93 15480.28 15504.33 15489.68 15486.08 15715.53 75408.05 15480.62 23187.14 
std 0.212583 271.607 1.843408 623.5626 4.033786 12.26883 44.33375 24.29915 8.563772 354.9454 33842.21 22.5158 25881.87 

C11-F14 
mean 18309 68580.1 18671.42 130523.1 18718.38 19208.91 19046.6 19149.46 19050.29 173925.3 18975.95 18993.24 18986.47 

std 110.732 28755.81 92.99736 64842.62 145.6024 424.5493 204.8834 162.2954 228.9562 245427.9 218.3114 176.8187 303.7182 

C11-F15 
mean 33123.03 501041.5 75689.2 1036136 35882.26 47365.38 134564.8 35962.87 35951.1 8214687 177704.4 36062.81 4236664 

std 830.3494 823786.8 71487.17 1845868 9836.21 48281.48 118655.9 9856.168 9814.033 8074345 24199.7 9829.927 4120302 
C11-F16 

 

mean 133677.9 567680.4 137161.2 1101388 138479.5 142448.9 140874.2 140685.2 142845.3 47317415 10016574 42358178 40673503 
std 3806.762 786049.3 2248.542 1765923 3723.927 2866.251 4956.209 5564.368 4572.131 1817047 9457709 11325789 13720605 

C11-F17 

 

mean 16064954 4.94E+09 1.41E+09 8.42E+09 1.76E+08 8.56E+08 5.33E+09 1.77E+08 1.77E+08 1.20E+10 6.14E+09 1.12E+10 1.18E+10 
std 3931463 8.90E+08 1.98E+08 2.99E+09 48679702 2.37E+08 2.29E+09 47849335 49250458 6.36E+08 7.95E+08 2.26E+09 1.77E+09 

C11-F18 

 

mean 954302.4 29827351 4084881 63545184 1116961 1690174 5692393 1125660 1148522 17079070 6515447 72299338 61487929 
std 3354.358 10354738 3045857 22408431 60847.39 316879 4789714 66388.37 105585.1 3822274 2260464 14723481 3052372 

C11-F19 

 

mean 1041232 29476819 4246210 62343394 1312763 2017369 6139457 1492871 1432343 19626653 4039337 92494816 61798845 
std 156457.5 9162087 817967 19074481 150460.5 333063.2 6944347 281566.4 179580.6 7605948 2352486 16696147 2368905 

C11-F20 

 

mean 951033.4 31156128 3698893 67137137 1077211 1537637 4437009 1083838 1097512 18943472 8152474 85243351 61828025 
std 10663.5 6663657 525509.1 15002879 51428.24 261574.2 366047.8 51608.79 46365.85 542645.5 4915298 13719138 3704706 

C11-F21 

 

mean 12.90357 35.91799 20.70939 49.85819 17.67438 25.05979 29.82743 23.84366 21.09973 62.74046 30.84367 65.41762 63.75367 
std 3.840599 5.98077 2.507445 14.28022 3.211127 3.073882 1.905368 3.361642 3.012891 35.87856 2.762274 11.685 26.80165 

C11-F22 

 

mean 16.30217 35.46881 25.16824 44.33433 20.71999 27.66364 35.21334 27.74666 23.86415 65.14146 35.40331 67.28631 59.80752 
std 6.712288 4.840525 6.389453 10.09465 4.196121 4.484125 6.475542 5.359113 1.586583 23.04481 6.01575 13.15906 2.863776 

Sum rank 22 198 112 240 56 150 151 123 99 233 165 210 234 
Mean rank 1 9 5.090909 10.90909 2.545455 6.818182 6.863636 5.590909 4.5 10.59091 7.5 9.545455 10.63636 
Total rank 1 9 4 13 2 6 7 5 3 11 8 10 12 

Wilcoxon: p-value 3.73E-16 3.73E-16 3.73E-16 9.86E-16 7.99E-16 3.73E-16 8.00E-16 1.22E-15 7.99E-16 9.52E-16 4.59E-16 7.99E-16 
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IV. CONCLUDING REMARKS AND FUTURE WORKS 

In this paper, a new metaheuristic algorithm named Actor 
Optimization Algorithm (AOA) designed to handle 
optimization applications is introduced. The main idea in 
designing AOA is derived from the actor's behaviors while 
playing a role. The theory of AOA is proposed and then 
mathematically modeled in two phases (i) exploration based on 
simulating the actor's behavior in imitating the movements and 
dialogues of the assigned role and (ii) exploitation based on 
simulating the actor's exercises to perform the assigned role as 
best as possible. The performance of AOA in real-world 
applications was tested on 22 constrained optimization 
problems from the CEC 2011 test suite. The optimization 
results showed that AOA, by balancing exploration and 
exploitation, has provided successful performance in handling 
this test suite. In order to analyze the capability of AOA, its 
results were compared with the performance of twelve 
metaheuristic algorithms. What was evident from the 
simulation results was that AOA, by outperforming the 
compared algorithms, has a suitable performance for solving 
optimization problems in real-world applications. Despite its 
advantages, AOA has its limitations. As with other stochastic 
methods, one of the limitations of AOA is that there is no 
guarantee of reaching the global optimum. Another limitation 
is that it is always possible to design newer algorithms that 
have superior performance compared to AOA. 

The introduction of AOA raises several research proposals 
for further work in the future. The design of binary and multi-
objective versions of AOA is one of the most specific research 
proposals of this study. In addition, the application of AOA to 
handle optimization tasks in various sciences and real-world 
applications is another research proposal for further work. 
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