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ABSTRACT 

Roads are people's main transportation mode, deeming them an important aspect of worldwide everyday 

life. However, weather conditions increasingly impact road infrastructure, necessitating improved road 

safety measures. Identifying road types enhances traffic management and safety, particularly as roads 

often sustain damage during the rainy season and require restoration that takes time. In many countries, 

weather conditions also affect road usability. This study proposes a Deep Neural Network (DNN) for 

automatic road classification Road Surface Images (RSI). ResNet-50 is employed for feature extraction, 

while additional features, such as Gray-Level Co-Occurrence Matrix (GLCM), correlation factor, and 

Histogram of Oriented Gradients (HOG) are integrated to improve detection accuracy. These features 

collectively form the GHR50 model. Next, the collected features are classified using a Support Vector 

Machine (SVM) classifier and the parameters are evaluated. The proposed GHR50 model achieves 97.39% 

accuracy in detecting road types, such as dry mud, fresh snow, and water-asphalt smooth, representing a 

0.95% improvement over conventional Convolutional Neural Networks (CNNs). 

Keywords-road surface images; deep neural network; histogram of oriented gradient; grey level co-occurrence 

matrix; residual network; support vector machine 

I. INTRODUCTION  

Research on autonomous vehicles has significantly 
increased in recent years. These technologies could minimize 
traffic congestion, accidents, energy consumption, and 
environmental impact. A critical aspect of autonomous driving 
is image classification, which enhances road condition 
detection and improves safety. Road surfaces can vary widely, 
including muddy, slippery, snowy, dry, or wet conditions. 
However, factors, such as adverse weather, variable lighting, 
and motion blur, can reduce the clarity of RSI, negatively 
impacting traditional classification methods and leading to 
inconsistent accuracy and limited adaptability. Therefore, more 
robust and reliable classification techniques are needed for road 
surface condition assessment. 

The foundation of modern image classification lies in 
neural network research. Authors in [1], who studied cat 
cerebral cortex neurons, important for local sensitivity and 
direction selection, postulated CNN in the 1960s. Authors in 
[2] used CNNs in character recognition in the 1990s to reduce 
feature extraction effort. Later, authors in [3] offered a classical 
CNN model for image recognition to help solve the tasks. The 
CNN strong performance lies in picture target recognition and 
classification [4]. However, improving classification accuracy 

remains a key challenge. Researchers have explored alternative 
approaches, including color space features for image 
identification [5], and have modified SVMs for classification 
[6]. A system integrating these techniques achieved 85% 
accuracy in mixed road condition identification, though its 
effectiveness was limited by a small sample size. Deep 
Learning (DL) models, particularly CNNs, have greatly 
enhanced image classification performance. As DL methods 
continue to evolve, novel activation functions for DNNs are 
being explored [7]. Non-linear data processing remains 
challenging, as conventional models rely on linear convolution 
and fully connected layers. To address this, non-linear 
activation functions have been incorporated into network 
structures, enabling more complex feature mappings [8]. The 
Rectified Linear Unit (ReLU) function, proposed in [9], 
accelerates DNN training. 

This study integrates DL and SVM for road surface 
classification, focusing on the impact of layer selection and 
activation functions on classification accuracy. The proposed 
approach is evaluated using publicly available road surface 
datasets, including a dataset from [10], containing 370,151 road 
RSI from China under various weather and road conditions. 
Figure 1 portrays RSI samples. 
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This paper makes two primary contributions: 

 Feature Extraction: An enhanced ResNet-50 model is 
employed, along with HOG, GLCM, and correlation-based 
features. 

 Feature Classification: An optimized SVM classifier is 
utilized to improve road surface condition recognition. 

 

 

Fig. 1.   RSI image samples. 

II. RELATED WORK 

Traffic meteorology classifies roads as dry, wet, water, 
snow, or ice based on the liquid on their surfaces. Road 
surface-detecting sensors are now the main source of slippery 
road surface data. RSI are captured by sensors and analyzed to 
determine the road type. Various algorithms have been 
proposed for road surface recognition, initially relying on 
integrated tools [11] before transitioning to image-based 
processing techniques. Authors in [12] retrieved road image 
features and revealed road surface condition. A tire-road 
variability-based real-time acoustics road surface state 
identification system was proposed in [13]. Using a signal 
processing technique and a noise measuring device, dry and 
wet road statuses were accurately classified. Feature extraction 
was not performed, lowering accuracy. Authors in [14] 
proposed a technique using gray scale RSI characteristics and a 
neural network for road surface detection, demonstrating 
improved recognition. Authors in [15] investigated a large 
collection of road surface reflection images to monitor and 
identify the reflection image of a specific site. They also 
explained the relationship between the friction coefficient and 
surface roughness. A model using statistical features, GLCM, 
and linear discriminant analysis was presented in [16] for Road 
Surface Classification (RSC), emphasizing feature extraction as 
a critical step. Human-computer interaction techniques were 
employed in [17] to extract temperature and grayscale features 
for road surface prediction, achieving over 80% accuracy. 
Focusing on hazardous road conditions, authors in [18] 

leveraged road brightness and RSI spatial spectrum data for 
classification. In [19], a Backpropagation (BP) neural network 
model was developed, incorporating RGB, HSI, and YUV 
color spaces to improve recognition accuracy above 85%. 
However, the model's effectiveness was limited by a small 
training dataset. 

An SVM classifier was utilized in [20] to detect slippery 
roads using wet road images, showing slightly higher accuracy 
for snow than for dry conditions. Further research is needed to 
improve the classification of hybrid road surface states. A 
Recurrent Neural Network (RNN)-based approach was 
introduced in [21] to enhance wet/dry road classification using 
tire noise data, achieving 93% accuracy despite challenges 
caused from vehicle speed, environmental noise, and tire 
friction. In [22], a Deep Convolutional Neural Network 
(DCNN) model was developed to classify asphalt, cement, and 
blacktop surfaces under wet and dry conditions, reaching 92% 
accuracy. Further research is needed to enhance road surface 
data collection using mobile devices. A DCNN-based approach 
leveraging cellphone images was introduced in [23], 
demonstrating effective feature extraction using two fully 
connected layers. DL has been shown to improve road surface 
recognition for traffic flow. DenseNet and NASNet 
architectures were proposed in [24] to monitor winter road 
conditions, incorporating temperature, wind speed, humidity, 
pressure, and dew point data. Additionally, a LiDAR-based 
spatiotemporal framework was introduced in [25] to classify 
road surface materials (asphalt, cement, gravel, tarmac) and 
conditions (dry, wet, snowy) with approximately 97% 
accuracy. While most studies focus on isolated feature 
extraction techniques, this work integrates multiple feature 
extraction methods. By leveraging public datasets, it minimizes 
environmental noise while maintaining high image quality 

III. METHODOLOGY 

Four main steps are followed to determine road surface 
from photos, date acquisition, pre-processing, feature 
extraction, and classification. Figure 2 illustrates the utilized 
method. 

A. Input Dataset 

Most publicly available datasets are photographs taken in 
constrained conditions, reducing algorithms' real-world 
robustness. A large dataset of RSI was labeled based on 
friction, substance, and unevenness attributes. The friction level 
categories—dry, wet, water, fresh snow, melting snow, and 
ice—correlate with various weather conditions. Road surfaces 
include gravel, mud, asphalt, and concrete, while road 
unevenness is classified as smooth, mild, or severe, depending 
on the environmental conditions. The dataset follows a 
structured classification, incorporating these three primary 
attributes along with their respective subcategories. However, 
when friction is classified as ice, melting snow, or fresh snow, 
the road substance and unevenness attributes are not 
emphasized. Authors in [10] divided the dataset’s image 
categories into 27 subcategories, and similar subcategories 
were used in this work. The employed dataset, was obtained 
from [26] and was used for the evaluation of the proposed 
model. 
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Fig. 2.  Process flow of the proposed work. 

B. Pre-processing of Data 

Before feeding images into a pre-trained model, they must 
undergo pre-processing. This stage includes downsizing, noise 
removal, data augmentation, and color conversion to greyscale. 
Additionally, all data must be uniformly scaled before testing. 
The images are resized from 240 × 360 pixels (96 DPI) to 224 
× 224 × 3 pixels. Noise is removed using a median filter, and 
data augmentation is applied to prevent class imbalance, 
ensuring seamless training for Machine Learning (ML) and DL 
models. The augmentation techniques include rotation, scaling, 
and translation. After augmentation, color images are converted 
to greyscale for better feature extraction. Finally, all images are 
normalized using pre-trained model norms. 

C. Feature Extraction 

Feature extraction is a crucial step in image processing 
applications. The primary feature extraction techniques 
deployed are GLCM, HOG, and DCNN. 

1) Gray-Level Co-Occurrence Matrix Features 

GLCM is a widely used method for analyzing image 
textures by examining pixel relationships. The extracted 
GLCM features include: 

 Contrast: Measures variations in pixel intensity. High 
contrast indicates significant differences between 
neighboring pixels: 

�������� �  ∑ ��  ���
�,� ∙ ���, ��  (1) 

where the ���, �� is the value in GLCM for � and � pixels. 

 Energy: The GLCM uniformity is measured using the 
energy factor. Higher energy values indicate more repetitive 
and structured textures: 

� �  ∑ ���, ���
�,�     (2) 

 Homogeneity: Measures how close the elements in the 
GLCM are to the diagonal. Higher values indicate a more 
uniform distribution: 

� �  ∑ ���,��
��|���|�,�     (3) 

 Entropy: Evaluates the randomness of grey level 
distributions. Higher entropy implies more complex 
textures: 

�� �   ∑ ���, �� log ���, ���,�    (4) 

 Dissimilarity: This feature varies and increases linearly 
depending on the grey levels in the image: 

!" �  ∑ |�  �| ∙  ���, ���,�    (5) 

 Cluster shade: Measures the asymmetry in the texture of the 
image. The matrix skewness is measured using the cluster 
shade: 

�# �  ∑ �� $ �  %&  %'�( ∙  ���, ���,�   (6) 

 Cluster prominence: Measures the peak distribution 
function of the image. The matrix kurtosis is evaluated: 

�� �  ∑ �� $ �  %&  %'�)
�,� ∙  ���, ��  (7) 

 Maximum probability: Every image has a pair of pixels 
which are relevant. This parameter is used to evaluate the 
most common suitable pair of pixels: 

*� � max����, ���    (8) 

 Sum of squares: The variance around the GLCM factor is 
evaluated. This involves the mean function: 

#.# �  ∑ ��  %�� ∙  ���, ���,�    (9) 

2) Correlation 

Apart from all the GLCM features extracted, correlation is 
one of the most important factors. The pixels available in the 
image are correlated with the neighbor image pixels and with 
entire dataset images. The values of correlation range from -1 
to 1. If the value is 1, the pixels are highly correlated, whereas 
if it is -1, the pixels are uncorrelated. If the value ranges from 
0.4 to 0.8 then the pixels are said to be positively correlated. 
The evolution of correlation is given by: 

���� �  ∑ �,�∙���,���/0/1

20 .21
�,�    (10) 

where %& , %'  represent the mean and 4& , 4'  the standard 

deviation of the marginal distributions of ���, ��. 

3) Histogram of Gradient Features 

HOG is used to extract the edge and shape features of road 
surfaces. The process includes:  

 Dividing the image into small cells and computing gradient 
directions for each. 

 Grouping pixels into angular bins based on gradient 
direction. 

 Weighting pixels and assigning them to respective angular 
bins. 

 Combining adjacent cells into blocks for normalization.  

 Constructing the HOG descriptor from the block 
histograms.  
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Using (11)-(12), 2D gradient is determined for every pixel 

56� , 7�8 in the given input image. Equation (13) is utilized to 

find gradient magnitude and (14) to determine the gradient 
angle: 

9:6 � ;<=56� $ 1, 7�8  ;<?�6�  1, 7��  (11) 

9:7 � ;<=56� , 7� $ 18  ;<?�6� , 7�  1�  (12) 

9:�6, 7� � @9:A� $ 9:B�   (13) 

tan5E�6, 7�8 � FGH
FGI

    (14) 

4) Deep Convolutional Neural Network Features 

Feature extraction is further enhanced using a DCNN, 
specifically the ResNet-50. 

CNNs work exceptionally in object recognition, image 
classification, and road surface analysis. They consist of three 
primary layers: 

 Convolutional Layer: Extracts feature maps from the input 
image. 

 Pooling Layer: Reduces dimensionality, retaining only 
strong features. 

 Fully Connected (FC) Layer: Uses extracted features for 
final classification. 

The CNN model for the specified task is shown in Figure 3. 
One significant distinction between the ResNet-50 architecture 
and other designs is the usage of a three-layer stack. After 
extracting all the image features, the latter are fed to the SVM 
classifier and surface identification proceeds. 

 

 
Fig. 3.  Proposed CNN model. 

D. Support Vector Machine 

The goal of SVM is to locate the best hyperplane that 
maximizes the distance on both sides of the hyperplane. SVM 
also guarantees the correctness of the hyperplane 
categorization. The identification of hybrid road surface 
conditions is accomplished using a nonlinear multiclass SVM 
classifier. 

The nonlinear transformation from the kernel functionality 
to input space determines the nonlinear-to-linear 

transformation. The hyperplane fulfills the following 
requirement and divides the data into two groups: 

J6 $  K �  0    (15) 

where 6 is the hyperplane's support vector, or the data from 
each group that are closest to the hyperplane, and J  is the 
hyperplane's normal vector.  

The dataset consists of 370,151 samples, with 70% being 
allocated for training and 30% for testing. 

IV. RESULTS AND DISCUSSION 

The proposed device uses 64bit-OS, 16gb RAM, Intel i7 
processor, and NVIDIA graphic card. The designed network is 
trained and evaluated employing DNN toolbox. The step-by-
step technique outcomes are displayed in Figure 4. The last 
three layers of ResNet-50 are replaced by fully linked, softmax, 
and classification layers. The SVM classifier showed 
promising road surface identification results. The training and 
testing of the model facilitated the identification of the desired 
outcomes. Most road surface detection techniques use the 
DCNN model. The test results demonstrate that the input image 
type greatly affects learning accuracy. 

The metrics evaluated are sensitivity, specificity, precision, 
and accuracy. These metrics are calculated using four 
notations: True Positives (TP), representing correctly predicted 
instances, False Positives (FP) representing misclassified 
instances, True Negatives (TN) representing correctly identified 
general images, and False Negatives (FN) representing 
instances misclassified as normal. The model is designed to use 
ground truth images for comparison with the given input test 
image to evaluate the metrics. 

 Sensitivity: The proportion of TP correctly identified for a 
given input, also known as recall or the TP rate. It is 
calculated as: 

#M � N�
N� � OP

     (16) 

 Specificity: The proportion of TN correctly identified, also 
known as the TN rate. It is calculated as: 

#= � NP
NP � O�

     (17) 

 Precision: The proportion of correctly predicted positive 
instances out of all predicted positives. It is calculated as: 

��MQ����� �  N�
N��  O�

    (18) 

 Accuracy: A measure combining both systematic and 
random errors, requiring both trueness and precision. It is 
calculated as: 

RQ � N� � NP
N� � NP �O�  � OP

    (19) 

Table I presents the evaluated parameters for the CNN 
model against those of the proposed DL model. The results 
indicate that the proposed model displays an improvement of 
1% across these metrics. 
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TABLE I.  PARAMETRIC EVALUATION 

Parameter/Model CNN GHR50-SVM 

Accuracy (%) 96.44 97.39 

Sensitivity (%) 96.43 97.40 

Specificity (%) 96.21 97.18 

Precision (%) 96.32 97.28 

 
Figures 5 and 6 illustrate the confusion matrix, which 

provides a visual interpretation of the model's classification 
performance. The confusion matrix compares the predicted 
values with the actual values, calculating the percentage of 
misclassified predictions. This approach is deployed to assess 
the classification accuracy of each multi-class classifier on both 
training and test data. 

 

 
Fig. 4.  The step-by-step technique outcomes of the proposed model. 

 

Fig. 5.  Confusion matrix using CNN. 

 

Fig. 6.  Confusion matrix using GHR50-SVM. 

TABLE II.  COMPARISON WITH EXISTING TECHNIQUES 

Author & Year Technique Accuracy (%) 

[27] (2012) 
Canny Edge + Hough 

Transform 
90.0 

[28] (2013) SVM 88.0 

[29] (2017) PSO + SVM 90.0 

[30] (2019) New ReLU DL approach 94.98 

[23] (2020) VGG + SVM 91.80 

[31] (2023) R101-FPN Model 92.5 

[32] (2024) 
MLP DL approach + MM 

Transform 
95.6 

Proposed GHR50-SVM 97.39 

 

The proposed model outperformed existing techniques in 
terms of accuracy, as detailed in Table II. Table II provides the 
ratio of the correctly predicted road surface conditions to the 
total number of predictions, indicating the accuracy of each 
classification. The rightmost section of Table II displays the 
proportion of the correctly identified road surface conditions 
relative to those that were misclassified, representing the 
accuracy of each true class. 

V. CONCLUSION 

Deep Convolutional Neural Networks (DCNN) possess 
strong recognition and learning capabilities. Their application 
in real-time Road Surface Classification (RSC) provides 
valuable information for maintenance teams, enabling rapid 
and effective responses to hazardous conditions. DCNN and 
Machine Learning (ML) models are highly effective in image 
recognition and classification tasks. 

In this study, feature extraction techniques, such as the 
Gray-Level Co-Occurrence Matrix (GLCM), correlation 
factors, and the Histogram of Oriented Gradients (HOG) were 
utilized to identify different road surface conditions. 
Additionally, ResNet-50 was employed for feature extraction. 
Finally, a Support Vector Machine (SVM) classifier was used 
for road surface classification. The evaluation results indicate 
that the proposed GHR50-SVM methodology achieved a 
superior accuracy rate compared to standard Convolutional 
Neural Networks (CNN), attaining an accuracy of 97.39%. The 
findings suggest that a data-driven learning model capable of 
predicting road conditions with accuracy comparable to cost-
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intensive detectors can be developed, provided that relevant 
weather and road surface data are available. This study focused 
exclusively on Deep Learning (DL) and SVM classifiers to 
demonstrate the feasibility of using data-driven models for the 
road surface condition prediction under adverse weather 
conditions. Future research should explore additional DL 
models and ensemble ML techniques to further enhance 
predictive performance. Furthermore, as road surface 
characteristics are highly influenced by weather conditions, 
additional factors related to pavement properties should be 
incorporated into future models. 
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