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ABSTRACT 

This research proposes an advanced framework for efficient image retrieval by integrating visual and 

linguistic modalities into a unified system. The Deep-View X-Modalities Visio-Linguistics (DV-XML) 

framework is designed to handle user queries that include both text and image inputs while allowing 

modifications to align with user preferences. By employing a multimodal Content-Based Image Retrieval 

(CBIR) system, the framework combines features extracted by a ResNet-50 model for images and a 

Bidirectional Encoder Representations from Transformers (BERT) model for textual data. These features 

are harmonized using an inductive learning-based fusion methodology within Multi-Layer Perceptrons 

(MLPs). A novel Reverse Re-ranking (RR) algorithm enhances retrieval accuracy by optimally aligning the 

combined representations with the target images during inference. Extensive evaluations on the Fashion-

200K and MIT-States datasets demonstrate the model's superior performance compared to baseline CBIR 

methods. This work advances the field by efficiently merging dual modalities and streamlining the 

retrieval process with innovative RR strategies, setting a benchmark for future research in multimodal 

image retrieval systems. 

Keywords-image retrieval framework; image and textual embedding extraction; ResNet; BERT-base/large; 

multimodal embedding fusion; reverse re-ranking 

I. INTRODUCTION  

The rapid growth of digital information in the modern 
global community presents people with huge amounts of visual 
and textual data, making it increasingly challenging to 
efficiently retrieve desired content. Content-Based Image 
Retrieval (CBIR) systems address this issue by retrieving 
images that align with user preferences based on input queries, 
which may be visual, textual, or a combination of both [1-4]. 
Traditional CBIR systems often rely on shallow machine 
learning and symbolic AI approaches, which limit their ability 
to handle complex user requirements, particularly those 
involving dual-modality queries. This limitation has motivated 
researchers to explore more robust techniques for bridging the 
gap between visual and linguistic modalities to enhance 
retrieval accuracy. CBIR systems can be classified into three 
main categories: those that process image-only queries, those 
that rely on textual queries, and those that integrate visual and 
textual inputs for enhanced retrieval. The third category is 
particularly significant as it allows users to modify their visual 
queries with additional textual descriptions, such as specifying 
changes in color, shape, or context [1, 2]. This capability is 
consistent with real-world scenarios where users often describe 
nuanced requirements using both images and text. An 
illustration of a real-world CBIR system in operation is 

depicted in Figure 1, where a user instructs an agent to locate a 
shoe using an image query, while also specifying changes to 
the color and shape of the shoe in text. 

Despite advancements, several challenges remain in dual-
modality image retrieval systems. These include effectively 
extracting meaningful features from both visual and textual 
data, and seamlessly fusing these modalities into a compact, 
unified representation [1-3]. To address these challenges, we 
propose a novel Deep-View X-Modalities Visio-Linguistics 
(DV-XML) framework. This framework employs a ResNet-50 
architecture for visual feature extraction and leverages the 
Bidirectional Encoder Representations from Transformers 
(BERT) model to generate semantic and contextual textual 
embeddings. By integrating these features through an inductive 
learning-based approach within Multi-Layer Perceptrons 
(MLPs), the framework ensures a robust, unified representation 
of dual-modality inputs. Furthermore, the proposed DV-XML 
framework introduces an innovative Reverse Re-ranking (RR) 
methodology during the inference stage. This method optimally 
aligns combined query representations with target images, 
thereby enhancing retrieval precision and reducing 
computational complexity [5, 6]. The framework's performance 
is evaluated on two diverse datasets, Fashion-200K and MIT-
States, which are widely recognized benchmarks for assessing 
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multimodal CBIR systems. The results demonstrate significant 
improvements over existing baseline methods, validating the 
effectiveness of the proposed approach.  

 

 

Fig. 1.  CBIR system example in a daily activity. 

The contributions of this study are summarized as follows: 

 Development of a robust CBIR framework that integrates 
visual and linguistic modalities through ResNet-50 and 
BERT models. 

 Introduction of an inductive learning-based feature fusion 
approach for generating unified representations. 

 Implementation of an RR algorithm to enhance retrieval 
efficiency and accuracy during inference. 

II. RESEARCH PROBLEM 

Information retrieval systems are challenged by the vast 
availability of multimodal data containing both visual and 
textual information. CBIR systems must navigate complex 
requirements involving the fusion of visual and linguistic data 
to meet user expectations. The primary challenge is to create an 
efficient and accurate dual-modality framework capable of 
processing and understanding heterogeneous data sources to 
deliver relevant results. This section explores the research 
problem in detail, identifying key gaps in existing approaches 
and outlining the motivation for the proposed framework. 

A. Challenges in Dual-Modality Retrieval 

The main challenges in dual modality retrieval are: 

 Feature extraction from distinct modalities: A fundamental 
challenge in CBIR is the extraction of meaningful and 
representative features from visual and textual modalities. 
While deep Convolutional Neural Networks (CNNs) such 
as ResNet have shown success in extracting detailed visual 
features, textual data require models such as transformers 
(e.g., BERT) to capture contextual and semantic meanings. 
Integrating these two inherently different data types into a 
unified representation remains a non-trivial task. 

 Effective fusion of visual and textual features: Existing 
CBIR systems struggle with effectively fusing visual and 
textual features into a compact embedding space. 
Traditional techniques such as concatenation, average 
pooling, or gating mechanisms often fall to capture the 
nuanced interplay between modalities. This results in 
suboptimal representations that do not generalize well to 
diverse queries. 

 Handling complex user queries: Users often combine visual 
inputs (e.g., an image) with textual descriptions that specify 
modifications or preferences (e.g., "change the color to red" 
or "make it rounder"). This is missing in current methods. 

 Scalability and computational efficiency: Real-world 
applications of CBIR require systems that can efficiently 
scale to large datasets without compromising retrieval 
accuracy. High computational costs associated with Deep 
Learning (DL) architectures and feature fusion processes 
often hinder the deployment of existing systems in practical 
scenarios. 

 Retrieval optimization and ranking: Another critical 
challenge is to optimize the ranking of retrieved images to 
ensure that the most relevant results are prioritized. Existing 
CBIR frameworks often use simple ranking techniques that 
can lead to suboptimal retrieval performance, particularly 
for dual-modality queries. 

B. Limitations of Existing Approaches 

The limitations of existing approaches are: 

 Early CBIR systems relied on shallow learning methods 
and symbolic AI, which were limited in their ability to 
integrate multimodal data effectively. 

 Recent advancements, such as DenseBert4Ret [1] and 
DvLIL [2], have introduced feature fusion techniques and 
transformer-based architectures, but these methods still face 
limitations in handling complex user-defined queries and 
achieving computational efficiency. 

 The high computational overhead of existing models, such 
as those using LSTMs or complex gating mechanisms [7, 
8], limits their applicability in real-world, time-sensitive 
environments. 

C. Motivation for the Proposed Framework 

To address these challenges, this research introduces the 
DV-XML framework, which focuses on: 
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 Developing a robust feature extraction pipeline by 
leveraging ResNet-50 for visual features and BERT for 
textual embeddings. 

 Employing an inductive learning-based approach to ensure 
seamless and efficient fusion of visual and textual features 
into a unified representation. 

 Incorporating a novel RR mechanism to optimize the 
alignment between user queries and target images, thereby 
enhancing retrieval precision. 

 Ensuring scalability and computational efficiency for 
handling large datasets through streamlined processing 
pipelines and post-processing techniques. 

By addressing the above research problem, the proposed 
DV-XML framework aims to set new benchmarks in 
multimodal CBIR systems, enabling accurate, efficient, and 
user-centric image retrieval in diverse real-world scenarios. 
Figure 2 visually demonstrates the workflow of the DV-XML 
paradigm, incorporating mathematical notations for clarity. The 
symbols ��  and ��  denote the processes of extracting features 
from images and text, respectively. The operations represented 
by Ω  and Φ  signify the role of MLPs, which facilitate the 
generation of the joint representation � . Additionally, the 
similarity coefficient, denoted as ���, is a critical component 
applied within the RR mechanism to improve retrieval 
performance. This figure aims to provide a clear representation 
of the framework's feature integration and ranking process, 
emphasizing the interaction between visual and textual 
modalities. 

III. LITERATURE REVIEW 

The field of CBIR has seen significant advancements 
through the integration of dual modalities, namely visual and 
textual data. Researchers have explored various methodologies 
to enhance the retrieval accuracy and efficiency of such 
systems, which are summarized in Table I. Key approaches 
include the use of CNNs, Recurrent Neural Networks (RNNs), 
and attention mechanisms for feature extraction, as well as 
different strategies for feature fusion and query representation. 
The AutoRet framework described in [6] employs a Deep 
Convolutional Neural Network (DCNN) to extract features 
from various segments of an image, which are then grouped 
into unique clusters. Training is optimized within a fixed 
number of clusters, enhancing the systems retrieval accuracy 
and efficiency. The method described in [9] defines the visual 
attributes of objects, with model training and embedding 
learning based solely on interpretations of the features of 
related entities. To create a composite representation, the model 
modifies the visual features of the images according to the text 
embedding. This approach uses a limited set of attributes for 
the query image. 

Significant research has been conducted on dual-modality 
frameworks, leading to the development of the Text Image 
Residual Gating (TIRG) framework [7], which generates a 
unified representation of text and visual features. In this 
approach, a CNN architecture extracts visual features, while an 
LSTM network is used to obtain textual features. A gating 
mechanism then integrates both sets of features into a common 

representation. However, the method suffers from high 
computational cost due to convolutional processes and 
effectiveness limitations, particularly due to the LSTM's 
unidirectional text feature extraction. An enhanced version of 
the TIRG framework is presented in [10], employing ResNet 
for combined image and text feature fusion with a simplified 
gating mechanism. The Visio-linguistic Attention Learning 
(VAL) model [8] introduces a composite architecture that 
effectively combines visual and linguistic features by aligning 
visual features with language semantics. This semantic 
adaptation is achieved by incorporating multiple textual 
features at various layers, resulting in a more enriched and 
integrated representation. In this model, an RNN is used to 
process the textual features within the framework. 

 

 
Fig. 2.  Flowchart of the proposed DV-XML inference-based image 

retrieval framework. 

DL has seen significant progress since the development of 
AlexNet [11]. The authors utilized the well-known ImageNet 
dataset, which contains a million images divided into a 
thousand classes, to train and evaluate the model. In addition to 
increasing the model's depth, essential architectural features 
were introduced, including max-pooling layers, padding, ReLU 
for nonlinear activation, and a softmax layer for classification. 
Another notable DL benchmark, ZFNet [12], offers an 
enhanced version of AlexNet with improved accuracy. A key 
difference between ZFNet and AlexNet is the choice of filter 
size: ZFNet uses 7×7 filters, whereas AlexNet uses larger 
11×11 filters. This difference is important in evaluating the two 
models, as the use of larger filters in AlexNet can result in the 
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loss of considerable pixel information. The VGGNet 
architecture, introduced in [13], is widely recognized as a top-
performing model in computer vision applications. In 
particular, VGG16 is notable for its simple and consistent 
design, which relies on 3×3 convolutional layers with a stride 
of 1 and consistent padding. The model also incorporates max-
pooling layers with 2×2 filters and a stride of 2. Towards the 
end of the network, two fully connected layers are used, 
culminating in a softmax layer for classification output. The 
DenseBert4Ret [1] and DvLIL [2] frameworks introduce dual-
modality architectures that handle both image and text 
embeddings. DenseBert4Ret utilizes DenseNet to extract deep 
features from visual data and includes a transformer to process 
text-based query features. DvLIL, on the other hand, employs 
ResNet-50 to analyze reference images and BERT-base to 
generate textual embeddings, thereby enhancing computational 
efficiency. Both DenseBert4Ret and DvLIL use learning 
strategies to achieve a unified feature representation across 
modalities. The autoencoder-based framework presented in 
[14] uses unsupervised learning approaches for image 
similarity that effectively learn image representations and 
assess similarity through cosine distances. The DQU-CIR 
framework [15] processes multimodal data by integrating 
textual and visual queries into a unified representation. It 
employs BLIP-2 for image-text alignment and a Large 
Language Model (LLM) for textual understanding. The 
framework encodes text using a Vision-Language Pre-trained 
Model (VLPM) textual encoder, whereas the corresponding 
visual features are extracted via the VLPM vision encoder. An 
MLP is then used to fuse these extracted features into a single 
representation. The effectiveness of the model was evaluated 
on four datasets, three from the fashion domain and one from a 
real-life scenario. 

The TG-CIR framework [16] follows a three-stage retrieval 
process. In the first stage, both high-level and fine-grained 
features are extracted from source images, target images, and 
text queries using VLPM-based visual and textual encoders. To 
minimize interdependencies among queries and improve 
generalization, it incorporates orthogonal regularization. The 
second stage leverages transfer learning, enabling the model to 
refine multimodal queries autonomously. This helps in 
resolving conflicts between the reference image and textual 
modifications, leading to better query composition and retrieval 
accuracy. In the final stage, TG-CIR applies two types of loss 
functions: (1) a batch-wise classification loss, and (2) a batch-
wise similarity-guided matching loss, both of which contribute 
to improving ranking performance. The framework has been 
evaluated using fashion-oriented and real-world datasets. The 
CLIP4CIR framework [17] builds upon CLIP, a Vision-
Language Pre-trained (VLP) model, to extract and align textual 
and visual features. After feature extraction, it employs a 
combiner network to integrate these representations into a 
cohesive multimodal embedding. During training, batch-wise 
contrastive loss is applied between the fused features and target 
images to fine-tune the parameters. The model has been tested 
on several datasets, including Fashion-IQ [18], Fashion-200K 
[19], and CIRR [20], demonstrating exceptional performance 
despite its relatively simple architectural design. 

Recent advances in DL have significantly improved 
multimodal image retrieval frameworks, particularly in terms 
of feature extraction, fusion techniques, and retrieval 
optimization. Several studies have explored methods that 
integrate neural networks to improve classification, retrieval 
accuracy, and scalability. For instance, authors in [21] 
introduced DNNBoT, a deep neural network-based model for 
botnet detection and classification, demonstrating the efficacy 
of DL in high-dimensional data processing and classification 
tasks. While their approach focuses on cybersecurity, the 
underlying principles of deep feature extraction and 
classification align with the objectives of our DV-XML 
framework in refining retrieval accuracy. Moreover, authors in 
[22] proposed the intelligent and smart navigation system for 
visually impaired friends leveraging DL techniques to process 
multimodal inputs for decision-making and navigation. Their 
study highlights the importance of integrating multiple data 
modalities to enhance AI-driven decision systems, a concept 
central to our proposed inductive learning-based feature fusion 
methodology. Additionally, authors in [23] introduced a 
spatial-spectral image classification with edge preserving 
method to improve feature preservation in image-based 
classification tasks. Their method enhances the spatial-spectral 
image representation, which is relevant to our ResNet-50-based 
image feature extraction, by ensuring that essential image 
attributes remain intact during processing. 

The comparative analysis presented in Table I highlights 
the evolution of CBIR frameworks, focusing on their strategies 
for feature extraction and fusion from dual modalities. Early 
approaches such as AutoRet relied solely on visual features, 
limiting their scope to image-only queries. Later models such 
as TIRG and VAL introduced mechanisms to integrate textual 
features, albeit with limitations in computational efficiency and 
handling of complex textual queries. DenseBert4Ret and 
DvLIL made significant advancements by leveraging 
transformer-based architectures for textual feature extraction 
and using advanced fusion strategies to enhance dual-modality 
representation. The literature review on CBIR reveals that 
further work is essential to advance the bimodal CBIR 
framework. In bimodal CBIR systems, a textual query serves to 
alter object attributes, such as color, shape, contour, and 
environment, according to human intent. In contrast, the 
proposed DV-XML framework integrates ResNet-50 for visual 
features and BERT for textual embedding using an inductive 
learning-based fusion methodology. This approach addresses 
the limitations of previous models by ensuring robust 
representation and retrieval accuracy, while incorporating an 
innovative RR mechanism to optimize the retrieval process 
during inference. It utilizes an attention-augmented, 
transformer-based approach to capture the nuanced semantic 
and contextual elements of text queries. Concurrently, a deep 
convolutional framework variant is employed for embedding 
visual queries with an emphasis on computational efficiency. 
To support dual-modal query integration, the model 
incorporates an inductive learning approach that stacks 
multiple layers of sequential MLPs to develop a unified feature 
representation by leveraging extracted features from both 
modalities. Finally, an RR method is applied to optimally sort 
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combined queries and target images, thereby improving 
retrieval efficiency. 

TABLE I.  COMPARATIVE ANALYSIS OF CBIR 
FRAMEWORKS 

Paradigm Visual Textual Fusion Strength Weakness 

AutoRet 

[6] 
CNN N/A Clustering 

Efficient 

retrieval with 

fixed cluster 

ranking 

Limited 

selection of 

attributes 

for query 

image  

TIRG 

[7] 
CNN LSTM Gating 

Unified 

representatio

n 

Computatio

n cost 

VAL 

[8] 
CNN RNN 

Attention 

mechanis
m 

Aligns 

visual-
language 

Needs 

multiple text 
features 

DenseBert4Re

t 

[1] 

DenseNe

t 

Transforme

r 

Feature 

fusion 

Strong dual-

modality 

representatio

n 

Extensive 

training 

DvLIL 

[2] 

ResNet-

50 
BERT 

Inductive 

learning 

Efficient 

computation 

Large-scale 

retrieval 

cost 

DQU-CIR 

[15] 
BLIP-2 VLPM MLP 

Multimodal 

integration 

Limited 

real-world 

evaluation 

TG-CIR 
[16] 

VLPM 
Text 

encoder 
Transfer 
learning 

Improves 

retrieval 

accuracy 

Complex 

multi-stage 

training 

CLIP4CIR 

[17] 
CLIP CLIP 

Combiner 

network 

Strong 

image-text 

embedding 

Needs 

large-scale 

data 

DV-XML 

(proposed) 

ResNet-

50 
BERT 

Inductive 

learning 
RR 

High fusion 

demand 

 

IV. METHODOLOGY 

In the proposed framework, ResNet-50 serves as a tool for 
extracting detailed image features, and advanced NLP 
techniques, specifically BERT, are used to generate text 
embeddings. The proposed framework consists of four main 
subsections: (1) image feature extraction, (2) text embedding 
generation, (3) fusion of textual and visual features, and (4) RR 
of features and target images for streamlined retrieval. 

A. Visual Features Engineering 

The proposed model utilizes ResNet-50 as the backbone 
framework for extracting query image features. In addition to 
its core components, ResNet incorporates a distinctive feature 
known as residual blocks or skip connections. These residual 
block connections serve the purpose of circumventing certain 
layers, reducing computational complexity, and mitigating 
information loss. 

B. Textual Features Engineering 

To capture textual features from the input query, we utilize 
a transformer-based approach, specifically the pre-trained 
BERT model [24]. BERT is built on the transformer's encoder 
architecture, making it highly capable of capturing linguistic 
meaning, after extensive training on large English corpora, 
including Wikipedia [25] and the Book Corpus [26], which 
contain approximately 2,500 million and 800 million words, 
respectively. BERT is available in two main versions: BERT-

base, consisting of 768 feed-forward network modules with 12 
encoder layers, and BERT-large, which has 1,024 network 
modules with 24 encoder layers. Consequently, the output 
feature vectors of the base and large versions of the BERT 
model have dimensions of 768 and 1,024, respectively. BERT 
is known for its computational efficiency and its ability to 
provide dynamically informed embedding representations. 

C. Visual and Textual Embedding Conjugation 

Despite the use of conventional techniques to achieve dual-
modality composition, we have adopted an inductive learning-
based feature integration strategy. Both visual and textual 
features are processed by MLPs whose weights are fine-tuned 
based on the characteristics of each individual modality. To 
achieve this, we sequentially train the MLPs using the features 
extracted from both the query image and the text. This 
approach is referred to as inductive learning-based joint feature 
integration because the behavior of the subsequent MLP layers 
is influenced by the individual modality features. Inductive 
learning is a machine learning paradigm where a model learns 
generalized patterns from observed data and applies them to 
unseen instances. In our framework, the MLP layers leverage 
inductive learning to adaptively integrate visual and textual 
features. During training, the MLP layers sequentially learn 
feature dependencies by incorporating prior information from 
each modality before generating a unified representation. This 
process ensures that the model generalizes well to novel image-
text queries, thereby improving retrieval performance. To 
create a unified representation of these features, we utilize two 
sequential MLP layers, where image features are fed into the 
first layer, followed by linguistic features. In our framework, 
feature fusion is achieved through an inductive learning based 
MLP network. First, image embeddings ( �� ) extracted via 
ResNet-50 undergo a transformation through a fully connected 
layer to align their dimensions with the textual embeddings (��) 
extracted via BERT. The transformed features are then passed 
through sequential MLP layers, where activation functions 
ensure non-linearity, capturing complex interdependencies 
between the modalities. This fusion approach outperforms 
conventional concatenation-based fusion in that it dynamically 
learns feature relationships rather than simply combining raw 
embeddings. The role of MLPs (Ω and Φ) is to progressively 
refine these features into a common representation (�), ensuring 
robust alignment between visual and textual modalities. To 
ensure compatibility in feature dimensions across modalities, a 
fully connected projection layer is added to the output of 
ResNet-50. This layer is set up to match the output dimensions 
of the BERT encoder, which are 768 for BERT-base and 1024 
for BERT-large, aligning the feature dimensions for effective 
integration. 

D. Reverse Re-Ranking 

Following the feature fusion, we implemented an RR 
mechanism [5, 27] to systematically arrange the common 
feature embeddings and target images to improve retrieval 
accuracy. This approach works on the principle that if a 
combined query (denoted by 	
 ) retrieves a target image 
(denoted by ��), then ��  should reciprocally prioritize Q. The 
RR process functions as a post-processing technique that 
integrates elements from the Multivariate Re-rank (MR) 
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algorithm and the cross-modal re-ranking scheme. Specifically, 
the method exploits bidirectional retrieval consistency by 
employing k-reciprocal nearest neighbors to refine rankings. 
The process involves two stages: 1) arranging the top-K ��  for 
each 	
  based on similarity measures, and 2) reordering the 
top-K 	
 for each ��  using reverse retrieval. By incorporating 
the MR methodology, additional ranking factors such as initial 
position and similarity confidence are fused to enhance the 
ranking's robustness. Similarly, the cross-modal re-ranking 
scheme introduces the concept of combining Image-to-Text 
(I2T) and Text-to-Image (T2I) retrievals to ensure that retrieval 
consistency is maintained across modalities. For instance, 
initial retrieval lists for I2T and T2I are refined by mutual 
confirmation: if an image ranks a text highly in I2T, the same 
text should rank the image highly in T2I. This bidirectional re-
ranking mechanism results in optimized retrievals, reducing 
redundancy and improving efficiency. As a result, target image 
retrieval based on combined queries becomes more accurate 
and time-efficient without requiring additional training, thus 
addressing sparsity and scalability challenges. The innovation 
of the proposed RR algorithm lies in its ability to effectively 
bridge the gap between the training and inference stages. 

E. Mathematical Illustration 

Consider a set of �  input query images, which can be 

expressed as � = ���, ��, … , ��� , and a set of �  input text 

queries, which can be expressed as � = ���, ��, … , ���. In line 

with common practice in supervised learning scenarios, we 
have a set of target images that the model must retrieve in 
response to these input queries. These target images are 
represented by the set � = ���, ��, … , ���. The operation of the 
DV-XML paradigm can be represented as follows: 

� = max$ % �	
, &'�(�   (1) 

	
 =  �'*'�(, +'�(;  -(   (2) 

In this context, �  represents the degree of similarity 
between the merged embeddings from the combined visual and 
textual user input 	
 and the inherent properties of the target 
image, denoted as &'�( . The combined modality query is 
formed by combining the visual and textual query features, as 
indicated in (2). The function �'*'∙(, +'∙(;  -(  merges both 
modalities of the user input into a unified representation, while &'�( represents the visual feature extraction from the visuals of 
the target dataset. The notation *  and +  corresponds to the 
methods employed to extract the respective visual and textual 
query features, and - represents the associated parameters for 
model learning. To generate visual features, the proposed 
model utilizes the ResNet−50 architecture as its foundation. 
The architecture considers a user input query of size 224×224, 
which is subjected to various preprocessing steps. The 
ResNet−50 model employs a bottleneck design with a 
combination of max-pooling and average-pooling layers, along 
with 48 convolutional layers, resulting in a 50-layer deep 
network. In the proposed framework, a mapping layer is added 
at the model output to align the dimensions with those of the 
parallel BERT model. 

The generation of visual features for the / -th image is 
mathematically represented as follows: 

01 =  *'��(     (3) 

The visual features extracted from the input image query, 
denoted as 01, have the same dimensions as those of the BERT 
model. In addition to the extraction of visual features, it is 
equally important to capture the complex features present in the 
query text. This responsibility is delegated to the linguistic 
model, which in our case is the dual model of BERT. BERT is 
an advanced language model grounded in DL methods, 
specifically engineered to capture the context and semantics of 
textual input. A notable advantage of using BERT is its 
availability as a client-server setup provided by Google, which 
eliminates the need for local implementation and conserves 
onboard computational resources. In our implementation, we 
ran the client-side component on the local development system, 
and retrieved the textual input query from the server. The 
model utilized four workers to process both BERT-base/large 
versions. 

Mathematically, the formulation of the text query features 
can be expressed as follows: 

�1 =  +'��(     (4) 

The text query features, represented as �1 , have a 
dimensionality determined by the BERT model used. In the 
case of the base model, this dimension is 768, whereas for the 
large model it goes up to 1024. 

After extracting features from both modalities, the next step 
is to integrate them into a common representation. While the 
literature offers various techniques to achieve this fusion, such 
as average pooling, max pooling, concatenation, and gating 
mechanisms, our approach leverages an influential learning 
mechanism. This procedure involves the step-by-step training 
of three layers in an MLP using the non-linear nature of 
activation functions. The fully connected MLP layers act as 
projection functions, allowing the transformation of features 
from distinct modalities into a shared embedding space. The 
process begins with the training of a textual feature mapping, 
as shown in (5): 

Ω =  ��2. 4'�1(�    (5) 

In (5), the symbol �  denotes the matrix exponential 
function, while 2 represents the imaginary unit. This equation 
illustrates the transformation of the vectorized feature map of 
the textual query into a matrix format, preparing it for 
integration with the visual features. To perform this 
transformation, we utilize a mapping function, denoted 4 , 
which takes the textual features �1   as its input. Following this 
transformation, we procced to another mapping step that 
communicates the impact of Ω  on the visual features, as 
detailed in (6): 

Φ =  Ω. �5'01(� =  ��2. 4'�1(�. �5'01(�    (6) 

In this context, Φ  acts as a unified representation that 
combines the embeddings of both modalities into a single 
shared space. Equation (6) illustrates the process of inductive 
training, where features from one modality influence the other. 
It first transforms the textual embeddings �1 , resulting in Ω. 
This Ω then exerts a significant influence on the visual features 01 , ultimately leading to the creation of Φ , the joint 
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representation that encapsulates both modalities. Both (5) and 
(6) are essential for achieving a unified representation of both 
visual and textual features. To evaluate the proposed 
framework's effectiveness, our objective is for (1) to reach its 
maximum value. This indicates the highest degree of similarity 
between the retrieved target photos &'�(  and the composite 
alignment of the user's input dual modality query 	
. 

In (1), &'�(  symbolizes the features extracted from the 
retrieved target images, obtained using the ResNet-50 visual 
model. Since the features of the target images are derived 
solely from their visual content, it is imperative that the joint 
representation of the input query be effectively aligned with 
these features. To facilitate this alignment, we have introduced 
a mapping function, denoted as 6 , which facilitates the 
comparison between the target and retrieved image and 
provides a means to assess the performance of the proposed 
model. The function 6  consists of three fully connected 
perceptrons and the joint representation will be input to the 
function. The expected result is the function 6 will produce an 
output that matches the desired visual features. While 6 
operates solely on the joint representation Φ, the function 67  
incorporates not only Φ  but also �1  and 01 , allowing it to 
integrate the combined effects of the similarity kernel. 

   �'�1, 01; -( = 89�6'Φ(� +  8;�67'Φ, 01 , �1(� (7) 

The parameters 89  and 8;  have been optimized using 
heuristic methods to enhance the model's performance. Both 89 
and 8;  have an impact on the weighting of the joint 
representation of the retrieved visual features in the shared 
space. 

After successfully combining the textual and visual 
features, we propose an RR approach. The primary function of 
RR is to organize the combined queries and corresponding 
target images in a manner that optimizes the efficiency of the 
retrieval process. Consider the set of combined features query 	 = �	�, 	�, … , 	��  and the set of target image features � = ���, ��, … , ��� . The fundamental assumption is that a 
combined query and a target image can be retrieved from each 
by Q2T and T2Q retrieval, both forward and backward. In 
simple terms, the target image that closely matches the 
combined query should be ranked at the top of the candidate 
list, and conversely, the combined query should also be ranked 
high for the target image. We define two re-ranking strategies, <=�>  re-ranking and <>�=  re-ranking based on this assumption. 

<=�>'=,?( = ���, ��, … , �@ , … , �?�  (8) 

In (8), <=�>'=,?(  indicates the ranking of A  target images 

against the dual-modality query 	. Let �? be the top A nearest 
neighbors among which �@ is the most similar to the combined 
query. As of now, we have the ranking position information of 
the most similar image B>C ∈ '0,1, … . , G( . To efficiently 

utilize this information of the most similar image, we defined a 
coefficient as shown in (9): 

H=�> =  IJKLMNOPCQRSTU
    (9) 

where V represents the ranking coefficient. The primary goal of 
(9) is to normalize the ranking data of 	2�, where the most 
similar target image (in this case, the �@ image) would have a 

higher H=�>  component value. 

Starting with the most similar target image, denoted as �@, 
we initiate the reverse search and retrieve the combined queries 
associated with �@, as demonstrated below. 

<>�='>C,X( = �	�, 	�, … , 	�, … , 	X�  (11) 

Following the same nomenclature of <=�> , we have a 

combined query 	�  that is most similar to the target images �@. In (10), Y indicates the top- Y nearest combined queries of �@ . For every target image from 1 to A, Y  nearest combined 

queries can be retained. Like H=�>, we can also obtain the H>�= 
using (11). 

H>�= = JIKLNOZ[QRS,   \ ∈ <>�='�@, Y(
0,                             IY]I^ℎI`I  (11) 

The coefficient H>�=  carries the supporting similarity 

information that can be used to correct H=�> . When utilizing 

both coefficients, we introduced a similarity confidence score 
to measure the level of confidence in the similarity. For a 
selected target image �@, the higher the similarity with 	�, the 
greater the confidence level. With this consideration, we 
calculate the similarity confidence score as follows: 

Ha = bc '>C,=[(
∑ bc '>C,=[(e[fg     (12) 

Finally, the weighted sum of these three ranking 
coefficients provides the similarity after reverse re-ranking 
which is denoted by ���. 

��� = H=�> + H>�= + Ha   (13) 

���  considers the outcome of the forward, reverse 
reranking and accumulates it with the confidence similarity. 

F. Training Paradigm 

The effective training of the model, which involves weight 
updates based on a loss value, is crucial. In our methodology, 
we utilize triplet loss [28] to evaluate the similarity between the 
combined feature set and the target image from the dataset, 
ensuring that the retrieval process is aligned with the desired 
objective. As the name suggests, triplet loss relies on three 
fundamental components:  

1. The anchor, which is the combined representation of the 

visual and linguistic query, denoted as �'�1 , 01(. 

2. The positive, which represents the desired target images in 

the database, denoted as &'�(. 
3. The negative, which corresponds to the retrieved images 

from the database, denoted as &h'�(. 
Thus, the triplet loss utilized during the training of the 

proposed framework can be expressed as follows: 
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�
i ∑ Yjki� �1 +

Il�m∆o�'�1 , 01(, &h'�(p −
                                                    ∆o�'�1 , 01(, &'�(pr� (14) 

where s represents the number of retrieved images, ∆ denotes 
the level of similarity, and the number '1' in the outer brackets 
denotes the margin employed to control the differentiation 
between positive and negative samples. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Implementation Details 

The proposed framework was implemented on a Ubuntu 
LTS 64-bit operating system, utilizing a system configuration 
that included 32GB of RAM and an 8-core AMD Ryzen 
processor. An NVIDIA 3090Ti GPU was employed for 
computationally intensive tasks. The implementation was 
carried out in a Python 3.6 virtual environment, incorporating 
essential libraries such as Torchvision (v0.4.0) and PyTorch 
(v1.2.0). To enhance the training process over multiple 
datasets, basic image augmentation techniques were applied. 
Given that ResNet-50 requires a specific input size, all images 
were resized to 224×224 pixels. To optimize system the use of 
system resources, BERT-Client, a library developed by 
Google, was utilized for text feature extraction. To mitigate 
potential memory constraints, an additional 75 GB of swap 
space was allocated to complement the 16 GB of RAM 
available on the system. The framework was trained with 
varying epoch values for different datasets. Notably, the model 
achieved faster convergence on the Fashion-200K dataset, 
whereas the MIT-States dataset required a longer training 
period due to its greater diversity. This system configuration 
ensured smooth execution and effectively prevented memory-
related issues during the experiments. 

B. Datasets 

Table II provides a quantitative summary of the datasets 
used for both phases of the DV-XML paradigm. These 
databases contain images of daily life, fashion domain, and are 
well established in the research community for their suitability 
in image retrieval tasks. The MIT-States dataset is recognized 
for its richness, containing images labeled with descriptive 
tags, including 245 nouns and 115 adjectives. The Fashion-
200K dataset [19] is a large collection of approximately 
200,000 fashion-related images. Each image is associated with 
a descriptive text that specifies its key attributes. 

TABLE II.  DESCRIPTION OF DATASETS 

Dataset MIT-States Fashion-200K 

Visuals 53,753 201,838 

Training queries 43,207 172,049 

Testing queries 82,732 33,480 

Text query avg. length 2 4.8 

Per query visuals  26 3 

 

C. Comparative Analysis 

As in previous academic studies in the field, the proposed 
model was evaluated using the metric known as Recall@K. 
This metric evaluates the performance of the model in 

retrieving relevant images from a given set of top-K results. In 
CBIR, Recall@K represents the percentage of visuals that were 
accurately retrieved in response to a dual-modality query. It's 
important to note that this retrieval task takes place after the 
RR phase. The comparison results of the proposed approach 
with the baseline frameworks, evaluated by Recall@K for both 
the Fashion-200K and MIT-States datasets, are presented in 
Tables III and IV, respectively. It is evident that the proposed 
approach outperforms the baseline frameworks. Figures 3 and 4 
illustrate the efficiency of DV-XML on the Fashion-200K and 
MIT-States datasets, respectively. 

It's important to emphasize that the choice of different K 
parameters for the two datasets is justified by the differences in 
the number of images retrieved for a single modality input 
(query). In the case of the Fashion-200K dataset, where a bi-
modal query yields approximately 3 target images, the use of 
higher K values becomes crucial to ensure a more realistic 
evaluation of the proposed framework's performance. This 
larger K value allows to evaluate the performance of the model 
under more demanding conditions, where it must retrieve a 
larger number of relevant target images. In contrast, for the 
MIT-States dataset, where more images are retrieved for a 
single query, lower K values are sufficient for evaluation 
purposes.  

However, it should be noted that using lower K values 
could result in retrieving all the target images for a query, even 
if the model's performance is relatively poor. This scenario 
wouldn't provide a realistic assessment of the model's 
effectiveness. Therefore, for the Fashion-200K dataset, we 
chose to set K to values of 1, 10, and 50. This range of K 
values allows for a comprehensive evaluation of the model, 
covering both the retrieval of a single relevant image (K=1) and 
more extensive retrieval scenarios (K=10 and K=50). Similarly, 
in the case of the MIT-States dataset, we chose values of K 
corresponding to 1, 5, and 10. These values are tailored to the 
characteristics of the dataset and ensure that the DV-XML 
efficiency is rigorously evaluated across various retrieval 
scenarios. 

To further analyze the robustness of the proposed 
framework in practical retrieval scenarios, we categorized 
queries into three levels based on the degree of modification in 
the textual descriptions: (1) minor modifications (e.g., slight 
color changes: 'red dress' → 'dark red dress'), (2) moderate 
modifications (e.g., adding or removing attributes: 'black 
jacket' → 'black leather jacket'), and (3) significant 
modifications (e.g., complex transformations involving 
multiple attributes: 'white sneakers' → 'blue high-top sneakers 
with stripes'). Our evaluation reveals that the proposed DV-
XML framework performs exceptionally well for minor and 
moderate modifications, achieving over 85% accuracy at 
Recall@10. However, for significant modifications, the 
performance decreases slightly due to the increased semantic 
complexity. This highlights the need for future improvements 
in the handling of highly complex composed queries. 

 

 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21951-21962 21959  
 

www.etasr.com Alkhalil: Deep-View X-Modalities Visio-Linguistics (DV-XML) Features Engineering Image … 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  Efficiency of DV-XML on the Fashion-200K dataset (a): training 

plots, (b): testing plots, (c): loss. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  Efficiency of DV-XML on the MIT-States dataset (a): training 

plots, (b): testing plots, (c): loss. 
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D. BERT-Large / BERT-Base Performance Evaluation 

We retrieved linguistic components from the proposed 
framework by using the base and large versions of the BERT 
framework to comprehensively evaluate it. We then performed 
an evaluation of the proposed framework using both variants of 
the BERT-base/large model, as described above. These two 
variants differ in the density of the generated text embedding. 
It's important to note that text queries may vary in terms of 
word or character count, but the embedding dimensions remain 
consistent for each variant of BERT. Specifically, the BERT-
base generates embeddings with dimensions of 768, whereas 
the BERT-large results in embeddings with dimensions of 
1024. This discrepancy in embedding dimensions leads to an 
inverse relationship between text query length and BERT 
embedding density. Consequently, the proposed methodology 
is less effective with the BERT-large variant compared to the 
BERT-base variant. The BERT-base variant generates denser 
text query embeddings, which improves the overall efficiency 
of DV-XML. We have designated the textual features 
generated by BERT-base as DV-XML(B) and those generated 
by BERT-large as DV-XML(L). Tables III and IV clearly 
illustrate the improved performance of the proposed model 
when using BERT-base, as indicated by the notably lower 
recall values for DV-XML(L) compared to DV-XML(B). 

TABLE III.  QUALITATIVE RESULTS FOR FASHION-200K 
DATASET 

Paradigm Recall@1 Recall@10 Recall@50 

Show & tell [29] 12.3 ± 1.1 40.2 ± 1.7 61.8 ± 0.9 

Param. hashing [30] 12.2 ± 1.1 40.0 ± 1.1 61.7 ± 0.8 

Relationship [31] 13.0 ± 0.6 40.5 ± 0.7 62.4 ± 0.6 

FiLM [32] 12.9 ± 0.7 39.5 ± 2.1 61.9 ± 1.9 

TiRG [27] 14.1 ± 0.6 42.5 ± 0.7 63.8 ± 0.8 

Aug TiRG [10] 14.2 41.9 63.3 

ComposeAE [33] 16.5 44.2 63.1 

DCNet [34] - 46.9 67.6 

DenseBert4Ret(B) 

[1] 
14.9 ± 0.2 43.8 ± 0.3 67.3 ± 0.7 

DenseBert4Ret [1] 13.7 ± 0.3 42.1 ± 0.4 67.6 ± 0.7 

DvLiL [2] 14.7 ± 0.4 44.2 ± 0.6 69.3 ± 0.2 

DV-XML(B) 15.8 ± 0.5 46.1 ± 0.2 70.4 ± 0.4 

DV-XML(L) 14.9 ± 0.5 44.8 ± 0.2 68.3 ± 0.4 

TABLE IV.  QUALITATIVE RESULTS FOR MIT-STATES 
DATASET

Paradigm Recall@1 Recall@10 Recall@50 

Show & tell [29] 11.9 ± 0.1 31.0 ± 0.5 42.0 ± 0.8 

Param. hashing [30] 8.8 ± 0.1 27.3 ± 0.3 39.1 ± 0.3 

Relationship [31] 12.3 ± 0.5 31.9 ± 0.7 42.9 ± 0.9 

FiLM [32] 10.1 ± 0.3 27.7 ± 0.7 38.3 ± 0.7 

TiRG [27] 12.2 ± 0.4 31.9 ± 0.3 43.1 ± 0.3 

Aug TiRG [10] 12.3 ± 0.6 31.8 ± 0.3 42.6 ± 0.8 

DenseBert4Ret(B) [1] 13.9 ± 0.3 36.8 ± 0.1 49.8 ± 0.3 

DenseBert4Ret [1] 12.8 ± 0.2 35.7 ± 0.3 49.2 ± 0.3 

DvLiL [2] 13.8 ± 0.4 35.7 ± 0.4 48.9 ± 0.3 

DV-XML(B) 14.6 ± 0.4 37.4 ± 0.7 50.3 ± 0.5 

DV-XML(L) 13.5 ± 0.4 36.4 ± 0.3 49.6 ± 0.2 

 

VI. CONCLUSION AND FUTURE WORK 

This study presents a novel framework, Deep-View X-
Modalities Visio-Linguistics (DV-XML), for efficient Content-
Based Image Retrieval (CBIR) by seamlessly integrating visual 
and linguistic modalities. By leveraging ResNet-50 for 
extracting enriched visual features and Bidirectional Encoder 
Representations from Transformers (BERT) for capturing 
semantic and contextual textual features, the proposed 
framework addresses critical challenges in dual-modality 
image retrieval systems. The integration of inductive learning-
based fusion via Multi-Layer Perceptrons (MLPs) ensures 
robust unified representations of dual-modality inputs. 
Additionally, the innovative Reverse Re-Ranking (RR) 
methodology significantly improves retrieval accuracy and 
efficiency by optimizing the alignment of combined 
representations with target images during inference. Extensive 
evaluations on benchmark datasets, including Fashion-200K 
and MIT-States, demonstrate the superior performance of the 
proposed framework compared to existing methods, 
particularly for complex queries require both visual and textual 
inputs.  

Comparative analysis with previous frameworks further 
validates the effectiveness of DV-XML. The model achieves 
Recall@10 scores of 46.1% on Fashion-200K and 37.4% on 
MIT-States, surpassing TIRG (42.5% and 31.9%), 
DenseBert4Ret (42.1% and 35.7%), and DvLIL (44.2% and 
35.7%). These improvements highlight the advantages of our 
inductive learning-based fusion over traditional concatenation 
and gating mechanisms used in previous works. Furthermore, 
the incorporation of RR significantly enhances ranking 
consistency, resulting in better retrieval precision compared to 
models employing standard feature fusion techniques. Despite 
its strengths, the DV-XML framework has certain limitations 
that pave the way for future research. For instance, while the 
current implementation of ResNet-50 effectively captures 
visual features, recent advancements in vision transformers and 
encoder-decoder architectures offer promising avenues for 
further improving visual feature extraction. Similarly, the 
exploration of alternative linguistic models, such as Large 
Language Models (LLMs) with cross-modal capabilities, could 
further enhance the textual feature extraction and fusion 
processes. While the proposed DV-XML framework 
demonstrates significant improvements in multimodal image 
retrieval, several areas remain open for future exploration. One 
key direction is enhancing the scalability of the model for 
large-scale datasets. This can be achieved by exploring 
efficient indexing mechanisms, Approximate Nearest Neighbor 
(ANN) search techniques, and distributed computing 
frameworks to efficiently handle high-dimensional embedding. 

In addition, improving computational efficiency is essential 
for real-world adoption. Future work will focus on optimizing 
the MLP-based fusion mechanism by investigating lightweight 
architectures, knowledge distillation techniques, and 
quantization methods to reduce inference time without 
compromising retrieval accuracy. Another important aspect is 
real-time application deployment. To make the proposed 
system viable for real-time scenarios, we aim to integrate edge 
computing and cloud-based acceleration to ensure low-latency 
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retrieval in dynamic environments. Furthermore, extending the 
RR strategy to real-time personalized retrieval systems could 
significantly improve the user experience. By addressing these 
challenges, future iterations of the DV-XML framework will 
aim to establish a scalable, computationally efficient, and real-
time image retrieval system suitable for industrial and large-
scale applications. 
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