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ABSTRACT 

The hydraulic conductivity of saturated soil is a critical parameter for understanding various engineering 

challenges related to groundwater. Machine learning techniques offer powerful methods to address 

complex nonlinear regression problems. This study developed three models, namely a Multilayer 

Perceptron Neural Network (MPNN), a Support Vector Machine (SVM), and a Tree Boost, to predict field 

saturated hydraulic conductivity using easily measurable soil properties, such as hydraulic conductivity, 

clay/silt ratio, soil saturation percentage, d90 of grains, liquid limit, plastic limit, soil pH, hydrocarbon 

anions, chloride ions, and calcium carbonate content. Soil samples were collected from two locations: the 

El-Nubaria and Sinai regions, located in the western delta of Egypt. To evaluate the performance of these 

models, five distinct metrics, namely Mean Squared Error (MSE), Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE), Scatter Index (SI), and Correlation Coefficient (R), were employed along 

with a Taylor diagram. Among the models tested, the Tree Boost model demonstrated exceptional 

accuracy in predicting field-saturated hydraulic conductivity, having a lower SI (0.085) compared to the 

SVM (0.192) and MPN (0.226) models. Moreover, the Tree Boost model exhibited a higher R value (0.99) 

than SVM (0.981) and MPN (0.974). The Tree Boost results were compared with those of previous models. 

The findings highlight the effectiveness of the Tree Boost model and suggest its potential as a reliable tool 

for estimating field-saturated hydraulic conductivity and generating highly accurate predictions. 

Keywords-saturated soil hydraulic conductivity; prediction; support vector machines; tree boost; multilayer 

perceptron neural network; soil properties 

I. INTRODUCTION  

Saturated hydraulic conductivity (Ksat) is a critical soil 
characteristic that affects water flow rate, soil quality, pollutant 
and chemical transport, nutrient availability, plant water 
absorption, and crop growth, and also indicates the geometry, 
dimensions, and connectivity of soil pores [1]. Ksat is a critical 
hydraulic property in agriculture, as it reflects the productive 
potential of soil [2]. Predicting heat and mass transport in soil, 
as well as in distributed hydrological modeling, is essential [3]. 
Therefore, accurate prediction of Ksat is crucial to reduce 
uncertainty in models, thus enhancing their practical 
applicability. Various methods, including empirical formulas, 
laboratory tests under steady or transient conditions in 
representative samples, tracer tests, auger hole tests, and 
pumping tests in wells, can be used to determine hydraulic 
conductivity in saturated zones [4]. A thorough examination of 
predictive techniques for saturated soils was presented in [5]. 
Due to the complexity of the phenomenon at the particle scale, 
establishing analytical relationships between the hydraulic 
conductivity of a specific soil and its governing characteristics 

is challenging, as these relationships must be simple, robust, 
and accurate. 

The objective of predicting Ksat through easily observable 
parameters is to develop models that can reliably estimate it 
without the need for complex, time-intensive, and costly 
laboratory analyses. By utilizing readily available soil variables 
such as texture (clay, silt, and sand content), bulk density, 
organic carbon content, pH, porosity, and others, there is an 
ambition to develop dependable Pedotransfer Functions (PTFs) 
or machine learning models that can estimate Ksat with high 
accuracy. This approach enhances the efficiency of soil 
management practices by providing faster, more cost-effective, 
and reliable predictions of water movement in the soil, which is 
essential for effective water management, irrigation strategies, 
environmental assessments, and land use planning. In recent 
years, there has been a notable emergence of significant and 
commendable studies that focus on predicting Ksat through the 
application of machine learning techniques. 

In [6], Support Vector Machines (SVM) and Multiple 
Linear Regression (MLR) were employed to predict the Ksat of 
sandy soil. This study focused on utilizing easily measurable 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21348-21355 21349  
 

www.etasr.com Elbisy: Predictive Modeling of Saturated Hydraulic Conductivity using Machine Learning Techniques 

 

soil properties, such as the clay/silt ratio, liquid limit, and 
chloride ion content, to estimate Ksat. This study compared 
SVM with various kernel functions (linear, radial basis, and 
sigmoid) and evaluated the model's performance using genetic 
algorithms for parameter optimization. The results showed that 
the SVM model with the RBF kernel outperformed the MLR 
models, highlighting the effectiveness of SVM in soil property 
predictions. This study showed that SVM serves as an effective 
tool for estimating Ksat, providing improved accuracy 
compared to MLR methods, particularly in intricate datasets 
such as sandy soils.  

In [7], the use of Artificial Neural Networks (ANNs) was 
investigated to enhance the estimation of Ksat in smectitic soils, 
particularly through the integration of fractal parameters 
obtained from soil particle and micro-aggregate size 
distributions. PTFs were developed for the estimation of Ksat, 
utilizing fractal parameters alongside conventional soil data, 
including bulk density, clay content, and sand content. The 
results showed that the integration of fractal parameters with 
conventional soil data can markedly improve Ksat prediction. 
ANN ensemble models, especially those utilizing fractal 
parameters, provided more accurate and reliable predictions 
than traditional methods or single ANN models. In [8], 
machine-learning-based PTFs were used to predict Ksat across 
various soil types. A large database (USKSAT), consisting of 
more than 18,000 soil samples, was used to compare four ML 
algorithms, namely K-Nearest Neighbors (KNN), SVM, 
Random Forest (RF), and Boosted Regression Trees (BRT), 
with BRT achieving the best performance. In [9], two modeling 
techniques, namely ANNs and MLR, were compared in 
predicting soil hydraulic conductivity (K). The results showed 
that ANNs were a superior method for predicting K, 
particularly across diverse soil types, due to their ability to 
model complex relationships. Although MLR models are less 
adept at capturing non-linear dependencies, they remain useful 
in scenarios where data relationships are more straightforward.  

In [10], Ksat was predicted using hybrid machine learning 
models. Various machine learning algorithms were used to 
improve prediction accuracy compared to conventional models. 
Five distinct models were created utilizing the Soil Water 
Infiltration Global (SWIG) database, which included various 
soil predictors: percentages of clay, silt, and sand, organic 
carbon content, bulk density, and water content. MLP, RF, and 
SVM were compared, along with hybrid models that integrated 
these methods. Hybrid machine learning models significantly 
outperformed individual algorithms, highlighting the 
advantages of integrating various models to enhance the 
predictions of Ksat. In [11], hydraulic conductivity was 
predicted from soil grain size distribution utilizing a Supervised 
Committee Machine Artificial Intelligence (SCMAI) model. 
This model integrates three distinct AI models, namely Larsen 
Fuzzy Logic (LFL), Least Squares SVM (LSSVM), and 
Wavelet-ANN (WANN), to enhance predictions of hydraulic 
conductivity, an essential parameter for evaluating water flow 
in porous media. The SCMAI model proved to be an effective 
tool for predicting hydraulic conductivity, delivering better 
results than traditional individual models by combining their 
outputs. 

In [12], the Ksat of agricultural soil was examined by 
applying different PTFs. These functions estimated Ksat using 
easily measurable soil properties, including particle size 
distribution, bulk density, and organic matter content. This 
study evaluated 10 PTF models, including machine learning 
algorithms such as RF and BRTs, in addition to neural 
network-based models such as Rosetta-SSC. Data were 
collected from a single agricultural field exhibiting various 
tillage treatments and differing spatial and temporal variability 
in Ksat. The results showed that machine learning-based PTF 
models, while providing estimates, generally underestimated 
the measured Ksat values, indicating a need for further 
refinement to enhance prediction accuracy. In [13], a new 
model was proposed for predicting Ksat, emphasizing the 
impact of particle size. This model extended the established 
Kozeny-Carman (KC) model by integrating the notion of 
equivalent particle size and addressing the influence of 
adsorbed water films on fine-grained soils. This approach 
sought to address the limitations of the KC model, which 
exhibits suboptimal performance for fine-grained soils due to 
the complexities associated with adsorbed water and the pore 
structure in these materials. The results showed that the 
proposed model was a more accurate and useful way to 
estimate Ksat, especially in fine-grained soils, because it takes 
into account the effects of water that has been absorbed and the 
structure of the pores. 

In [14], ML models, including Radial Basis Function 
Neural Networks (RBFNNs) and MLPNNs, and hybrid models 
combining Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) were combined with Neural Networks 
(GA-NN and PSO-NN) for predicting Ksat. This study aimed to 
evaluate the predictive performance of these models using data 
from a field study at the Bajgah Agricultural Experimental 
Station in Iran, which measured soil properties such as bulk 
density, water content, and aggregate size. The MLR model 
performed poorly, showing low correlation and high error 
values. On the contrary, the PSO-NN model achieved the best 
accuracy, with a high correlation coefficient (0.958). This 
model outperformed RBFNNs, MLPNNs, and GA-NNs, which 
also showed promising results but with slightly higher errors. 
In [15], three machine learning models, namely RF, SVM, and 
Least-Squares SVM (LSSVM), were used to study Ksat 
prediction. Ksat was predicted using a range of soil 
characteristics, such as bulk density, porosity, pH, texture, 
salinity, and sodium adsorption ratio. Performance indicators 
showed that RF was the best model for predicting Ksat, 
surpassing both SVM and LSSVM models. 

This study aimed to evaluate the effectiveness of various 
machine learning techniques, including MLP, ANN, SVM, and 
Tree Boost, in developing a more accurate and reliable model 
for predicting field saturated hydraulic conductivity (Kfield). 
The findings of this study provide valuable insights for 
managing water resources, particularly in the context of 
groundwater.  
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II. MATERIALS AND METHODS 

A.  Study Area and Data 

Soil samples were obtained from two locations in the El-
Nubaria region (Sugar Beet Areas 1 and 2), located in the 
western delta of Egypt. The soil texture of Sugar Beet Area 1 
ranges from sandy loam to loamy sand, but in Sugar Beet Area 
2, it varies from sandy loam to sandy clay loam up to 2.0 
meters below the surface. Soils in this region comprise a 
specific amount of fine gravel and gypsum at depths ranging 
from 0.40 to 0.60 m and are classified as calcareous soils. The 
second region is in Sinai, characterized by sandy and unstable 
soil. The chosen regions exhibit sandy soils that possess 
varying physical and chemical characteristics. 57 soil samples 
were collected from the El-Nubaria region and 28 soil samples 
from the Sinai region. Soil samples that showed disturbance 
were collected from designated areas and locations. Hydraulic 
conductivity was assessed at each site using the auger-hole 
method. 

The soil samples were analyzed in the laboratory to 
determine their physical and chemical properties. The soil 
samples' physical properties encompassed silt, clay, and sand 
contents, d90 of the grains, Liquid Limit (LL), and Plastic 
Limit (PL). The chemical properties of the soil samples 
encompassed soil pH, and soil Saturation Percentage (SP), as 
well as the concentrations of chloride ions, bicarbonate anions 
(HCO3), and calcium carbonate (CaCO3). A permeameter 
apparatus was employed to measure the laboratory hydraulic 
conductivity (Klab).  

The soil's clay content ranged from 0.00% to 37.4%, while 
the Kfield values varied from 0.07 m/day to 6.06 m/day. Soil 
samples from the Sinai region exhibited a higher salt 
concentration compared to those obtained from the El-Nubaria 
region.  Nobaria samples were found to have a clay content 
varying between 0.10% and 27.00%, while Sinai samples were 
found to have a clay content varying between 0.00% and 
37.4%. The d90 of the samples varied between 0.12 and 4.37 
mm for the Nobaria samples and between 0.12 and 0.34 mm 
for the Sinai samples. The field hydraulic conductivity 
measured at sample locations in the Nobaria area varied 
between 0.07 m/day and 6.06 m/day, while it varied between 
0.35 m/day and 1.39 m/day at the locations of Sinai samples. 
Hydraulic conductivity was determined in the laboratory using 
the permeameter setup and disturbed soil samples were 
collected from the two areas. Table I and Figure 1 present 
summaries of the laboratory analysis results for soil samples. 

Correlation analysis was performed to enhance 
understanding of the relationships between these variables and 
their effects on one another. Correlation values ranged between  
-1 and 1, where the negative limit (-1) signifies a strong 
negative correlation, the positive limit (+1) signifies a strong 
positive correlation, and the mid-point (0) implies no 
correlation. Table II displays the correlation matrix for the 
variables. The correlation matrix reveals several noteworthy 
relationships between the variables. HCO3 shows strong 
negative correlations with CaCO3 (-0.59), PL (-0.51). CaCO3 
demonstrates moderate to strong positive correlations with 
LL(0.82), PL (0.81), and Soil Sp (0.72). 

TABLE I.  STATISTICAL ANALYSIS OF VARIOUS RANGES OF PHYSICAL AND CHEMICAL PROPERTIES. 

 
Mean Std Dev Std Err Mean Minimum Maximum Median Mode 

Klab (M/d) 19.629 21.337 3.254 0.070 93.410 11.490 7.610 

Clay/Silt 1.346 1.250 0.191 0.000 5.100 0.940 0.000 

d90 0.993 1.362 0.208 0.120 4.370 0.330 0.330 

LL 15.695 14.485 2.209 0.000 50.600 20.300 0.000 

PL 9.085 8.791 1.341 0.000 21.340 12.460 0.000 

pH 7.502 0.222 0.034 7.100 8.100 7.500 7.500 

HCO3 4.577 1.251 0.191 2.310 7.000 4.190 4.380 

Cl 320.551 583.511 88.985 1.700 2058.200 6.600 2.100 

Soil Sp (%) 37.535 14.043 2.142 18.000 74.000 40.000 20.000 

CaCO3 20.935 18.246 2.783 1.570 54.890 19.720 3.140 

Kfield 1.020 1.202 0.183 0.070 6.060 0.650 0.600 

TABLE II.  CORRELATION MATRIX OF THE FEATURE VARIABLES. 

 
Klab Clay/Silt d90 LL PL pH HCO3 Cl Soil Sp CaCO3 Kfield 

Klab  1.00 0.02 -0.20 -0.05 -0.09 0.08 0.00 0.13 0.26 -0.03 0.18 

Clay/Silt 0.02 1.00 -0.20 -0.19 -0.18 -0.20 0.21 0.24 -0.32 -0.37 -0.11 

d90 -0.20 -0.20 1.00 0.33 0.41 -0.05 -0.25 -0.31 0.28 0.46 -0.14 

LL -0.05 -0.19 0.33 1.00 0.89 0.35 -0.49 -0.33 0.68 0.82 0.08 

PL -0.09 -0.18 0.41 0.89 1.00 0.26 -0.51 -0.34 0.58 0.81 0.23 

pH 0.08 -0.20 -0.05 0.35 0.26 1.00 -0.37 -0.23 0.51 0.38 0.30 

HCO3 0.00 0.21 -0.25 -0.49 -0.51 -0.37 1.00 0.66 -0.37 -0.59 -0.26 

Cl 0.13 0.24 -0.31 -0.33 -0.34 -0.23 0.66 1.00 -0.10 -0.52 -0.01 

Soil Sp  0.26 -0.32 0.28 0.68 0.58 0.51 -0.37 -0.10 1.00 0.72 0.26 

CaCO3 -0.03 -0.37 0.46 0.82 0.81 0.38 -0.59 -0.52 0.72 1.00 0.22 

Kfield 0.18 -0.11 -0.14 0.08 0.23 0.30 -0.26 -0.01 0.26 0.22 1.00 
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Fig. 1.  Physical and chemical properties spectrum. 

B. Methods 

ML techniques were used to find precise approximations 
that provide a robust, computationally efficient, and cost-
effective solution while reducing computational time [16]. 

 

1) Multilayer Perceptron Neural Network (MLPNN) 

The MPNN is a frequently used model that can generate a 
known output using historical data, involving three fully 
interconnected layers, an input layer, at least one hidden layer, 
and an output layer. The MPNN connects all layers using a 
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straightforward relationship, which can be expressed as 
follows:  

�� = �∑ |�� + 
|����     (1) 

where � denotes the weights, 
 denotes the biases, � denotes 
the operating function, � denotes the � th

 input of an ANN, � 
denotes the �th

 output of an ANN, and � denotes the number of 
inputs. This study used the conjugate gradient method to train 
the MPNN. To adjust the parameters, forward propagation 
(calculating loss) and backpropagation (calculating derivatives) 
were leveraged. Moreover, transfer functions, namely, sigmoid 
and linear functions, were used as activation functions for the 
hidden and output layers [17]. 

2) Support Vector Machine (SVM)  

SVM was proposed to solve pattern recognition problems. 
With the introduction of the � -insensitive loss function, the 
SVM method has been expanded to estimate nonlinear 
regression [18]. The basic concept of SVM regression is to 
nonlinearly map the original data � into a higher-dimensional 
feature space and to solve a linear regression problem in this 
feature space. The SVM regression function is: 

�(�) = ��. �(�)� + 
    (2) 

where �(�) is the nonlinear mapping function, � is the weight 
vector and 
  is the bias term. The values for �  and 
  are 
estimated by minimizing the regularized risk function. The 
regression function is [18]: 

�(�) = ∑ (�� − ��∗)�(�� , �)��� + 
  (3) 

where �(�� , �) is the kernel function,�� and ��∗ are Lagrangian 
multipliers, and the data points corresponding to �� − ��∗ ≠ 0 
are the support vectors. The radial basis kernel function (RBF) 

�(�� , �) =  (!‖#$!#‖% &'%)⁄  was used, where �& is the kernel 
parameter of the radial basis function kernel. 

3) Tree Boost Method 

The Tree Boost approach is a member of the boosted 
regression tree family of theoretical modeling techniques. 
Through the integration of a boosting technique, Tree Boost 
enhances the decision tree algorithm. Instead of constructing a 
single optimal model, the fundamental concept here is to merge 
a collection of weak models to produce a robust consensus 
model. The Tree Boost algorithm generates new decision trees 
sequentially by decreasing the residuals of the original trees. 
The procedure of constructing this sequential model is a form 
of functional gradient descent. This approach is capable of 
including both qualitative and quantitative factors in the 
regression analysis. Moreover, correlated predictive variables 
and missing data can be handled using it. Furthermore, it is 
considered to be resilient to the existence of outliers in the 
dataset, as well as to the use of irrelevant predictor variables. 
The Tree Boost model generally has three primary parameters: 
the learning rate (also known as the shrinkage parameter), the 
complexity of the tree, and the number of regression trees (tree 
size). Cross-validation techniques are employed to evaluate the 
generalization of the Tree Boost model and mitigate overfitting 
[19, 20]. 

Both the training subset, which was used to identify the 
optimal model parameters, and the validation subset were 
subsets of the training data. After the models were trained, they 
were subjected to a testing procedure to determine their 
efficacy in generalizing the acquired knowledge to previously 
unexplored cases. Approximately 70% of the entire dataset was 
randomly selected for model training, whereas the remaining 
30% was used for model testing [21]. 

III. RESULTS AND DISCUSSION 

The careful consideration of input and output variables is a 
fundamental part of the development of an ML model. A subset 
of 10 parameters (Klab, Clay/Silt ratio, d90, LL, PL, pH, HCO3, 

Cl, Soil Sp (%), and CaCO3) was chosen to develop ML-based 
models to predict the Kfield of sandy soil based on basic soil 
properties of saline and alkaline soil data. The ML-based 
models were evaluated using Mean Square Error (MSE), Mean 
Absolute Error (MAE), Root Mean Square Error (RMSE), 
correlation coefficient (R), and Scatter Index (SI). These 
statistical indicators are provided as follows: 

)*+ = 
,∑ (-� − .�)&,��    (4) 

)/+ = 
,∑ |-� − .�|,��    (5) 

0)*+ = 1
,∑ (-� − .�)&,��    (6) 

*2 = 3456
7       (7) 

0 = ∑ 89$!9:;<$=> ?7$!7@
1∑ 89$!9

:;%∑ ?7$!7@%<$=><$=>
   (8) 

where .�, -� , A, .! , and -! denote the observed value, predicted 
value, total number of data points, observations mean value, 
and predictions mean value, respectively. 

Using the MLP model, the results showed that MSE was 
0.103, MAE was 0.226, RMSE was 0.321, SI was 0.226, and R 
was 0.974 for the predicted field saturated soil hydraulic 
conductivity (Kfield) of sandy soil values. Figure 2 presents the 
scatter plot of the field-saturated soil hydraulic conductivity 
values measured and predicted by the MLP. When utilizing the 
SVM approach, the results were obtained using a 10-fold cross-
validation based on the average results obtained for test data 
(10 folds). The cross-validation method was employed to train 
and test the model to ensure that all dataset instances were 
applied in both stages.  The SVM model resulted in an MSE of 
0.074, an MAE of 0.184, an RMSE of 0.272, and an SI of 
0.192, with an R-value of 0.981. The statistical results for the 
Tree Boost were MSE of 0.014, MAE of 0.074, RMSE of 
0.120, SI of 0.085, and R of 0.99 for the predicted Kfield of the 
sandy soil.  

Figure 3 shows the relationships between the actual and 
predicted Kfield using various ML models, where a continuous 
diagonal line serves as the reference.  
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Fig. 2.  Scatter plot of the measured and predicted field saturated soil 

hydraulic conductivity of sandy soil values for ML models. 

 

Fig. 3.  Scatter plot of the measured and predicted field saturated soil 

hydraulic conductivity of sandy soil values for various ML models. 

The actual Kfield at any point along this reference line is 
identical to that predicted by the different models for a certain 

observation. If the predicted Kfield values fall below this 
reference line, the model can be regarded to be conservative. 
However, if the predicted values lie above the reference line, 
the model can be considered to have overestimated Kfield. To 
enhance the clarity of the results, a trend line can be drawn for 
comparison with the reference diagonal line. Generally, a 
model will be more accurate or more effective at predicting if 
the discrete points lie closer to the trend line. Here, the trend 
line for the Tree Boost model is proximate to the reference line, 
the trend lines for the MLP and SVM models being the second 
and third closest to the reference line, respectively. 

The Taylor diagram provides a graphical representation of 
the suitability of various ANN and SVM models based on R

2
, 

RMSE, and standard deviation. A Taylor diagram is a two-
dimensional prediction space, and actual values are positioned 
according to their degree of coordination. The standard 
deviation, RMSE, and R

2
 scores are each represented by the 

horizontal and vertical axes, circular lines, and radial lines, 
respectively. The accuracy of a model is measured by the 
proximity of each model to the actual value. The closer a 
prediction model is to the actual data, the more reliable it is. 
The GRNN model, which has a higher R

2
 score and standard 

deviation and a lower RMSE than the other models, is closer to 
the actual values and, as shown in Figure 4, is marginally more 
reliable. 

 

 

Fig. 4.  Taylor diagram visualization of ML models performance for field 

saturated soil hydraulic conductivity prediction. 

Compared to the other models, the Tree Boost model 
produced SI values that were 165.88%, and 125.87% lower 
than those of the MPNN, and SVM, respectively, as shown in 
Figure 5. The Tree Boost model exhibited superior prediction 
performance in terms of MSE, MAE, RMSE, SI, and R values, 
followed by SVM. In terms of predicting the Kfield of sandy 
soil, the results demonstrate the Tree Boost model's 
performance to be superior to that of the other models. 
Additionally, the results indicate that the Tree Boost model 
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substantially reduces the overall error and accurately predicts 
the Kfield of sandy soil. 

To validate the performance of the Tree Boost model, it 
was compared with the SVM model with an RBF as proposed 
in [6]. The results of the RMSE and R values for the two 
models demonstrate the superior performance of the Tree 
Boost model, as shown in Figure 6. 

 

 

Fig. 5.  Comparison of MLP, SVM, and Tree Boost models. 

 
Fig. 6.  Comparison of the Tree Boost model and the SVM-RBF model in 

[6]. 

IV. CONCLUSIONS 

Accurate prediction of the hydraulic conductivity of 
saturated soil is crucial to addressing groundwater-related 
issues. When reliable data are available, machine learning 
techniques can be highly effective in generating precise 
predictions. This study developed three different models to 
predict the Kfield of sandy soil, using basic soil properties that 
can be easily measured in the laboratory. Soil samples were 
collected from two locations, El-Nubaria and Sinai regions, 
located in the western delta of Egypt. The machine learning 
techniques selected for this study were MPNN, SVM, and Tree 
Boost. The accuracy of the predictions was assessed using five 
evaluation metrics, namely MSE, MAE, RMSE, SI, and R, 
along with a Taylor diagram. 

The input features for the models included Klab, clay/silt 
ratio, d90, LL, Pl, pH, HCo3, Cl, Soil Sp (%), and CaCo3. 
Among the models tested, the Tree Boost model demonstrated 
outstanding accuracy in estimating Kfield. The SI of the Tree 
Boost model (0.085) was significantly lower than that of the 
SVM (0.192) and MLP (0.226) models. Furthermore, the R of 

the Tree Boost (0.99) exceeded that of the SVM (0.981) and 
MLP (0.974) models. Compared to the SVM model with an 
RBF in [6], the Tree Boost model significantly reduced the 
prediction error. 

The Tree Boost model notably reduced the overall 
prediction error and accurately estimated the Kfield of sandy soil 
based on easily measurable basic soil properties. These 
findings highlight the superior precision and reliability of the 
Tree Boost model compared to other algorithms. The results 
suggest that the Tree Boost model is a promising tool for 
estimating Kfield with high accuracy. 
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