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ABSTRACT 

Grinding is a commonly used method for machining products that require high precision in the 

mechanical engineering industry. This study conducts multi-objective optimization of the grinding process 

for SUS440C steel on a surface grinding machine. A total of 15 experiments were designed by deploying 

the Box-Behnken method. In each experiment, the values of three cutting parameters, namely workpiece 

speed, feed rate, and depth of cutting, varied, while four objectives, involving surface roughness (Ra), 

cutting force component in the x-direction (Fx), cutting force component in the y-direction (Fy), and 

cutting force component in the z-direction (Fz), were measured. The entropy method was used to calculate 

the weights of the objectives, and the Genetic Algorithm (GA) was employed to solve the multi-objective 

optimization problem. According to the results, the optimal values of 5 m/min, 3 mm/stroke, and 0.0198 

mm were, respectively, obtained for the workpiece speed, feed rate, and depth of cut. Corresponding to 

these cutting parameter optimal values, the values attained for the Ra, Fx, Fy, and Fz objectives were 0.612 

mm, 10.126 N, 13.621 N, and 4.112 N, respectively. 

Keywords-surface grinding; SUS440C steel; multi-objective optimization; entropy method; genetic algorithm 

I. INTRODUCTION  

Grinding is a widely deployed machining process in 
mechanical manufacturing, particularly for producing high-
precision components [1-4]. However, its optimization is 
essential to fully leverage its benefits [5-7]. Numerous studies 
have focused on multi-objective optimization to ensure that 
various process parameters simultaneously achieve their 
desired values [8, 9]. Researchers have applied different 
algorithms to solve these optimization problems and have 
implemented various methods to determine objective weights. 
Given that a comprehensive review of all published research is 
not feasible, authors in [10] highlight some of the most recent 
and relevant works on the topic. The Neumaier algorithm, 
integrated into the DESIGN EXPERT V7.1.3 software, was 
utilized to optimize the multi-objective grinding process of EN-
8 steel in an attempt to simultaneously ensure the lowest 
surface roughness and highest material removal rate, with the 
weights of these two criteria having been equally chosen as 0.5 
[10]. In [11], the Neumaier algorithm was also applied to 
optimize the multi-objective grinding process of Hardox 500 
steel, and thus ensure the lowest surface roughness and highest 
material removal rate, with these two criteria weights having 
also been equally chosen. The TOPSIS algorithm was deployed 
to optimize the multi-objective grinding process of DIN 1.2379 
steel to simultaneously ensure the lowest surface roughness, 
vibration of the grinding machine spindle in the x, y, and z 
directions, and the highest material removal rate, with the 

weights of the objectives having been equally chosen as 0.2 
[12]. The DEAR algorithm was implemented to optimize the 
multi-objective grinding process of AISI 4140 steel to 
simultaneously ensure low surface roughness and high material 
removal rate, where the weights of the objectives were 
calculated using the DEAR algorithm itself [13]. In [14], the 
DEAR algorithm was also utilized to optimize the multi-
objective grinding process of SAE420 steel, with the objective 
of simultaneously ensuring the lowest surface roughness and 
vibration of the grinding machine spindle in the x, y, and z 
directions. In [15], the weights of the objectives were 
calculated using the DEAR algorithm. The PSO algorithm was 
applied to optimize the multi-objective grinding process of D2 
tool steel to simultaneously ensure the highest material removal 
rate and the smallest dimensional error, with the weights of 
these two parameters not having been clearly defined. The 
Desirability Functional Approach (DFA) was deployed to 
optimize the multi-objective grinding process of AISI 4140 
steel to simultaneously ensure the lowest cutting temperature, 
highest material removal rate, and lowest machining cost, with 
the weights of these three parameters being equally chosen as 
1/3 [16]. The meta-heuristic algorithm was employed to 
optimize the multi-objective grinding process of AISI 316 
stainless steel to simultaneously ensure the lowest surface 
roughness, smallest shape deviation, and highest material 
removal rate. Τhe weights of these three parameters were 
assigned according to the subjective viewpoint of the 
optimization problem solver [17]. Two algorithms, MOORA 
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and COPRAS, were implemented to optimize the multi-
objective grinding process of SKD11 steel, and hence 
simultaneously ensure the lowest surface roughness and highest 
material removal rate. The weights of these two criteria were 
calculated using the Entropy method [18]. The GA algorithm 
was applied to optimize the grinding process of pinus sylvestris 
material to ensure the lowest surface roughness [19]. The GA 
algorithm was employed to optimize the multi-objective 
grinding process of SKD11 steel, where the weights of the 
three objectives, including surface roughness, grinding time, 
and the deviation between the actual and desired grinding 
depth, were equally chosen as 1/3 [20]. In [21], the GA 
algorithm was deployed to optimize the multi-objective 
grinding process when grinding BK7 optical glass, with the 
weights of the surface roughness and specific energy objectives 
having not been mentioned. A summary of the above studies 
shows that many different algorithms and weight calculation 
methods have been used to optimize the multi-objective 
grinding process. However, there seems to be no research 
integrating criterion weight calculation utilizing the Entropy 
method and the GA algorithm to optimize the multi-objective 
grinding process. This gap has motivated the conduct of the 
present research. 

II. MATERIALS AND METHODS 

A. Experimental Setup 

The test specimens were made of SUS440C steel with 
dimensions of 50 mm, 30 mm, and 10 mm in length, width, and 
height, respectively. The chemical composition of some major 
elements of this steel type is summarized in Table I. An APSG-
820/8A surface grinding machine, manufactured in Taiwan, 
was used to conduct the experiments. Surface roughness was 
measured utilizing an SJ-201 surface roughness tester, 
manufactured in Japan. The force components were measured 
using a KISTLER force transducer. Figure 1 depicts the 
experimental setup. To minimize the impact of random errors 
on the measurement results, each experiment involved 
calculating the response parameters, namely, surface roughness 
and cutting force, at least three times. The final response values 
for each experiment were determined by averaging the 
consecutive measurements. 

B. Experimental Design 

In the experiments, three parameters were varied: 
workpiece speed, feed rate, and depth of cutting. These 
parameters can be easily adjusted by the machine operator [22, 
23]. Each cutting parameter was tested at three levels, coded as 
-1, 0, and +1, as shown in Table II. The values in Table I were 
chosen based on relevant references/research and the 
technological capabilities of the employed experimental 
machine [22, 23]. The experimental design followed a Box-
Behnken approach with 15 experiments, as outlined in Table 
III. This design is widely applied in optimization studies and 
mechanical research [22, 23]. 

TABLE I.  CHEMICAL COMPOSITION OF SUS440C STEEL 

C 

(%) 

Si 

(%) 

Mn 

(%) 

P 

(%) 

S 

(%) 

Cr 

(%) 

Ni 

(%) 

Mo 

(%) 

0.95-1.20  1.00  1.00  0.04  0.03 16-18  0.06  0.75 
 

(a) 

 

(b) 

 

(c) 

 

Fig. 1.  Experimental setup: (a) component, (b) force component, 

measurement system, (c) surface roughness measurement system. 

TABLE II.  INPUT PARAMETERS 

Parameter Unit Symbol 
Value at level 

-1 0 + 1 

Workpiece 

velocity 
m/min vc 5 8 11 

Feed-rate 
mm/strok

e 
f 3 5 7 

Depth of cut mm ap 0.01 0.015 0.02 

TABLE III.  EXPERIMENTAL DESIGN MATRIX 

Trial. 
Coden value Real value 

vc f ap vc, m/min f, mm/stroke ap, mm 

1 0 +1 +1 8 7 0.02 

2 0 0 0 8 5 0.015 

3 0 0 0 8 5 0.015 

4 +1 0 +1 11 5 0.02 

5 -1 -1 0 5 3 0.015 

6 0 -1 -1 8 3 0.01 

7 0 +1 -1 8 7 0.01 

8 +1 -1 0 11 3 0.015 

9 +1 0 -1 11 5 0.01 

10 -1 +1 0 5 7 0.015 

11 +1 +1 0 11 7 0.015 

12 -1 0 -1 5 5 0.01 

13 0 -1 +1 8 3 0.02 

14 -1 0 +1 5 5 0.02 

15 0 0 0 8 5 0.015 
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C. Entropy Method 

Assuming that m experiments have been conducted, and n 
output parameters have been measured at each experiment, let 
xij be the value of the jth

 output parameter at the ith 
experiment, 

with j ranging from 1 to n and i from 1 to m. The weight 
calculation for the jth

 parameters using the Entropy method is 
performed as [24-26]: 

 Step 1: Determine the normalized value for each criterion 
according to: 

�ij = �ij

��� �ij
��

	
�
    (1) 

 Step 2: Calculate the value of the entropy measure for each 
parameter j according to:  

�
 = ∑ ���
 × �����
������ − �1 − ∑ ��
���� � ×���1 − ∑ ��
���� �     (2) 

 Step 3: Calculate the weight for each parameter according 
to: 

�
 = ����∑ ��������
�     (3) 

D. Genetic Algorithm 

The GA is an optimization search technique inspired by 
biological evolution. GA simulates the process of natural 
selection, where the fittest individuals survive and pass on their 
characteristics to the next generation. In GA, everyone 
represents a possible solution to the problem to be solved, 
while through generations, GA is expected to find better and 
better solutions. The block diagram of GA includes the 
following basic components [27, 28]: 

 Initialization: Randomly generate an initial population of 
individuals. 

 Evaluation: Calculate the fitness function for everyone to 
evaluate their suitability for the problem. 

 Selection: Select individuals with high fitness to create a 
new generation. 

 Crossover: Combine the characteristics of selected 
individuals to create a new offspring. 

 Mutation: Randomly change some genes of the offspring to 
increase the diversity of the population. 

 Replacement: Replace part or all the old population with 
the new population. 

 Termination: If the termination condition is met (e.g., the 
maximum number of generations, the best fitness 
achieved), stop the algorithm, otherwise return to step 2. 

 Accordingly, the block diagram of GA is presented in 
Figure 2 [29]. 

III. RESULTS AND DISCUSSION 

Experiments were conducted in the sequence outlined in 
Table III, with the values of Ra, Fx, Fy, and Fz having been 

measured in each trial. Ra was selected as a key measurement 
parameter due to its significant impact on the product's 
performance, including wear resistance, chemical corrosion 
resistance, fatigue strength, and joint accuracy, all of which 
influence the product's lifespan. Additionally, the three force 
components, Fx, Fy, and Fz, were measured in each 
experiment, as they play a crucial role in determining surface 
waviness and the dimensional accuracy of the product [22]. 
The experimental results are outlined in Table IV. 

TABLE IV.  EXPERIMENTAL RESULTS 

Trial. 

Cutting parameter Response 

vc 

(m/min) 

f 

(mm/stroke) 

ap 

(mm) 

Ra 

(m) 

Fx 

(N) 

Fy 

(N) 

Fz 

(N) 

1 8 7 0.02 1.016 18.3 28.1 63.5 

2 8 5 0.015 0.689 10.5 25.4 22.9 

3 8 5 0.015 0.656 10.2 24.9 23.1 

4 11 5 0.02 0.637 24.6 46.4 35.5 

5 5 3 0.015 0.452 6.8 19.8 7.9 

6 8 3 0.01 0.467 11.5 32.2 8.2 

7 8 7 0.01 0.579 18.2 8.1 26.5 

8 11 3 0.015 0.573 11.1 22.1 20.2 

9 11 5 0.01 0.608 12.6 30.4 14.2 

10 5 7 0.015 0.605 12.8 5.1 9.1 

11 11 7 0.015 0.917 13.7 38.2 45.8 

12 5 5 0.01 0.764 8.4 5.4 9.1 

13 8 3 0.02 0.657 14.4 24.5 17.5 

14 5 5 0.02 0.750 12.2 5.5 11.8 

15 8 5 0.015 0.760 11.9 24.6 26.8 

 

 

Fig. 2.  Block diagram of GA. 

Based on the data illustrated in Table IV, the influence of 
the cutting parameters on the responses was plotted, as shown 
in Figures 3-6. It was observed that increasing the cutting 
parameter values increased the surface roughness. This is 
consistent with the conclusions drawn in [30-32]. However, the 
cutting parameter influence degree on surface roughness is 
different. The feeding rate has the greatest impact on 
roughness, followed by the depth of cut, whereas the workpiece 
speed has the least impact on surface roughness. 

 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21888-21894 21891  
 

www.etasr.com Mai: Combining the Entropy Method and Genetic Algorithm in the Multi-Objective Grinding Process 

 

 

Fig. 3.  Effect of cutting parameters on Ra. 

 

Fig. 4.  Effect of cutting parameters on Fx. 

For the cutting force component Fx, having increased the 
workpiece speed and feed rate increased the Fx value. This is 
also consistent with the results of [31, 32]. For the depth of cut, 
when it increased from 0.01 mm to 0.015 mm, Fx decreased. 
However, if the depth of cut continued to increase, Fx also 
increased. This can be explained by the fact that when the 
depth of cut increased from 0.01 mm to 0.015 mm, the 
"bonding" between the grinding wheel and the workpiece 
surface became stronger, causing Fx to decrease. However, if 
the depth of cut continued to increase, it would significantly 
increase the energy required to remove material, which is the 
reason for the increase in Fx [33]. 

 

 
Fig. 5.  Effect of cutting parameters on Fy. 

Regarding Fy, having increased the workpiece speed and 
depth of cut increased the former, which is also consistent with 

the results of [31, 32]. Conversely, the increase in the feed rate 
decreased Fy, although the change in Fy was not significant. 
This can be explained by the fact that when the feed rate 
increased, the "re-cutting" of the abrasive grains on the 
workpiece surface decreased, leading to a decrease in Fy [34]. 

 

 

Fig. 6.  Effect of cutting parameters on Fz. 

As all three cutting parameters increased, the cutting force 
component Fz also increased. This is understandable because 
when the three cutting parameter values increased, the cutting 
depth of an abrasive grain into the workpiece surface also 
increased, having led to an increase in the reaction force of the 
workpiece surface on the grinding wheel. This, respectively, 
caused an increase in the cutting force perpendicular to the 
workpiece surface, which is the Fz component. This result is 
consistent with the findings of [31, 32]. A brief analysis of the 
cutting parameter influence on surface roughness and the force 
components Fx, Fy, and Fz demonstrates that it is difficult to 
determine the cutting parameter values to ensure that the 
surface roughness and all three force components Fx, Fy, and 
Fz have small values. This can be briefly explained by the 
following example: When machining with a small feed rate, 
such as 3 mm/stroke, the surface roughness and the force 
components Fx and Fz have also small values, but the force 
component Fy has the biggest ones. Using another example, 
suppose that the cutting force component Fx is needed to have 
the smallest value, then machining with a medium depth of cut, 
such as 0.015 mm, is required. However, at this point, both 
surface roughness and the two remaining cutting force 
components, Fy and Fz, have relatively high values. According 
to the aforementioned examples, to ensure that both the surface 
roughness and the three cutting force components have small 
values, it is necessary to solve the multi-objective optimization 
problem. To achieve this, it is first necessary to calculate the 
objectives’ weights. Applying (1) to (3), the weights of the 
objectives Ra, Fx, Fy, and Fz were calculated as 0.3835, 
0.2211, 0.1992, and 0.1962, respectively. The next step in 
multi-objective optimization is to construct a regression 
equation that represents the relationship between the objectives 
Ra, Fx, Fy, and Fz and the cutting parameters. From the 
experimental results evidenced in Table IV, four regression 
equations, (4)-(7), were respectively constructed for the four 
objectives Ra, Fx, Fy, and Fz. The coefficient of determination 
(R2

) for evaluating the accuracy of each equation has 
corresponding values of 0.6432, 0.8578, 0.9161, and 0.9126: 
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� = 0.6817 + 0.0051 ∙ )* − 0.0021 ∙ , − 39.2083 ∙/0 − 0.0030 ∙ )*1 − 0.0093 ∙ ,1 + 621.667 ∙ /01 + 0.0079 ∙)* ∙ , + 0.7166 ∙ )* ∙ /0 + 6.1750 ∙ , ∙ /0  (4) 

2� = 33.4720 + 0.3814 ∙ )* + 1.6541 ∙ , − 5123.33 ∙/0 − 0.0509 ∙ )*1 + 0.1729 ∙ ,1 + 161667 ∙ /01 − 0.1416 ∙)* ∙ , + 136.667 ∙ )* ∙ /0 − 70.000 ∙ , ∙ /0  (5) 

24 = 91.5095 − 1.7560 ∙ )* − 18.8896 ∙ , − 4202.50 ∙/0 − 0.2759 ∙ )*1 − 0.2958 ∙ ,1 − 22333.3 ∙ /01 + 1.2833 ∙)* ∙ , + 265.00 ∙ )* ∙ /0 + 692.50 ∙ , ∙ /0  (6) 

25 = 51.9709 + 6.6564 ∙ )* − 22.5250 ∙ , − 5120.00 ∙/0 − 0.8217 ∙ )*1 + 0.9697 ∙ ,1 + 31166.7 ∙ /01 + 1.0166 ∙)* ∙ , + 310.00 ∙ )* ∙ /0 + 682.50 ∙ , ∙ /0  (7) 

The multi-objective optimization problem is expressed by 
(8), where w1, w2, w3, and w4 are the weights of Ra, Fx, Fy, and 
Fz, respectively. 

To solve (8) using the GA algorithm, certain parameters 
needed to be defined, as displayed in Table V [35, 36]. Figure 7 
presents the fitness function plot obtained when applying the 
GA algorithm to solve (8). The optimal value of the function f 
(vc, f, ap) along with the corresponding values of Ra, Fx, Fy, 
and Fz, as well as the optimal cutting parameters, are listed in 
Table VI. 

⎩⎪
⎪⎨
⎪⎪
⎧,�)* , ,, /0� = �� ∙ � + �1 ∙ 2� + �; ∙ 24 + �< ∙ 25 → >?�� , 2� , 24 , 25 > 0

⎩⎪⎨
⎪⎧ 5 B �

��CD ≤ )* ≤ 11 ( �
��C)

3 B ��
HIJKL�D ≤ , ≤ 7( ��

HIJKL�)
0.01 (>>) ≤ /0 ≤ 0.02(>>)

 (8) 

TABLE V.  GA PARAMETERS 

Parameter Value 

Population size 150 

Maximum generation 100 

Crossover probability 0.25 

Mutation probability 0.05 

Mutation parameter 4 

 

 

Fig. 7.  Fitness function plot of f. 

According to the results of the multi-objective optimization 
problem, the optimal values of the workpiece speed, feed rate, 
and depth of cut were 5 m/min, 3 mm/stroke, and 0.0198 mm, 
respectively. Correspondingly, the values of Ra, Fx, Fy, and Fz 
were 0.566 mm, 9.850 N, 11.114 N, and 3.178 N, respectively. 

To verify the optimal values found by the GA algorithm, 
experiments were conducted on three steel samples, and the 
results are depicted in Table VII.  

TABLE VI.  OPTIMAL VALUES 

Parameters Value Unit 

vc 5.0000 m/min 

f 3.0000 mm/stroke 

ap 0.0198 mm 

f(vc,f,ap) 5.231 - 

Ra 0.566 m 

Fx 9.850 N 

Fy 11.114 N 

Fz 3.178 N 

TABLE VII.  EXPERIMENTAL RESULTS WITH OPTIMIZED 
CUTTING PARAMETERS 

Test Ra (m) Fx (N) Fy (N) Fz (N) 

1 0.619 10.321 13.456 4.210 

2 0.604 10.047 13.998 4.003 

3 0.613 10.010 13.409 4.123 

 
According to the experimental results, the values of Ra, Fx, 

Fy, and Fz were 0.612 mm, 10.126 N, 13.621 N, and 4.112 N, 
respectively. The experimental values of all Ra, Fx, Fy, and Fz 
criteria were greater than those obtained by the calculated 
results; however, the difference was insignificant. Specifically, 
the difference between the calculated and experimental results 
was only 7.52% for Ra, 2.73% for Fx, 18.41% for Fy, and 
22.71% for Fz. 

IV. CONCLUSIONS 

This study conducted a multi-objective optimization of the 
grinding process for SUS440C steel. The GA algorithm and 
Entropy weight method were combined to solve this study's 
grinding process optimization problem. Using the Entropy 
method, the weights of the criteria Ra, Fx, Fy, and Fz were 
calculated as 0.3835, 0.2211, 0.1991, and 0.1962, respectively. 
Using the GA, the optimal values of the workpiece speed, feed 
rate, and depth of cut were determined to be 5 m/min, 3 
mm/stroke, and 0.0198 mm, respectively. Corresponding to 
these optimal values of the cutting parameters, the surface 
roughness (Ra) and the cutting force components Fx, Fy, and 
Fz were 0.612 mm, 10.126 N, 13.621 N, and 4.112 N, 
respectively. The combination of the GA algorithm and the 
Entropy weight method yielded highly accurate optimization 
results, with deviations between the calculated and 
experimental results of only 7.52% for Ra, 2.73% for Fx, 
18.41% for Fy, and 22.71% for Fz. These results fully satisfy 
the accuracy requirements for solving optimization problems in 
machining in general and surface grinding in particular [37]. 
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