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ABSTRACT 

This paper proposes a method for optimizing the placement and capacity of Distributed Generators (DGs) 

in distribution systems based on Deep Reinforcement Learning (DRL). The objective of the method is to 

minimize power losses, investment costs, voltage deviations, and CO2 emissions while ensuring strict 

compliance with system operating constraints. The proposed approach leverages the robust capabilities of 

DRL to handle nonlinear and complex-constrained problems, making it highly adaptable to various 

operational scenarios. Experimental results on standard distribution systems demonstrate that the 

proposed method outperforms traditional algorithms, significantly improving operational efficiency and 

enhancing the integration of renewable energy sources. This contributes to the development of smart grid 

systems and promotes sustainable energy solutions. 

Keywords-distributed generator; reinforcement learning; multi-objective optimization; carbon emission 

reduction; loss minimization 

I. INTRODUCTION  

In the context of continuously increasing global energy 
demand and growing pressure to mitigate environmental 
impacts, the integration of Distributed Generators (DGs) into 
Electric Distribution Systems (EDSs) has received significant 
attention from researchers and the power industry [1]. DGs, 
including Renewable Energy Sources (RESs) such as solar and 
wind, as well as small-scale fossil fuel-based sources, provide 
many critical benefits such as reducing power losses, 
improving voltage profiles, enhancing reliability, and reducing 
the load on transmission EDSs. However, integrating DGs into 
EDSs is not an easy task, especially when technical, economic, 
and environmental factors have to be optimized simultaneously 
[2]. One of the main challenges of this problem is to determine 

the optimal location and capacity of DGs to balance objectives 
such as minimizing power losses, reducing investment and 
operating costs, maintaining voltage quality, and reducing CO2 
emissions. Traditional optimization methods, including 
mathematical programming techniques [3] and metaheuristic 
algorithms such as the Coyote Optimization Algorithm (COA) 
[4], Salp Swarm Algorithm (SSA) [5], Genetic Algorithm (GA) 
[6], and Particle Swarm Optimization (PSO) [7], have been 
successfully applied in many studies [8]. However, these 
methods often face difficulties in handling nonlinear and 
complex search spaces or in addressing the stringent 
operational constraints in EDSs. Reinforcement Learning (RL), 
particularly Deep Reinforcement Learning (DRL) [9], has 
emerged as a powerful tool for solving complex optimization 
problems. With its ability to learn from experience and make 
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decisions based on dynamic environments, DRL has proven 
effective in tackling nonlinear and multi-objective optimization 
problems [10]. Unlike traditional metaheuristic algorithms, 
DRL does not require an explicit formulation of the objective 
function, but instead learns directly from the data and the 
environment. This is particularly advantageous in the context 
of modern EDSs, where uncertainties such as load fluctuations, 
renewable sources, and complex operational constraints pose 
significant challenges [10].  

This paper proposes an optimization method for DG 
integration based on DRL, specifically utilizing the Deep Q-
Network (DQN) model. The method is designed to 
simultaneously minimize power losses, investment costs, 
voltage deviation, and CO2 emissions while ensuring 
operational constraints such as voltage and current constraints 
in distribution systems. The proposed approach is validated on 
33-bus and 69-bus EDSs, with results demonstrating superior 
performance compared to traditional algorithms such as COA 
[11] and Nondominated Sorting Genetic Algorithm-II (NSGA-
II) [12]. The findings not only highlight the potential of 
reinforcement learning for optimizing the integration of DGs 
into EDSs but also introduce a novel approach to addressing 
nonlinear optimization problems in the power industry. 

II. PROBLEM DESCRIPTION 

The optimization problem for integrating DGs into EDSs 
aims to improve operational efficiency and minimize 
environmental impact. To achieve this, it is necessary to 
determine the optimal location and capacity of DGs so that 
technical, economic, and environmental objectives are balanced 
while adhering to the operational constraints of the system. The 
optimization problem for DG integration is formulated as a 
multi-objective function that includes the following 
components: 

 Minimizing active power losses (�loss): Reducing losses in 
the EDS to enhance operational efficiency, as in (1). 

�loss = ∑ �� ⋅
��

	


�
	�∈branches    (1) 

 Minimizing installation and operating costs of DGs (�DG): 
Optimizing the investment and operating costs of DGs, as 
in (2). 

�DG = ∑ �DG,�
�DG

��� ⋅ cost�   (2) 

 Minimizing voltage deviation (�deviation): Ensuring that the 
voltage profile remains within permissible limits while 
minimizing the voltage deviation at the nodes, as in (3). 

�deviation =
�

�bus

∑ ∣
�bus

��� �� − �base ∣  (3) 

 Minimizing CO2 emissions (�emission): Reducing emissions 
from DGs using fossil fuels, as in (4). 

�emission = ∑ �DG,�
�DG

��� ⋅ EF�    (4) 

where: 

��: Resistance of branch �. 

��: Current through branch �. 

��: Voltage at branch �. 

��: Voltage at node �. 

�base: Base voltage (1.0 p.u.). 

�DG,�: Power output of the �-th DG. 

cost�: Investment cost per MW of the �-th DG. 

EF� : Emission factor of the �-th DG (kg CO2/MW). 

The composite objective function is constructed from the 
above components with corresponding weights to balance the 
objectives: 

� = �� ⋅
�loss

�base
+ �� ⋅

�DG

�base
+  

 � ⋅

deviation


base
+ �! ⋅

"emission

"base
   (5) 

where �� , �� , � , �!  are the weights for the respective 
objectives, and �base, �base, �base, �base are the normalized values 
for power loss, cost, voltage deviation, and CO2 emissions, 
respectively. The problem must satisfy the following 
operational constraints: 

1. Voltage at nodes: �min ≤ �� ≤ �max,  ∀� ∈ nodes 

2. Current through branches: �� ≤ �max,  ∀� ∈ branches 

3. Power output of DGs: �DG
min ≤ �DG ≤ �DG

max 

4. CO2 emissions limit: �emission ≤ �max 

III. PROPOSED METHOD 

The DRL method offers significant advantages in solving 
the optimization problem of integrating DGs. Firstly, DRL has 
the ability to learn autonomously from environmental data 
without requiring an explicit formulation of the objective 
function, thereby reducing the complexity of programming and 
modeling. This is particularly beneficial when dealing with 
problems involving nonlinear search spaces or stringent 
constraints. Secondly, DRL adapts well to dynamic conditions, 
such as load variations or fluctuating power output from 
renewable sources, thanks to its ability to continuously learn 
and make optimal real-time decisions. Additionally, this 
method effectively handles multi-objective problems by 
flexibly integrating the objectives into the reward model, 
achieving a balance between minimizing power losses, costs, 
voltage deviations, and CO2 emissions. Lastly, experiments 
show that DRL not only achieves higher performance than 
traditional algorithms, but also ensures stability and better 
convergence in complex operating environments. With these 
outstanding advantages, DRL becomes a promising tool for 
integrating sustainable energy into modern power systems. 

To solve the optimization problem of DG placement and 
sizing in EDS, this paper proposes a DRL-based method. This 
DRL method leverages the power of reinforcement learning, in 
particular the DQN model, to learn how to optimize in 
nonlinear and constrained environments. DRL is a combination 
of RL and Deep Neural Networks (DNN). The DRL model is 
capable of learning optimal actions through interaction with the 
environment, using: 
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 State (&): Describes the current state of the system (e.g., 
node voltages, power losses, DG power outputs). 

 Action ( ' ): Represents the possible actions, such as 
selecting the location and capacity of DGs. 

 Reward (�): The feedback value from the environment that 
helps the model learn optimal actions (e.g., reducing power 
losses, costs, and emissions). 

 Policy ((): Determines the best action for each state. 

The proposed method consists of the following steps: 

1. Environment modeling: The distribution system is 

modeled as an environment with states (&), actions ('), 

and rewards (�): 

 State: & = )��, ��, … , �+ , �loss, �emission, , where �� , 
��,…, �+ are the node voltages, �loss is the power loss, 
and �emission is the CO2 emission. 

 Action: ' = -locations of DGs, capacities of DGs9. 

 Reward: � = −� , where �  is the value of the 
composite objective function. 

2. Applying DQN: DQN uses a DNN to approximate the Q-

value function, as in (6). 

:;&, '< = � + = ⋅ max
@A

:;&B, 'B<  (6) 

where &B is the new state after performing action ', 'B is 

the next action, and = is the discount factor. 

3. Optimization process: 

 Step 1: Initialize the initial state (&C ) and select a 
random action. 

 Step 2: Execute the action, update the state (&B), and 
calculate the reward (�). 

 Step 3: Update the DQN network using experience 
replay. 

 Step 4: Repeat until convergence. 

4. Result evaluation: 

 After training, the DQN model is used to determine the 
optimal locations and capacities of DGs. 

 The results are compared with traditional algorithms 
such as COA, SSA, and NSGA-II. 

IV. TEST RESULTS 

To evaluate the effectiveness of DRL in optimizing the 
location and capacity of DGs, experiments were conducted on 
two distribution systems: 33-bus and 69-bus. These are 
common systems in power grid optimization research and 
represent two different levels of complexity in terms of scale 
and structure. The 33-bus system has a simpler configuration 
with fewer nodes and connections, while the 69-bus system has 
a higher connection density and greater complexity, posing 

more challenges in balancing optimization objectives. The 
experiments were conducted using MATLAB software for 
power flow simulation and optimization environment 
development. The hardware used included a computer with the 
following configuration: Intel Core i7 processor (3.2 GHz) and 
16 GB of RAM. Table I provides the assumed parameters used 
to optimize the integration of DGs into the EDS. 

TABLE I.  ASSUMED PARAMETERS FOR THE 
OPTIMIZATION PROBLEM 

Parameter 33-bus 69-bus 

�load 3.72 MW 3.8 MW 

:load 2.30 MVAR 2.69 MVAR 

Number of DGs 3 3 

�DG 0.1-2.0 MW 0.1-2.0 MW 

Renewable DG 80% 80% 

Fossil DG 20% 20% 

Cost of renewable DG 80,000 USD/MW 80,000 USD/MW 

Cost of fossil DG 100,000 USD/MW 100,000 USD/MW 

CO2 emissions  

(renewable DG) 
0 kg/MW 0 kg/MW 

CO2 emissions  

(fossil DG) 
500 kg/MW 500 kg/MW 

�base 1.0 p.u. 1.0 p.u. 

�min, �max 0.95, 1.05 p.u. 0.95, 1.05 p.u. 

�loss 202.69 kW 224.89 kW 

��, ��, , � , �! 0.4, 0.3, 0.2, 0.1 0.4, 0.3, 0.2, 0.1 

�base 100 kW 100 kW 

�base 100,000 USD 100,000 USD 

�base 500 kg 500 kg 

 

A. 33-Bus Distribution System 

Figure 1 illustrates the single-line diagram of the 33-bus 
system with 37 branches, with node and line data referenced 
from [13, 14]. Table ΙΙ shows the results for the 33-bus EDS, 
demonstrating that the DRL method outperforms COA, SSA, 
and NSGA-II combined with Differential Evolution (DE) in 
optimizing the location and capacity of DGs. DRL achieves the 
lowest power loss (65.8 kW) compared to COA (71.46 kW) 
and SSA (72.45 kW) and significantly reduces the DG cost to 
the lowest level (230,000 USD) due to its ability to effectively 
optimize both the location and capacity of DGs. The voltage 
deviation of DRL (0.008 p.u.) is also the smallest, ensuring 
better voltage quality than other methods. Although the CO2 
emission level of DRL (293 kg) is comparable to other 
methods, this emission is minimal as most DGs are from RESs. 

The execution time of DRL (50 s) is higher compared to 

COA (33.16 s) and SSA (30.12 s). However, the superior 

performance of DRL in terms of power loss reduction, cost 

minimization, and voltage quality fully compensates for the 

longer computation time. This result confirms that DRL is a 

promising method, especially suitable for modern power 

systems with multi-objective optimization requirements and 

high precision demands. In the future, improving the DRL 

algorithm to reduce the execution time could enhance its 

feasibility for practical applications.  
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TABLE II.  OPTIMIZATION RESULTS FOR THE 33-BUS DISTRIBUTION SYSTEM 

Method 

Node 

(DDG-MW) 
E 

Dloss 

(kW) 

FDG 

(USD) 

Gdeviation 

(p.u.) 

CO2 

(kg) 

Time 

(s) 

COA 

14 (1.07) 

24 (0.75) 

30 (1.1) 

0.256 71.46 240,000 0.010 293 33.16 

SSA 

14 (1.05) 

24 (0.78) 

30 (1.12) 

0.261 72.45 245,000 0.015 293 30.12 

NSGA-II + 

DE 

14 (1.1) 

24 (0.72) 

30 (1.15) 

0.230 68.30 235,000 0.009 293 40.25 

DRL 

14 (1.08) 

24 (0.74) 

30 (1.11) 

0.220 65.80 230,000 0.008 293 50.00 

 

 

Fig. 1.  Single-line diagram of the 33-bus distribution system. 

Figure 2 compares the optimization methods (COA, SSA, 

NSGA-II + DE, DRL) based on key criteria: power loss, cost, 

voltage deviation, and execution time. The results show that 

DRL performs best in terms of power loss (63.50 kW), cost 

(245,000 USD), and voltage deviation (0.007 p.u.), despite 

having the longest execution time (150 s). This highlights 

DRL's superior advantages in multi-objective optimization, 

making it particularly suitable for systems requiring high 

precision. 

 

 

Fig. 2.  Comparison of algorithms for the 33-bus system. 

B. 69-Bus Distribution System 

The 69-bus distribution system, shown in Figure 3, consists 
of 73 branches and is referenced from [13, 14]. The results for 
the 69-bus EDS, as shown in Table III, indicate that the DRL 
method outperforms traditional approaches such as COA, SSA, 
and NSGA-II combined with DE in optimizing the location and 
capacity of DGs. Specifically, DRL achieves the lowest power 
loss (63.5 kW), significantly lower than COA (69.39 kW) and 
SSA (70.45 kW). Additionally, DRL ensures the lowest DG 
cost (245,000 USD) by effectively optimizing both the capacity 
and location of DGs, and it minimizes the voltage deviation to 
the smallest value (0.007 p.u.) compared to other methods. 
However, the CO2 emission level of DRL (320 kg) is 
comparable to NSGA-II with DE, but slightly higher than COA 
(293 kg) and SSA (300 kg). The main reason for this is the use 
of 20% fossil fuel-based DGs, which remains a very small 
portion when compared to the total system capacity. 

 

 
Fig. 3.  Single-line diagram of the 69-bus distribution system. 

Compared to other methods, the technical and economic 
advantages of this approach are very significant. This result 
confirms that DRL is a powerful tool with great potential for 
application in modern power grid optimization, especially in 
the context of increasingly complex and sustainability-oriented 
systems. To reduce the execution time, future research could 
focus on optimizing the algorithm or utilizing more powerful 
computing hardware. 

Figure 4 compares the performance of the algorithms 
(COA, SSA, NSGA-II with DE, DRL) on the 69-bus system 
based on criteria such as power loss, cost, voltage deviation, 
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and execution time. DRL outperforms others with the lowest 
power loss (63.50 kW), lowest cost (245,000 USD), and lowest 
voltage deviation (0.007 p.u.), demonstrating its superior 
optimization capabilities. However, DRL's execution time (150 

s) is significantly higher than other methods, reflecting the 
higher computational cost to achieve optimal technical and 
economic performance. 

TABLE III.  OPTIMIZATION RESULTS FOR THE 69-BUS DISTRIBUTION SYSTEM 

Method 

Node 

(DDG-MW) 
E 

Dloss 

(kW) 

FDG 

(USD) 

Gdeviation 

(p.u.) 

CO2 

(kg) 

Time 

(s) 

COA 

12 (1.15) 

33 (0.85) 

55 (1.2) 

0.265 69.39 255,000 0.01 293 105.16 

SSA 

12 (1.12) 

33 (0.88) 

55 (1.18) 

0.270 70.45 260,000 0.015 300 102.89 

NSGA-II + 

DE 

12 (1.18) 

33 (0.8) 

55 (1.25) 

0.240 66.80 250,000 0.009 320 120.00 

DRL 

12 (1.14) 

33 (0.84) 

55 (1.22) 

0.230 63.50 245,000 0.007 320 150.00 

 

 

Fig. 4.  Comparison of algorithms for the 69-bus system. 

In both Table II and Table III, the execution time of DRL is 
longer than other methods due to its complex training process, 
which requires multiple iterations and the use of DNNs to 
approximate the Q-value function. In particular, the 69-bus 
system's complex structure increases the convergence time. 
However, DRL's superior technical and economic performance 
fully compensates for this computational cost. 

DRL excels in each criterion thanks to a flexible reward 
model that allows simultaneous integration of objectives such 
as reducing power losses, optimizing costs, and improving 
voltage quality. Specifically, the reward model is designed to 
prioritize actions that reduce losses and costs, resulting in more 
balanced results across objectives compared to traditional 
algorithms that typically address each objective separately. 
However, DRL faces the challenge of high computational cost 
due to the DNN training process and optimization over a large 
search space. To overcome this, the algorithm can be improved 
by applying techniques to reduce training iterations, accelerate 
convergence, or utilize more powerful hardware. These 
enhancements not only reduce execution time but also increase 
the practical value of DRL, particularly in increasingly 
complex power systems. 

V. CONCLUSION 

This paper has demonstrated the effectiveness of Deep 
Reinforcement Learning (DRL) in optimizing the location and 
capacity of Distributed Generators (DGs) in Electric 
Distribution Systems (EDSs). Experimental results on the 33-
bus and 69-bus systems show that DRL outperforms traditional 
algorithms such as Coyote Optimization Algorithm (COA), 
Salp Swarm Algorithm (SSA), and Nondominated Sorting 
Genetic Algorithm-II (NSGA-II) in reducing power losses, 
optimizing investment costs, and ensuring voltage quality. 
Compared to other optimization methods, DRL does not 
require a predefined objective function, but learns 
autonomously through interaction with the environment. 
Although the training time of DRL may be longer, it provides 
more comprehensive and flexible optimal solutions. The results 
demonstrate the great potential of DRL in optimizing and 
operating modern power systems. Future research will focus on 
accelerating the training speed and expanding DRL 
applications to more complex power systems. 
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