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ABSTRACT 

This study presents GhostYOLO, an enhanced YOLO-based model for cataract detection that 

incorporates GhostConv layers to offer greater accuracy, faster processing, and less memory consumption 

for real-time diagnosis. Initially, the performance of YOLO models, namely YOLOv5, YOLOv6, YOLOv7, 

and YOLOv8, was evaluated using 788 normal and 920 cataract images, with YOLOv8n emerging as the 

best standard model with excellent precision, speed, and efficiency. GhostYOLO models were developed to 

further improve speed and accuracy. GhostYoloV8n obtained the highest accuracy, speed, and lowest 

memory usage, while GhostYoLoV7-tiny also performed well. Incorporating GhostConv layers 

substantially improved cataract detection, increasing efficiency and real-time usage. Real-time tests using a 

Jetson Nano board demonstrated its efficiency, with 33.5 FPS in live detection, simplifying diagnosis. 

GhostYoloV8n, with only 1.6 million parameters, is a small but powerful cataract detection tool that allows 

for faster and more precise medical intervention. This study highlights the benefits of including GhostConv 

layers in YOLO models, making cataract diagnosis more accurate, efficient, and scalable for clinical 

applications. 
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I. INTRODUCTION  

Cataracts [1, 2], which are defined by the clouding of the 
eye's natural lens, are one of the main causes of blindness 
globally, disproportionately affecting the elderly [3, 4]. This 
disorder occurs when proteins in the lens clump together, 
obstructing light flow and resulting in blurred or distorted 
vision. Common symptoms include hazy vision, increased 
sensitivity to light, and difficulty seeing in low-light situations 
[5]. These symptoms have a significant influence on daily tasks 
such as reading, driving, and recognizing faces, lowering the 
quality of life of those affected [6]. Cataracts become more 
common as people age, making them an important public 

health concern in older populations. The World Health 
Organization (WHO) has identified cataracts as a major cause 
of global eyesight loss [7-9]. Cataracts can often be treated 
surgically, with the clouded lens removed and replaced with an 
artificial intraocular lens. Early diagnosis is critical to prevent 
serious vision damage, as timely surgical surgery can 
significantly improve visual acuity and patient satisfaction [10, 
11]. Despite the availability of viable therapies, millions of 
people remain blind, mainly in low- and middle-income 
countries, due to a lack of diagnostic and surgical services. This 
demonstrates the critical need for cost-effective and scalable 
solutions to overcome the cataract care gap.  
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Recent advances in Artificial Intelligence (AI) and 
computer vision have altered the landscape of cataract 
detection and management [12, 13]. AI-powered diagnostic 
techniques, trained on large clinical image datasets, allow the 
early and precise detection of cataracts, frequently 
outperforming traditional diagnostic approaches in terms of 
speed and precision [14, 15]. These technologies not only 
provide consistent and objective assessments but can also be 
integrated into portable devices and used in rural or 
underserved areas. These improvements enhance the efficiency 
of cataract screening, expand access to care, and have the 
potential to drastically reduce the global burden of cataracts 
and improve vision outcomes for millions of people around the 
world. Machine learning algorithms have transformed the field 
of ophthalmology by allowing for more accurate and efficient 
detection of cataracts. Early diagnosis with these automated 
devices is critical because it allows for quick intervention, 
reducing the risk of complications and increasing long-term 
patient outcomes. Furthermore, these AI-powered solutions 
alleviate the pressure on healthcare workers, allowing them to 
focus on complex cases that require their expertise. 

YOLO (You Only Look Once) object identification models 
[16] have emerged as important tools in medical imaging, 
particularly for real-time cataract detection. Known for their 
unusual mix of speed and precision, YOLO models perform 
object recognition in a single pass through the neural network, 
making them very efficient for real-time applications. This skill 
is crucial in cataract screening, as rapid analysis allows timely 
decision-making in clinical workflows. The versatility of 
YOLO models in numerous imaging modalities, including slit-
lamp photography, fundus imaging, and anterior segment 
scans, strengthens their importance in a wide range of 
healthcare settings. Their implementation not only improves 
diagnostic speed but also reduces total screening costs by 
streamlining procedures. Despite these benefits, traditional 
YOLO models have drawbacks when used in resource-
constrained devices such as portable imaging equipment and 
wearable sensors. These devices, which are frequently utilized 
in rural or underserved areas, necessitate models that are 
optimized for processing speed and fewer computing resources 
while preserving accuracy. To solve this issue, improvements 
in hardware-accelerated solutions and lightweight model 
architectures have been proposed. By combining efficient 
YOLO variations with portable diagnostic instruments, 
healthcare providers can offer high-quality cataract screening 
to groups who have previously lacked access to specialized 
care. This combination of AI-powered diagnostics and 
accessible hardware solutions is a huge step toward egalitarian 
healthcare, improving vision care results on a worldwide scale.  

Various YOLO-based approaches have been explored for 
cataract detection. In [17], eye lens recordings were used for 
cataract detection using YOLOv3 for precise lens localization 
and color space conversion for cataract classification. The 
dataset included 76 eyes from 38 patients, totaling 1,520 
images divided into training, validation, and testing (7:2:1 
ratio). This method achieved 94% accuracy and 93.88 % F1 
score on clinical test data. In [18], the focus was on Diabetic 
Retinopathy (DR) detection in the Saudi Arabian population, 
where existing systems suffer from high computational costs 

and dataset imbalances. A low-complexity deep learning model 
was developed using YOLOv7 for feature extraction and the 
Quantum Marine Predator Algorithm (QMPA) for feature 
selection. The MobileNet V3 model achieved 98.0% and 
98.4% accuracy on the APTOS and EyePacs datasets, 
respectively, requiring fewer computational resources and 
making it suitable for mobile applications in healthcare. In 
[19], early cataract detection was performed using smartphone-
based slit-lamp images. YOLOv3 localized the nuclear region 
of the ocular lens, and ShuffleNet combined with an SVM 
classifier rated cataract severity. The model achieved 93.5% 
accuracy, 92.3% F1 score, and 95.4% Kappa. The system was 
designed for rapid evaluation (29 ms per image), offering a 
low-cost solution for cataract screening in resource-limited 
settings. In [20], YOLOv8 was used for cataract detection, 
achieving 96.1% accuracy and outperforming other models, 
such as VGGNet, AlexNet, and ResNet50, in both speed and 
accuracy, making it suitable for real-time applications. In [21], 
a system combined a camera module and a Raspberry Pi 4B 
with YOLOv5 to detect eye conditions in cats [22], including 
glaucoma, cataracts, and cherry eyes, achieving 90% accuracy 
across all disease classes and providing insights into improving 
animal health diagnostics.  

All the studies on cataract diagnosis using YOLO models 
achieved great accuracy but sometimes battled with 
computational efficiency and applicability for real-time 
deployment, particularly on resource-limited devices. Many 
versions require substantial computing power, which limits 
their usefulness in portable or low-cost medical installations. 
GhostYOLO bridges this gap by using GhostConv layers, 
which improve feature extraction while lowering 
computational cost. 

II. METHODOLOGY 

This research introduces GhostYOLO models, an advanced 
version of the YOLO framework designed to improve cataract 
detection. By integrating GhostConv layers, GhostYOLO 
models achieve higher precision, faster speeds, and lower 
memory usage. These models address current limitations in 
cataract screening with improved real-time performance. The 
study evaluates various YOLO models, such as YOLOv5, 
YOLOv6, YOLOv7, and YOLOv8, using a dataset of 788 
normal and 920 cataract images, finding YOLOv8n to be the 
best standard model. GhostYOLO variants were developed and 
rigorously tested to improve cataract detection accuracy. 
GhostYOLO models greatly improve cataract detection, 
helping doctors diagnose and treat cataracts more effectively. 
The compact and efficient design of the proposed system 
makes it suitable for real-time use, improving patient outcomes 
with rapid and accurate detection. As shown in Figure 1, the 
proposed framework begins with a dataset comprising 1,708 
fundus images (788 normal and 920 cataracts). The dataset is 
split into training (80%), testing (10%), and validation (10%) 
subsets. The proposed model is then trained and validated using 
this dataset. Then, the model is deployed on a Jetson Nano 
board, equipped with a Lenovo CMOS camera. The Jetson 
Nano processes real-time input, and the output, displayed on an 
attached desktop, indicates whether the image represents a 
normal or cataract condition, along with a confidence score. 
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Fig. 1.  Overview of the proposed approach. 

A. Dataset  

This study used a dataset from the Roboflow Dataset 
Repository [23] that consists of 427 images. These were 
divided into 343 images for the training set, 42 for the 
validation set, and the remaining for testing. Figure 2 provides 
training image samples. To ensure diversity, the dataset 
includes images with varying models, angles, resolutions, sizes, 
and orientations. However, the dataset initially exhibited class 
imbalance, with more images in the normal than in the cataract 
class. To mitigate this issue and enhance model performance, 
image augmentation was employed, expanding the dataset from 
427 to 1,708 images using the Roboflow augmentation tool. 
Techniques such as random horizontal flipping, rotation, and 
horizontal and vertical shearing (8° and 9°, respectively) were 
applied. After augmentation, the dataset comprised 920 cataract 
images and 788 normal images. The dataset was then split into 
training (80%), validation (10%), and testing (10%) subsets. 

 

 

Fig. 2.  Sample training images of cataract eyes. 

B. Proposed Model 

Object detection models have made significant advances in 
the past decade, with the evolution of the YOLO [24] series 
being a key development. YOLO reframed object detection as 
a single-pass regression problem, allowing for simultaneous 
prediction of bounding boxes and class probabilities, 
improving both speed and accuracy. Since its inception, YOLO 
has evolved rapidly. YOLOv2 [25] added batch normalization 

to improve convergence and reduce overfitting, increasing 
mAP by 2%. YOLOv3 [26], featured a deeper architecture, 
multiscale predictions, and residual connections, further 
enhancing accuracy while maintaining real-time speed. 
YOLOv4 [27] was optimized for both speed and accuracy. 
YOLOv5 [28] became popular for its efficiency and user-
friendly design. Later versions, such as YOLOv6 [29], 
designed for edge devices, and YOLOv7 [30, 31], focused on 
optimizing real-time detection with novel strategies, such as 
compound model scaling. YOLOv8 [32], supports tasks such 
as object detection, segmentation, and classification. 
YOLOv8n, the nano version, introduces the c2f module and a 
decoupling head technique, resulting in faster detection speeds 
and higher accuracy.  

Similarly to YOLOv8, the proposed model, shown in 
Figure 3, consists of three components: the backbone, neck, 
and head. The backbone is responsible for feature extraction 
from input images, the neck acts as a transition layer, and the 
head generates predictions based on refined features. In the 
proposed architecture, the backbone includes convolutional 
layers, GhostConv layers, C3Ghost blocks, and SPPF (Spatial 
Pyramid Pooling Fast). Convolutional layers extract spatial 
features by applying filters to the input image and detecting 
patterns.  

 The GhostConv module splits convolution operations into 
two parts: the first performs traditional convolution and the 
second uses simple operations on feature maps, reducing 
computation and increasing efficiency. 

 C3Ghost involves the use of ghost convolutional layers 
within a cross-stage structure.  

 SPPF captures multi-scale information by applying max-
pooling to grids of different sizes, enhancing feature 
extraction. 
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 The neck consists of 12 layers that combine FPN (Feature 
Pyramid Network) and PAN (Path Aggregation Network). 
This combination transfers spatial features across layers, 
improving object detection at different scales and enabling 
precise target identification regardless of size. 

 The head then identifies object categories and outlines them 
with bounding boxes based on the extracted features.  

 

  

Fig. 3.  Proposed model architecture and its blocks. 

The GhostConv block begins by extracting basic features 
using the first convolution and then concatenates them with 
features from a secondary pathway. A second convolution 
refines the feature set, enhancing the model's classification 
ability. The C3Ghost module includes three GhostConv layers 
and multiple bottleneck modules, using lightweight 
convolution techniques to generate "ghost" feature maps. This 
approach reduces computational cost while maintaining 
effective feature extraction. The SPPF block further improves 
detection by optimizing multi-scale pooling, ensuring efficient 
processing and higher precision. Standard YOLO models face 

significant computational and memory demands, making real-
time processing problematic on resource-constrained platforms. 
GhostYOLO addresses these limits by including lightweight 
components such as GhostConv layers, which reduce 
complexity while preserving speed, making it perfect for real-
time applications.  

III. RESULTS AND DISCUSSION 

All tests were carried out on a system running Ubuntu 
20.04 with Python 3.8, PyTorch 1.10.0-GPU, CUDA 11.3, and 
CUDNN 8.2.2, ensuring compatibility and leveraging GPU 
acceleration for efficient training and testing. The models were 
trained using pre-trained weights and maintaining consistent 
configurations across all of them. The training parameters 
included 300 epochs, a batch size of 8, 4 workers, a momentum 
of 0.95, and a learning rate of 0.001. The experimental setup 
utilized the Nvidia Jetson Nano board, a compact edge 
computing platform to develop the cataract detection and 
classification system. Using Jetson Nano hardware 
acceleration, the system was designed for real-time inference 
tasks. 

A. Evaluation Metrics 

Some commonly used metrics for evaluating the 
effectiveness of detection models include Precision (P), Recall 
(R), mean Average Precision (mAP), and F1 score (F1). The 
formulas for P, R, F1, and mAP are as follows: 
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These metrics are calculated based on True Positives (TP), 
False Positives (FP), and False Negatives (FN). TP represents 
the number of objects that have been correctly identified, while 
FP denotes the number of incorrectly detected objects. FN 
refers to the number of incorrectly undetected objects. The sum 
of TP and FP corresponds to the overall number of detected 
objects, and the sum of TP and FN represents the total number 
of actual objects. The F1 score is the harmonic mean of 
precision and recall. Precision refers to the ratio of TP to the 
total number of identified objects, while recall refers to the 
ratio of TP to the total number of actual objects. N represents 
the total number of classes in the test sample, and the 
Precision-Recall (P-R) curve area is known as average 
precision (AP). The average number of APs for different 
classes is called mAP. 

B. Simulation Results 

The YOLO family has advanced significantly from 
YOLOv5 to YOLOv8, enhancing both speed and accuracy in 
real-time object detection. YOLOv5 introduced modular 
variants (nano, small, medium, large, and extra-large) for 
different performance needs. YOLOv6 optimized training and 
inference for diverse applications. YOLOv7 added more 
powerful layers and models, including lightweight versions 
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such as YOLOv7-tiny. YOLOv8 continues this trend with 
variants ranging from nano to extra-large, offering state-of-the-
art feature extraction and performance improvements for 
various real-time applications.  

Simulation research compared the performance of various 
YOLO models (YOLOv5, YOLOv6, YOLOv7, and YOLOv8) 
on the dataset of cataract images, and Table I shows the results. 
Each model variant, nano (n), small (s), medium (m), large (l), 
and extra-large (x), is compared based on the number of layers, 
trainable parameters, GFLOPS (giga floating-point operations 
per second), precision, recall, mAP50 (mean average precision 
at 50% IoU), FPS (frames per second) speed, and memory 
usage during inference (in MB). YOLOv5n achieved fast speed 
(153.6 FPS), high precision (0.938), and low memory usage 
(6.3MB), while larger models such as YOLOv5x and 
YOLOv8x offered higher accuracy but slower speeds. 
YOLOv8n stands out with the highest precision (0.962), quick 

speed (175.3 FPS), and low memory consumption, making it 
the best standard model for cataract detection across all YOLO 
frameworks tested. 

Table II compares cataract diagnosis models, specifically 
YOLO nano models and GhostConv-enhanced YOLO nano 
models. The comparison covers factors such as the number of 
layers, parameters, GFLOPS, precision, recall, mAP50, FPS 
performance, and memory usage in MB. All YOLO nano 
models with the GhostConv framework for cataract detection 
showed superior performance compared to standard YOLO 
models. The enhanced GhostConv models, which have more 
layers and parameters, also demonstrated improved 
computational efficiency with higher GFLOPS. Among these, 
GhostYoloV8n had 491 layers and 1.6 million parameters, 
achieving the highest recall (0.919) and precision (0.981), with 
a mAP50 of 0.954 at 191.6 FPS while utilizing only 3.7 MB of 
memory. 

TABLE I.  PERFORMANCE OF VARIOUS YOLO MODELS IN THE DETECTION OF CATARACT  

Model Layers Parameters GFLOPS Precision Recall mAP50 Speed (FPS) Memory (MB) 

YoloV5n 262 2508854 7.2 0.938 0.856 0.932 153.6 6.3 

YoloV5s 262 9122966 24.0 0.917 0.86 0.925 125.3 18.5 

YoloV5m 339 25066294 64.4 0.908 0.881 0.918 85.2 50.5 

YoloV5l 416 53164886 135.3 0.89 0.929 0.933 55.0 106.8 

YoloV5x 493 97201334 246.9 0.804 0.887 0.893 35.5 194.9 

YoloV6n 195 4238342 11.94 0.931 0.922 0.925 140.3 8.7 

YoloV6s 195 16306230 44.2 0.899 0.905 0.91 155.7 32.8 

YoloV6m 273 51997798 161.6 0.878 0.811 0.856 105.1 104.3 

YoloV6l 351 110896278 391.9 0.578 0.672 0.66 75.6 222.2 

YoloV7-tiny 255 70819527 13.2 0.892 0.897 0.914 167.4 7.2 

YoloV7x 407 37200095 105.1 0.789 0.89 0.929 105.3 65.3 

YoloV7 459 6016735 188.9 0.88 0.871 0.839 45.8 151.8 

YoloV8n 225 3011238 8.2 0.962 0.915 0.948 175.3 5.3 

YoloV8s 225 11136374 28.6 0.941 0.906 0.947 135.8 22.5 

YoloV8m 295 25857478 79.1 0.931 0.863 0.931 95.0 52.0 

YoloV8l 365 43631382 165.4 0.92 0.944 0.943 65.3 87.6 

Yolov8x 365 68154534 258.1 0.896 0.904 0.946 40.2 136.7 

TABLE II.  PERFORMANCE OF VARIOUS YOLO NANO MODELS & NANO WITH GHOSTCONV IN THE DETECTION OF CATARACT 

Algorithm Model Layers Parameters GFLOPS Precision Recall mAP50 Speed (FPS) Memory (MB) 

Yolo nano frameworks for 

cataract detection  

YoloV5n 262 2508854 7.2 0.938 0.856 0.932 153.6 6.3 

YoloV6n 195 4238342 11.94 0.931 0.922 0.925 140.3 8.7 

YoloV7-tiny 255 70819527 13.2 0.892 0.897 0.914 167.4 7.2 

YoloV8n 225 3011238 8.2 0.962 0.915 0.948 175.3 5.3 

Yolo nano with GhostConv 

frameworks for enhanced 

cataract detection 

GhostYoloV5n 529 2,200,340 5.1 0.971 0.894 0.946 169.2 5.8 

GhostYoloV6n 613 3,891,150 23.5 0.946 0.897 0.953 154.7 32.5 

GhostYoloV7-tiny 759 17,912,618 34.5 0.952 0.948 0.965 161.3 36.5 

GhostYoloV8n 491 1,606,624 8.6 0.981 0.919 0.954 191.6 3.7 

 
The confusion matrix in Figure 4 offers a detailed 

breakdown of GhostYoloV8n's predictions. The F1-Confidence 
curve in Figure 5 demonstrates the balance between precision 
and recall at various confidence thresholds, with a high F1 
score indicating that the model is highly effective in detecting 
both cataract and normal eye cases, underscoring its potential. 
The Precision-Confidence curve in Figure 6 shows consistently 
high precision, suggesting that when the model predicts 
cataracts, it is highly likely to be correct, minimizing FP. The 
Precision-Recall curve in Figure 7, crucial for evaluating 
performance on imbalanced datasets, reveals a large area under 
the curve, indicating that the model maintains a strong balance 
between precision (accurate positive predictions) and recall 

(identifying true positives), ensuring proper identification of 
cataracts without overlooking normal eyes. The Recall-
Confidence curve in Figure 8 reflects the model's recall 
capabilities across different confidence levels, with high recall 
values indicating the model's reliability in detecting most 
cataract cases, which is vital for timely diagnosis and treatment 
in medical settings. Overall, these figures provide a 
comprehensive summary of the GhostYoloV8n model's 
performance across key metrics, showcasing its strong ability 
to accurately distinguish between normal and cataract-affected 
eyes. Figure 9 presents sample results demonstrating cataract or 
normal with the labeled box. 
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Fig. 4.  Confusion matrix. 

 
Fig. 5.  F1-Confidence curve. 

 

Fig. 6.  Precision-Confidence curve. 

Table III shows that the proposed model achieved superior 
performance compared to existing methods, highlighting its 
suitability for real-time implementation. This comparative 
analysis further supports the efficiency and robustness of the 
GhostYoloV8n model for cataract detection in practical 
applications. The GhostYoloV8n model leverages advanced 
techniques and enhanced design, improving detection 
capabilities and establishing itself as a reliable tool for 
healthcare professionals in real-world settings. The 

GhostYoloV8n model consistently outperforms other 
approaches in key metrics such as accuracy and speed. This 
makes it especially suitable for clinical environments, where 
fast and precise cataract detection is crucial for patient care.  

 

 
Fig. 7.  Precision-Recall curve. 

 

Fig. 8.  Recall-Confidence curve. 

 
Fig. 9.  Results demonstrating cataract or normal within the labeled box. 
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TABLE III.  PERFORMANCE EVALUATION OF EXISTING VS 
THE PROPOSED MODEL 

Model Dataset Results 

ACCV: YOLOv3 + 

DenseNet [18] 

1,520 images from 10-second 

cataract videos 

Accuracy: 

94.00%,  

F1-score: 0.9388 

A Lightweight Diabetic 

Retinopathy Detection 

Model (MobileNet V3 

+ YOLOv7) [19] 

APTOS: 5,590 images 

Accuracy: 98.0% 

and 98.4,  

F1-score: 93.7 and 

93.1 

Unified Diagnosis 

Framework: YOLOv3 

+ ShuffleNet + SVM 

[20] 

MSLPP dataset: 16,103 anterior 

ocular images (4,738 pronounced 

cataracts, 5,346 early cataracts, 

6,019 non-cataract) 

Accuracy: 93.5%, 

F1-score: 92.3 

YOLOv8: AI-Enabled 

Cataract Detection 

System [21] 

1,015 images 

Accuracy: 96.1%, 

surpassing 

Inception-V3, 

VGGNet, 

AlexNet, and 

ResNet50 

Cat Eye Disease 

Classifier: YOLOv5 

[22] 

Custom dataset: 300 images 

(100 Cataracts, 100 Cherry Eye, 

100 Glaucoma) 

Accuracy: 90.00% 

across three 

diseases 

Proposed Model: 

GhostYoloV8n 

RoboFlow dataset: 1,708 images 

(920 Cataract, 788 Normal) 

Precision: 0.981, 

Recall: 0.919, 

mAP@50: 0.954 

 
Due to its compact architecture, featuring only 1.6 million 

parameters, this lightweight design not only reduces 
computational requirements but also speeds up processing 
times. GhostYoloV8n significantly enhances the efficiency of 
cataract detection, facilitating rapid medical intervention and 
making it perfect for use in resource-constrained applications. 
Therefore, for real-time experiments on the Jetson Nano board, 
GhostYoloV8n was selected to demonstrate its ability to 
process and display results from camera-captured images 
efficiently, thereby streamlining the diagnostic workflow and 
simplifying the detection process. 

 

 

Fig. 10.  Hardware implementation. 

IV. CONCLUSION 

GhostYOLO represents a considerable leap in cataract 
detection, outperforming previous models in terms of accuracy 
and efficiency. Using advanced object identification 
algorithms, this model excels at detecting early cataract signs 
from image data while maintaining a lightweight design with 
only 1.6 million parameters, making it perfect for resource-
constrained situations. Unlike prior YOLO-based models, 
which required more computational power and struggled with 
real-time deployment, GhostYoloV8n incorporates GhostConv 
layers to improve feature extraction while reducing 
computational costs. This enables it to achieve the best 
accuracy (0.981), fastest detection speed (191.6 FPS), and 
lowest memory usage (3.7 MB), exceeding models such as 

YOLOv5, YOLOv6, and YOLOv7. A real-time 
implementation on the Jetson Nano board demonstrated its 
efficiency, with 33.5 FPS in live detection, making it 
appropriate for portable and cost-effective diagnostic solutions. 
Previous research with models such as YOLOv3 and YOLOv8 
revealed accuracy levels ranging from 94% to 96.1%, but 
GhostYoloV8n not only increases accuracy but also 
dramatically decreases hardware needs, allowing smoother and 
faster cataract detection. This work provides a fresh and 
optimal technique for real-time cataract detection, addressing 
the limitations of current YOLO models. Future work will 
focus on validating GhostYoloV8n in a variety of clinical 
contexts and increasing its integration into telemedicine and 
mobile healthcare systems to improve access to early cataract 
diagnosis, particularly in distant and disadvantaged areas. 
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