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ABSTRACT

The issue of malicious activity monitoring in video surveillance has been extensively studied, and several
methods have been developed to address it. These approaches typically rely on attributes such as shapes,
objects, textures, and sketches; however, their accuracy remains limited. To overcome these shortcomings,
this paper presents an effective Convolutional Neural Network (CNN)-based malicious activity monitoring
approach. The proposed technique detects harmful behavior by leveraging the invariant properties of
drawings and their spatial positions across multiple preceding frames. To enhance input quality, Layer-
Based Feature Normalization (LBFN) is applied to recorded video frames, removing noise and improving
clarity. Feature segmentation is then performed using the Value-Oriented Segmentation (VOS) algorithm.
The model maintains features extracted from the previous k frames and incorporates them to extract
features from the current frame. Convolution and max-pooling layers are employed to convolve and
normalize the extracted features. At the output layer, Sequential Position Support (SPS) and Sequential
Sketch Support (SSS) are calculated using a variety of activity-related characteristics retained by the
model and are iteratively evaluated across frame and feature sequences that the model has produced.
Based on this process, the technique computes Malicious Activity Support (MAS) scores for different
activity classes and assigns higher values to the most probable class. The proposed Invariant Backward
Feature Analysis Model Convolutional Neural Network (IBFAM-CNN) achieves an accuracy of 97% in
malicious activity monitoring and video surveillance.

Keywords-video surveillance; industrial security; malicious activity monitoring; sequential feature; invariant
feature; Sequential Position Support (SPS); Sequential Sketch Support (SSS); Malicious Activity Support
(MAS); Invariant Backward Feature Analysis Model Convolutional Neural Network (IBFAM-CNN)

I. INTRODUCTION

Security against malicious activity is a critical concern in
all properties, with video surveillance serving as a primary
method for monitoring suspicious behavior through real-time
or recorded analysis of video feeds. However, manual
supervision by human operators is limited and prone to
oversight, necessitating automated video surveillance and
malicious activity monitoring models.

Automated video surveillance employs various features and
methodologies to achieve this goal. Some approaches detect

activity using shape and object features, while others rely on
sketch-based features. Traditional image-processing methods in
the literature include Support Vector Machines (SVM), K-
means clustering, and Particle Swarm Optimization (PSO).
However, such machine learning techniques generally handle
small datasets, limiting accuracy in high-complexity activity
tracking. These limitations favor the adoption of deep learning
methods such as Artificial Neural Networks (ANN),
Convolutional Neural Networks (CNN), and Long Short-Term
Memory (LSTM) networks.
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Among deep learning approaches, CNNs are particularly
effective because they convolve prominent features into
reduced dimensions, enabling efficient processing of large
datasets while improving classification accuracy. CNN
architectures employ convolutional layers to reduce feature size
and pooling layers to normalize features. Incorporating
enforcement-based methods into malicious activity detection
has demonstrated further improvement in accuracy. For
example, in [1], Distorted Face Verification based on
Surveillance Video Quality Analysis (DFV-SVQA) uses CNNs
to recognize faces and evaluate surveillance video quality.
Similarly, in [2], Generative Adversarial Network (GAN)-
oriented texture synthesis approaches extracted dynamic
texture content at the encoder stage, allowing classification
through neuron-based correlation of spatial and temporal
neighbors.

The choice of camera and system architecture also
significantly influences surveillance performance. A Multi-
Level Video Security (MuLViS) system [3], for instance,
applies security ontology to enable automatic camera selection
and restrict unauthorized access, while encrypting
transmissions to prevent interception. Background reference
features further enhance detection accuracy: a block-level
Background Reference Frame (BRF) method [4] reduces
redundancy by constructing reference frames from Surveillance
Prediction Generative Adversarial Network (SPGAN) outputs
and previous frames, with predictions informed by optical flow
analysis. Other approaches, such as cloud-based surveillance
systems [5], classify vulnerabilities, threats, and attacks using
predefined taxonomies. Compression strategies [6] further
improve frame quality by applying adaptive background
updates and interpolating exchanged background data from
nearby frames.

Additionally, advancements in the Internet of Things (IoT)
and real-time surveillance have fostered several novel
architectures. For example, the Internet of Video Things Video
Surveillance System (IoVT-VSS) transmits video frames
across loT devices for efficient analysis [7], while Video
Synthetic Aperture Radar (Video-SAR) models [8] produce
sequential videos to enable continuous day-and-night
monitoring. Scene-adaptive Octree-based models (SSOcT) [9]
extract spatiotemporal structures for object classification, and
trajectory-based surveillance methods [10] summarize video
sequences to facilitate efficient analysis. Security can also be
enhanced through encryption and steganographic techniques
that safeguard data [11], and edge computing approaches that
enable real-time failure detection [12].

Recent research emphasizes integrating multiple advanced
methods to enhance surveillance robustness. For instance, the
robust quadrangle algorithm [13] develops large-scale
Distorted Surveillance Video Datasets (DSurVD) for
pedestrian detection. Low-power coding techniques [14]
segment input footage for efficient transmission, and
frameworks like ViTrack [15] employ multi-video tracking
with spatiotemporal classification. Moving target identification
strategies [16], energy-efficient algorithms such as Simulated
Annealing (SA) and JAYA [17], and MobileNet-based Faster
Region-based CNN (R-CNN) detectors [18] have also

improved real-time detection efficiency. Privacy-preserving
approaches [19] combine object tracking with encryption,
while landmark-free Conditional-GAN (CGAN) models [20]
support reversible face de-identification. Sparsity-based
regularization [21] enhances moving object detection, and
hierarchical weighted fusion in CNN frameworks [22]
improves classification reliability. Other methods include real-
time segmentation and clustering [23], mobile edge computing
for face recognition [24], geolocation-based feature coherence
[25], and semantic region labeling using color, texture, and
discrete cosine transform analysis [26]. Deep learning with
attention mechanisms [27, 28] further improves the precision of
suspicious activity detection. Meanwhile, Sketch and Size-
oriented Malicious Activity Monitoring (SSMAM) models [29]
enhance detection by segmenting frames and applying high-
level intensity analysis, while modified threshold-centric K-
means clustering [30] supports continuous classification. Multi-
feature fusion methods [31] reduce distortion, improving
recognition accuracy for complex activity detection.

These studies collectively show that the efficiency of video
surveillance systems depends critically on both the volume and
nature of extracted features. Most existing models, however,
focus only on single-frame features in comparison to
background frames, limiting their ability to accurately detect
complex malicious activities. Such limitations are evident in
actions that unfold over time; for example, detecting a slap
requires analyzing motion across multiple frames (minimum 60
frames, assuming 12 frames per second). Accurate detection
thus requires consideration of sequential frame features and
backtracking of activity sketches, which existing methods
neglect.

Addressing these gaps, this paper proposes an Invariant
Backward Feature Analysis Model-based Malicious Activity
Monitoring CNN (IBFAM-CNN) to improve detection
accuracy. Layer-Based Feature Normalization (LBFN) is
applied to remove noise and standardize frame data. Successive
frame features are then retrieved to train the network, while
Sequential Position Support (SPS) and Sequential Sketch
Support (SSS) are measured at the output layer. These
measures are iteratively evaluated, enabling calculation of
Malicious Activity Support (MAS) for each activity class. The
class with the highest MAS value is selected as the detected
activity. By integrating sequential frame information, the
IBFAM-CNN significantly enhances malicious activity
monitoring, improving both accuracy and robustness in real-
world surveillance scenarios.

II. METHODOLOGY

A. IBFAM-CNN for Malicious Activity Monitoring

The IBFAM-CNN model utilizes invariant sequential
sketch and position features to detect and monitor malicious
activities. It integrates LBFN to denoise video frames and
Value-Oriented Segmentation (VOS) to cluster human-related
features. The model extracts both location and sketch
information from the current frame and a sequence of
preceding k frames. These features are processed by
convolutional and max-pooling layers to generate normalized
representations for classification.
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At the output layer, SPS and SSS are measured for the
extracted features. These measures are iteratively refined over
successive frames to calculate MAS for different activity

Layer Based Feature
Normalization

Shapes & Activity Set

classes. The activity class with the highest MAS value is
selected as the detected malicious activity. The functional
workflow of IBFAM-CNN is illustrated in Figure 1.

Value QOrient
Segmentation
Feature Extraction

Trained Network

DCNN Training

Layer Based Feature Value Orient Feature Extraction Activity Classification
Normalization Segmentation
Test sample

Fig. 1.

The upper portion depicts the training process, which
involves feature normalization and segmentation to group
relevant data, followed by model training on the extracted
features. The lower portion illustrates the testing phase, where
normalization, segmentation, and feature extraction are applied
to incoming frames.

B. Layer-Based Feature Normalization (LBFN)

LBFN preserves object and human-related details in video
frames, enhancing detection accuracy. The model normalizes
each image layer independently using a sliding window
approach, extracting features to compute a Regional Retention
Value (RRV), defined as the minimum pixel intensity relative
to the median intensity of the window. Based on RRV, pixel
intensities are adjusted to improve feature representation for
segmentation.

Algorithm:

Given: Video Frame Vf

Obtain: Normalized Image Ning
Start

Read VI

Initialize window size ws = 5
At each layer 1

For each window w

Pixel set Ps = Y pixelsew

y52e(PS) pg (i), value /

. = 4i=1 .
Compute Median Pm size(Ps)

Functional workflow of IBFAM-CNN scheme.

Compute regional retention value rrv =

Z‘ig;zle(PS) Ps(i).value<Pm

size(Simgs(n))
Count(Simgs(i).coordinate==0(j).coordinate)
For each pixéllin w
If pi.value<Pm &&pi.value>rrv then
Pi.value = Pm
End
End
End
End
Nimg = vf
Stop

— Pm

C. Value-Oriented Segmentation (VOS)

VOS clusters normalized image data based on pixel
intensity distributions, isolating distinct objects such as human
figures. First, the normalized image Nj;, is converted to
grayscale, and histograms are computed for defined regions.
Pixels above the median intensity are counted, and the three
most frequent pixel values are identified to form peak and
median sets. These sets serve as references for clustering pixels
into objects.

Algorithm:
Given: Normalized_Tmage Ny,
Obtain: Segmented_image set Spgs
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Start

Fetch Niyg

Initiate count set c¢s, peak set Ps, median
set ms

Initiate window size w.

At any region R

Crop region image Ri= [ Crop(nimg,R)

Hist H = generate histogram (Ri)

ZSize(Ri)

=1 Ri(i).value

Size(Ri)
Identify the peak value set pvs =
fof(m) Ri(i).value > me && Ri(i). value. Occurrence >
MaxThree(H)

Add pvs to ps = (O peakvalues € Ps) U pvs

Add me to the median set ms = () median €
ms) Ume

End

Initialize object set Os = size(pvs)

For each pixel p in Ny,

For each object o

If Dist (me(0),p.value)<th then

Add pixel p to object o.

End

End

End

For each object o

Median me =

Produce segmented image Smws-
Add to Simgs =(Ximg € Simgs) U Simgs
End

Stop

By comparing pixel intensities to peak and median values,
this method effectively segments the image into objects, even
in complex scenes. For example, considering a 5-pixel region R
with a histogram of 256 values, the method identifies peak
intensity values and corresponding medians to create sets used
for segmentation across the image.

D. Feature Extraction

From the segmented image set Sip, g5, the feature extraction
process derives both positional and sketch features. Each
segmented image is matched to an Object Dictionary (OD) to
estimate a Human Sketch Score (HSS) for various object
classes, thereby identifying relevant human-related sketch and
positional features. HSS determines which objects should be
treated as human features. The extracted sketch and position
attributes are combined to form a feature vector used for
training and testing the model.

Algorithm:

Given: Object Dictionary OD, Segmented
image set Simgs

Obtain: Feature vector Fv

Start

Read OD and Sipgs-

For each image in Spngs:

For each object class oc:

For each object o:

Estimate Human Sketch score (HSS) =
size(Simgs(n))
Count(Simgs(i).coordinate==0(j).coordinate)
i=1
size(Simgs(n))

End

Estimate Cumulative HSS as CHSS = —;ESL
size(Oc)

End

End

Human image Himg = Choose the class with

maximum CHSS.

Feature vector Fv = {Extract sketch,

Position from Himg}

Stop

E. Deep Convolutional Neural Network (DCNN) Training

The proposed Deep Convolutional Neural Network
(DCNN) comprises two convolutional layers and pooling
layers. The first convolution layer reduces extracted features to
250 dimensions, preserving sketch-related attributes. The
second convolution layer counts pixels in each image quadrant
to extract positional features, which are then converted into a
one-dimensional feature vector. Pooling layers normalize these
values, enhancing the stability of training. The DCNN is
trained using extracted sketch and position features. Neurons in
the network are initialized with these features to compute SPS
and SSS, which are combined to measure MAS for activity
classification.

Algorithm:

Given: Activity Data set SADs
Obtain: DCNN

Start

Read SADs

Initialize DCNN.

For each image vimg

Primg = Perform Layer-Based Feature
Normalization (vimg)

Seimgs = Perform Value-oriented
segmentation (primg)

[Sketch, position] = Feature Extraction
(Simgs )

Add sketch and position set Skps.
Generate neuron N = Initialize with Skps.
End

Stop

F. Activity Classification

Activity classification uses spatial and sketch features
extracted from a sequence of frames. The procedure begins
with LBFN to remove noise and enhance frame quality,
followed by VOS to isolate objects of interest. Extracted
human features are passed through the trained DCNN, which
calculates SPS and SSS values for the current and previous
frames. These values are iteratively combined to compute MAS
for each activity class.
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SPS uses positional continuity across multiple frames to
detect malicious movement patterns. For example, detecting a
"slapping" action requires tracking hand motion over several
frames. Similarly, SKS captures sketch changes over time to
distinguish different activities.

Algorithm:

Given: DCNN, Test sample Ts
Obtain: Class C

Start

Fetch DCNN and Ts
Primg = Level based normalization (Ts)
Seimg = Apply value orient segmentation
(primg)
[Sketch, Position] = Feature Extraction
(seimg)
[Sketch set Skes, position set pos] =
Collect sketch and position features from
previous Frames
Add sketch, position to skes and pos.
Pass sks and pos through the DCNN.
For each class C
For each feature in skes
For each layer 1
For each neuron n
Compute Sequential position support Sps.

Zfizle(Skes(k)) Sks.Feature€N.PositionFeatures

size(Skes(k))

Sps=
End

Compute Sequential Sketch Support.

SSS =

z:size(Skes(i).Sketch)

i—1 Count(N.Skes.value(i)==Skes(i).Sketch.value(i))

4

End
3 SKS 3 SPS
Compute MAS = — -
Size(Class)  Size(Class)

End

End

Class = Elect maximum MAS valued class.
Stop

This process yields the activity classification by identifying
the class with the highest MAS value, enabling robust detection
of malicious actions.

III. RESULTS AND DISCUSSION

The proposed IBFAM-CNN was implemented in
MATLAB and evaluated under controlled experimental
conditions. Experiments were conducted on an Ubuntu system
with 16 GB Random Access Memory (RAM) and an NVIDIA
Tesla P100 Graphics Processing Unit (GPU). Evaluation was
performed using the DCSASS dataset available on Kaggle [32].
This dataset contains videos categorized into 15 classes of
activities: Slapping, Kicking, Abuse, Arrest, Arson, Assault,
Accident, Burglary, Explosion, Fighting, Robbery, Shooting,
Stealing, Shoplifting, and Vandalism. Each video is labeled as
normal (0) or abnormal (1). The dataset comprises 16,853
videos: 9,676 labeled as normal and 7,177 as abnormal.

Table 1 shows performance evaluation constraints. For each
activity class, approximately 1 million images were extracted
for training. Videos from 300 participants were utilized for
training and testing.

A. Detection Accuracy

Table II compares the detection accuracy of IBFAM-CNN
against BRF, SPGAN, and DSurVD across varying numbers of
activities (5, 10, and 15). IBFAM-CNN consistently achieves
the highest accuracy, improving from 83% for 5 activities to
97% for 15 activities. SPGAN performs competitively (77%-
86%), while BRF and DSurVD show moderate performance
(73%-82% and 72%-81%, respectively). Detection accuracy
improves across all models as activity complexity increases,
but IBFAM-CNN shows the most substantial gain, highlighting
its robustness in real-world malicious activity detection.

TABLE L. EVALUATION DETAILS
Parameter Value
Total Activities 15
Total Images 15 million
Tool Used MATLAB
Number of Users 300

TABLE IL PERFORMANCE IN DETECTION OF MALICIOUS

ACTIVITY

Malicious Activity Detection Accuracy % vs Number of Activities

Activities 5 Activities 10 Activities 15 Activities
IBFAM-CNN 83 89 97
BRF 73 77 82
SPGAN 77 82 86
DSurVD 72 76 81

Figure 2 illustrates detection accuracy trends, showing that
IBFAM-CNN outperforms all compared models, particularly at
higher activity levels.

Malicious_Activity Detection Accuracy

Malicious Activity Detection Accuracy %

IBFAM-CNN BRF

SPGAN DSurVD
® 5 Activities
5 10 Activities
" 15 Activities
Fig. 2. Accuracy in malicious activity detection.
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B. False Detection Ratio

The inefficiency in classifying malicious activity is gauged
as a false ratio in Table III across the four evaluated models.
IBFAM-CNN achieves the lowest false detection rate, reducing
from 17% for 5 activities to 3% for 15 activities, demonstrating
strong reliability and precision. BRF records the highest false
rate (27% — 18%), followed by SPGAN (23% — 14%) and
DSurVD (18% — 19%). These results indicate IBFAM-CNN's
superior ability to minimize erroneous classification as activity
complexity increases.

TABLE IIL FALSE RATE IN MALICIOUS ACTIVITY

DETECTION

TABLE V. TIME COMPLEXITY IN MALICIOUS ACTIVITY
DETECTION
Time Complexity (s) vs Number of Activities

Activities 5 Activities 10 Activities 15 Activities
IBFAM-CNN 21 32 45
BRF 67 79 89
SPGAN 56 71 81
DSurVD 49 63 75

False Ratio % vs Number of Activities

Activities 5 Activities 10 Activities 15 Activities
IBFAM-CNN 17 11 3
BRF 27 23 18
SPGAN 23 18 14
DSurVD 18 14 19

Figure 3 visualizes false detection trends, reaffirming
IBFAM-CNN’s ability to consistently reduce false positives
compared to alternative methods.

False Ratio

25

g
o

False Ratio %

—
o
!

e IBFAM-CNN BRF SPGAN DSurVD
B 5 Activities
¥ 10 Activities
¥ 15 Activities
Fig. 3. False ratio in malicious activity detection.

C. Time Complexity

Table IV compares the time complexity for activity
classification across models. The most time-efficient model
was IBFAM-CNN, with classification time increasing
moderately from 21 seconds for 5 activities to 45 seconds for
15 activities. In contrast, BRF exhibits the highest time
complexity (67—89 seconds), while SPGAN (56—81 seconds)
and DSurVD (49—75 seconds) show higher computational
costs than IBFAM-CNN.

Figure 4 illustrates the efficiency advantage of IBFAM-
CNN, making it the most suitable choice for large-scale or real-
time malicious activity detection scenarios.

Time Complexity

100

Time Complexity in seconds

IBFAM-CNN BRF

SPGAN DSurVD

B 5 Activities
® 10 Activities

" 15 Activities

Fig. 4. Analysis time complexity in malicious activity detection.
D. Summary of Findings

Overall, IBFAM-CNN achieves 97% classification
accuracy on the DCSASS dataset across diverse activity
classes, significantly outperforming comparative models in
detection accuracy, false detection ratio, and computational
efficiency. These findings highlight IBFAM-CNN’s scalability,
robustness, and suitability for real-world video surveillance
applications where both precision and efficiency are critical.

IV. CONCLUSION

This study presents the Invariant Backward Feature
Analysis Model Convolutional Neural Network (IBFAM-
CNN) for malicious activity monitoring in video surveillance.
The model leverages invariant sequential sketch and positional
attributes to enhance detection accuracy. Preprocessing is
achieved using the Layer-Based Feature Normalization
(LBFN)technique, followed by Value-Oriented Segmentation
(VOS) to group human features. From the segmented images,
positional and sketch features are extracted across sequences of
frames to compute various support measures. By incorporating
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sequential frame features and applying backward tracking,
IBFAM-CNN significantly improves the precision of malicious
activity detection. Unlike conventional methods that consider
only individual frames, this model integrates features from
multiple preceding frames, achieving enhanced robustness and
achieving up to 97% detection accuracy in identifying harmful
activities.
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