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ABSTRACT 

The issue of malicious activity monitoring in video surveillance has been extensively studied, and several 

methods have been developed to address it. These approaches typically rely on attributes such as shapes, 

objects, textures, and sketches; however, their accuracy remains limited. To overcome these shortcomings, 

this paper presents an effective Convolutional Neural Network (CNN)-based malicious activity monitoring 

approach. The proposed technique detects harmful behavior by leveraging the invariant properties of 

drawings and their spatial positions across multiple preceding frames. To enhance input quality, Layer-

Based Feature Normalization (LBFN) is applied to recorded video frames, removing noise and improving 

clarity. Feature segmentation is then performed using the Value-Oriented Segmentation (VOS) algorithm. 

The model maintains features extracted from the previous k frames and incorporates them to extract 

features from the current frame. Convolution and max-pooling layers are employed to convolve and 

normalize the extracted features. At the output layer, Sequential Position Support (SPS) and Sequential 

Sketch Support (SSS) are calculated using a variety of activity-related characteristics retained by the 

model and are iteratively evaluated across frame and feature sequences that the model has produced. 

Based on this process, the technique computes Malicious Activity Support (MAS) scores for different 

activity classes and assigns higher values to the most probable class. The proposed Invariant Backward 

Feature Analysis Model Convolutional Neural Network (IBFAM-CNN) achieves an accuracy of 97% in 

malicious activity monitoring and video surveillance. 

Keywords-video surveillance; industrial security; malicious activity monitoring; sequential feature; invariant 

feature; Sequential Position Support (SPS); Sequential Sketch Support (SSS); Malicious Activity Support 

(MAS); Invariant Backward Feature Analysis Model Convolutional Neural Network (IBFAM-CNN) 

I. INTRODUCTION  

Security against malicious activity is a critical concern in 
all properties, with video surveillance serving as a primary 
method for monitoring suspicious behavior through real-time 
or recorded analysis of video feeds. However, manual 
supervision by human operators is limited and prone to 
oversight, necessitating automated video surveillance and 
malicious activity monitoring models. 

Automated video surveillance employs various features and 
methodologies to achieve this goal. Some approaches detect 

activity using shape and object features, while others rely on 
sketch-based features. Traditional image-processing methods in 
the literature include Support Vector Machines (SVM), K-
means clustering, and Particle Swarm Optimization (PSO). 
However, such machine learning techniques generally handle 
small datasets, limiting accuracy in high-complexity activity 
tracking. These limitations favor the adoption of deep learning 
methods such as Artificial Neural Networks (ANN), 
Convolutional Neural Networks (CNN), and Long Short-Term 
Memory (LSTM) networks. 
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Among deep learning approaches, CNNs are particularly 
effective because they convolve prominent features into 
reduced dimensions, enabling efficient processing of large 
datasets while improving classification accuracy. CNN 
architectures employ convolutional layers to reduce feature size 
and pooling layers to normalize features. Incorporating 
enforcement-based methods into malicious activity detection 
has demonstrated further improvement in accuracy. For 
example, in [1], Distorted Face Verification based on 
Surveillance Video Quality Analysis (DFV-SVQA) uses CNNs 
to recognize faces and evaluate surveillance video quality. 
Similarly, in [2], Generative Adversarial Network (GAN)-
oriented texture synthesis approaches extracted dynamic 
texture content at the encoder stage, allowing classification 
through neuron-based correlation of spatial and temporal 
neighbors. 

The choice of camera and system architecture also 
significantly influences surveillance performance. A Multi-
Level Video Security (MuLViS) system [3], for instance, 
applies security ontology to enable automatic camera selection 
and restrict unauthorized access, while encrypting 
transmissions to prevent interception. Background reference 
features further enhance detection accuracy: a block-level 
Background Reference Frame (BRF) method [4] reduces 
redundancy by constructing reference frames from Surveillance 
Prediction Generative Adversarial Network (SPGAN) outputs 
and previous frames, with predictions informed by optical flow 
analysis. Other approaches, such as cloud-based surveillance 
systems [5], classify vulnerabilities, threats, and attacks using 
predefined taxonomies. Compression strategies [6] further 
improve frame quality by applying adaptive background 
updates and interpolating exchanged background data from 
nearby frames. 

Additionally, advancements in the Internet of Things (IoT) 
and real-time surveillance have fostered several novel 
architectures. For example, the Internet of Video Things Video 
Surveillance System (IoVT-VSS) transmits video frames 
across IoT devices for efficient analysis [7], while Video 
Synthetic Aperture Radar (Video-SAR) models [8] produce 
sequential videos to enable continuous day-and-night 
monitoring. Scene-adaptive Octree-based models (SSOcT) [9] 
extract spatiotemporal structures for object classification, and 
trajectory-based surveillance methods [10] summarize video 
sequences to facilitate efficient analysis. Security can also be 
enhanced through encryption and steganographic techniques 
that safeguard data [11], and edge computing approaches that 
enable real-time failure detection [12]. 

Recent research emphasizes integrating multiple advanced 
methods to enhance surveillance robustness. For instance, the 
robust quadrangle algorithm [13] develops large-scale 
Distorted Surveillance Video Datasets (DSurVD) for 
pedestrian detection. Low-power coding techniques [14] 
segment input footage for efficient transmission, and 
frameworks like ViTrack [15] employ multi-video tracking 
with spatiotemporal classification. Moving target identification 
strategies [16], energy-efficient algorithms such as Simulated 
Annealing (SA) and JAYA [17], and MobileNet-based Faster 
Region-based CNN (R-CNN) detectors [18] have also 

improved real-time detection efficiency. Privacy-preserving 
approaches [19] combine object tracking with encryption, 
while landmark-free Conditional-GAN (CGAN) models [20] 
support reversible face de-identification. Sparsity-based 
regularization [21] enhances moving object detection, and 
hierarchical weighted fusion in CNN frameworks [22] 
improves classification reliability. Other methods include real-
time segmentation and clustering [23], mobile edge computing 
for face recognition [24], geolocation-based feature coherence 
[25], and semantic region labeling using color, texture, and 
discrete cosine transform analysis [26]. Deep learning with 
attention mechanisms [27, 28] further improves the precision of 
suspicious activity detection. Meanwhile, Sketch and Size-
oriented Malicious Activity Monitoring (SSMAM) models [29] 
enhance detection by segmenting frames and applying high-
level intensity analysis, while modified threshold-centric K-
means clustering [30] supports continuous classification. Multi-
feature fusion methods [31] reduce distortion, improving 
recognition accuracy for complex activity detection. 

These studies collectively show that the efficiency of video 
surveillance systems depends critically on both the volume and 
nature of extracted features. Most existing models, however, 
focus only on single-frame features in comparison to 
background frames, limiting their ability to accurately detect 
complex malicious activities. Such limitations are evident in 
actions that unfold over time; for example, detecting a slap 
requires analyzing motion across multiple frames (minimum 60 
frames, assuming 12 frames per second). Accurate detection 
thus requires consideration of sequential frame features and 
backtracking of activity sketches, which existing methods 
neglect. 

Addressing these gaps, this paper proposes an Invariant 
Backward Feature Analysis Model-based Malicious Activity 
Monitoring CNN (IBFAM-CNN) to improve detection 
accuracy. Layer-Based Feature Normalization (LBFN) is 
applied to remove noise and standardize frame data. Successive 
frame features are then retrieved to train the network, while 
Sequential Position Support (SPS) and Sequential Sketch 
Support (SSS) are measured at the output layer. These 
measures are iteratively evaluated, enabling calculation of 
Malicious Activity Support (MAS) for each activity class. The 
class with the highest MAS value is selected as the detected 
activity. By integrating sequential frame information, the 
IBFAM-CNN significantly enhances malicious activity 
monitoring, improving both accuracy and robustness in real-
world surveillance scenarios. 

II. METHODOLOGY 

A. IBFAM-CNN for Malicious Activity Monitoring  

The IBFAM-CNN model utilizes invariant sequential 
sketch and position features to detect and monitor malicious 
activities. It integrates LBFN to denoise video frames and 
Value-Oriented Segmentation (VOS) to cluster human-related 
features. The model extracts both location and sketch 
information from the current frame and a sequence of 
preceding k frames. These features are processed by 
convolutional and max-pooling layers to generate normalized 
representations for classification. 
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At the output layer, SPS and SSS are measured for the 
extracted features. These measures are iteratively refined over 
successive frames to calculate MAS for different activity 

classes. The activity class with the highest MAS value is 
selected as the detected malicious activity. The functional 
workflow of IBFAM-CNN is illustrated in Figure 1. 

 

 

Fig. 1.  Functional workflow of IBFAM-CNN scheme.

 The upper portion depicts the training process, which 
involves feature normalization and segmentation to group 
relevant data, followed by model training on the extracted 
features. The lower portion illustrates the testing phase, where 
normalization, segmentation, and feature extraction are applied 
to incoming frames. 

B. Layer-Based Feature Normalization (LBFN) 

LBFN preserves object and human-related details in video 
frames, enhancing detection accuracy. The model normalizes 
each image layer independently using a sliding window 
approach, extracting features to compute a Regional Retention 
Value (RRV), defined as the minimum pixel intensity relative 
to the median intensity of the window. Based on RRV, pixel 
intensities are adjusted to improve feature representation for 
segmentation. 

Algorithm: 

Given: Video Frame Vf 

Obtain: Normalized Image Ning 

Start 

Read Vf 

Initialize window size ws = 5 

At each layer l 

For each window w 

Pixel set Ps = ∑ ������ ∈ 	 
Compute Median Pm = 

∑ 
����. �������������
��� �����
���  

Compute regional retention value rrv = 

∑ �����.�������� !"#�$ �
!%&

�����'��(��)��
*+�),�'��(����.-++./�)�,���0�1�.-++./�)�,��

���

− 
3 

For each pixel in w 

If pi.value<Pm &&pi.value>rrv then 

Pi.value = Pm 

End 

End 

End 

End 

4��( = vf 
Stop 

 

C. Value-Oriented Segmentation (VOS) 

VOS clusters normalized image data based on pixel 
intensity distributions, isolating distinct objects such as human 
figures. First, the normalized image 4��(  is converted to 

grayscale, and histograms are computed for defined regions. 
Pixels above the median intensity are counted, and the three 
most frequent pixel values are identified to form peak and 
median sets. These sets serve as references for clustering pixels 
into objects. 

Algorithm: 

Given: Normalized_Image 4��( 
Obtain: Segmented_image set 5��(� 
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Start 

Fetch 4��( 
Initiate count set cs, peak set Ps, median 

set ms 

Initiate window size w. 

At any region R 

Crop region image 6� = 8 9:;��<�3=, 6� 
Hist H = generate histogram (Ri) 

Median 3� = ∑ 6����. �����'����?��
��� 5����6���  

Identify the peak value set ��� =
∑ 6����. ����� > 3� && 6����. �����. CDD�::�<D� ≥�����?��

���F��Gℎ:���I� 
Add pvs to �� = �∑ ���J������ ∈ 
��  ∪ ��� 
Add me to the median set 3� = �∑ 3�L��< ∈
3�� ∪ 3� 
End 

Initialize object set Os = size(pvs) 

For each pixel p in 4��( 
For each object o 

If Dist(me(o),p.value)<th then 

Add pixel p to object o. 

End 

End 

End 

For each object o 

Produce segmented image 5��(�.   

Add to 5��(� =(∑ �3= ∈ 5��(��  ∪ 5��(� 
End   

Stop 

 
By comparing pixel intensities to peak and median values, 

this method effectively segments the image into objects, even 
in complex scenes. For example, considering a 5-pixel region 6 
with a histogram of 256 values, the method identifies peak 
intensity values and corresponding medians to create sets used 
for segmentation across the image. 

D. Feature Extraction 

From the segmented image set 5��(�, the feature extraction 

process derives both positional and sketch features. Each 
segmented image is matched to an Object Dictionary (OD) to 
estimate a Human Sketch Score (HSS) for various object 
classes, thereby identifying relevant human-related sketch and 
positional features. HSS determines which objects should be 
treated as human features. The extracted sketch and position 
attributes are combined to form a feature vector used for 
training and testing the model. 

Algorithm: 

Given: Object Dictionary OD, Segmented 

image set 5��(� 
Obtain: Feature vector Fv 

Start 

Read OD and 5��(�. 
For each image in 5��(�: 
For each object class oc: 

For each object o: 

Estimate Human Sketch score �HSS� =

 
�����'��(��)��

*+�),�'��(����.-++./�)�,���0�1�.-++./�)�,��
���

�����'��(��)��  

End 

Estimate Cumulative HSS as CHSS = 
∑ O''

�����0-� 
End 

End 

Human image Himg = Choose the class with 

maximum CHSS. 

Feature vector Fv = {Extract sketch, 

Position from Himg} 

Stop 

 

E. Deep Convolutional Neural Network (DCNN) Training 

The proposed Deep Convolutional Neural Network 
(DCNN) comprises two convolutional layers and pooling 
layers. The first convolution layer reduces extracted features to 
250 dimensions, preserving sketch-related attributes. The 
second convolution layer counts pixels in each image quadrant 
to extract positional features, which are then converted into a 
one-dimensional feature vector. Pooling layers normalize these 
values, enhancing the stability of training. The DCNN is 
trained using extracted sketch and position features. Neurons in 
the network are initialized with these features to compute SPS 
and SSS, which are combined to measure MAS for activity 
classification. 

Algorithm: 

Given: Activity Data set SADs 

Obtain: DCNN 

Start 

Read SADs 

Initialize DCNN. 

For each image vimg 

Primg = Perform Layer-Based Feature 

Normalization (vimg) 

Seimgs = Perform Value-oriented 

segmentation (primg) 

[Sketch, position] = Feature Extraction 

(5��(�) 
Add sketch and position set Skps. 

Generate neuron N = Initialize with Skps. 

End 

Stop 

F. Activity Classification 

Activity classification uses spatial and sketch features 
extracted from a sequence of frames. The procedure begins 
with LBFN to remove noise and enhance frame quality, 
followed by VOS to isolate objects of interest. Extracted 
human features are passed through the trained DCNN, which 
calculates SPS and SSS values for the current and previous 
frames. These values are iteratively combined to compute MAS 
for each activity class.  
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SPS uses positional continuity across multiple frames to 
detect malicious movement patterns. For example, detecting a 
"slapping" action requires tracking hand motion over several 
frames. Similarly, SKS captures sketch changes over time to 
distinguish different activities. 

Algorithm: 

Given: DCNN, Test sample Ts 

Obtain: Class C 

Start 

Fetch DCNN and Ts 

Primg = Level based normalization (Ts) 

Seimg = Apply value orient segmentation 

(primg) 

[Sketch, Position] = Feature Extraction 

(seimg) 

[Sketch set Skes, position set pos] = 

Collect sketch and position features from 

previous Frames 

Add sketch, position to skes and pos. 

Pass sks and pos through the DCNN. 

For each class C 

For each feature in skes 

For each layer l 

For each neuron n 

Compute Sequential position support Sps. 

Sps= 
∑ 'P�.Q��,�.�∈R.�+��,�+)Q��,�.�� !"#�ST# �T��

!%&
�����'P���P��  

End 

Compute Sequential Sketch Support. 

SSS = 

∑ *+�),�R.'P��.����������'P�����.'P�,-U.��������� !"#�ST# �!�.ST#VWX�
!%&  

Y  

End 

Compute MAS = 
∑ 'Z'

'����*����� [ ∑ '�'
'����*����� 

End 

End 

Class = Elect maximum MAS valued class. 

Stop 

 
This process yields the activity classification by identifying 

the class with the highest MAS value, enabling robust detection 
of malicious actions. 

III. RESULTS AND DISCUSSION 

The proposed IBFAM-CNN was implemented in 
MATLAB and evaluated under controlled experimental 
conditions. Experiments were conducted on an Ubuntu system 
with 16 GB Random Access Memory (RAM) and an NVIDIA 
Tesla P100 Graphics Processing Unit (GPU). Evaluation was 
performed using the DCSASS dataset available on Kaggle [32].  
This dataset contains videos categorized into 15 classes of 
activities: Slapping, Kicking, Abuse, Arrest, Arson, Assault, 
Accident, Burglary, Explosion, Fighting, Robbery, Shooting, 
Stealing, Shoplifting, and Vandalism. Each video is labeled as 
normal (0) or abnormal (1). The dataset comprises 16,853 
videos: 9,676 labeled as normal and 7,177 as abnormal. 

Table 1 shows performance evaluation constraints. For each 
activity class, approximately 1 million images were extracted 
for training. Videos from 300 participants were utilized for 
training and testing. 

A. Detection Accuracy 

Table II compares the detection accuracy of IBFAM-CNN 
against BRF, SPGAN, and DSurVD across varying numbers of 
activities (5, 10, and 15). IBFAM-CNN consistently achieves 
the highest accuracy, improving from 83% for 5 activities to 
97% for 15 activities. SPGAN performs competitively (77%-
86%), while BRF and DSurVD show moderate performance 
(73%-82% and 72%-81%, respectively). Detection accuracy 
improves across all models as activity complexity increases, 
but IBFAM-CNN shows the most substantial gain, highlighting 
its robustness in real-world malicious activity detection. 

TABLE I.  EVALUATION DETAILS 

Parameter Value 

Total Activities 15 

Total Images 15 million 

Tool Used MATLAB 

Number of Users 300 

TABLE II.  PERFORMANCE IN DETECTION OF MALICIOUS 
ACTIVITY 

Malicious Activity Detection Accuracy % vs Number of Activities 

Activities 5 Activities 10 Activities 15 Activities 

IBFAM-CNN 83 89 97 

BRF 73 77 82 

SPGAN 77 82 86 

DSurVD 72 76 81 

 

Figure 2 illustrates detection accuracy trends, showing that 
IBFAM-CNN outperforms all compared models, particularly at 
higher activity levels. 

 

 

Fig. 2.  Accuracy in malicious activity detection. 
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B. False Detection Ratio 

The inefficiency in classifying malicious activity is gauged 
as a false ratio in Table III across the four evaluated models. 
IBFAM-CNN achieves the lowest false detection rate, reducing 
from 17% for 5 activities to 3% for 15 activities, demonstrating 
strong reliability and precision. BRF records the highest false 

rate (27% → 18%), followed by SPGAN (23% → 14%) and 

DSurVD (18% → 19%). These results indicate IBFAM-CNN's 

superior ability to minimize erroneous classification as activity 
complexity increases. 

TABLE III.  FALSE RATE IN MALICIOUS ACTIVITY 
DETECTION 

False Ratio % vs Number of Activities 

Activities 5 Activities 10 Activities 15 Activities 

IBFAM-CNN 17 11 3 

BRF 27 23 18 

SPGAN 23 18 14 

DSurVD 18 14 19 

 
Figure 3 visualizes false detection trends, reaffirming 

IBFAM-CNN’s ability to consistently reduce false positives 
compared to alternative methods. 

 

 

Fig. 3.  False ratio in malicious activity detection. 

C. Time Complexity 

Table IV compares the time complexity for activity 
classification across models. The most time-efficient model 
was IBFAM-CNN, with classification time increasing 
moderately from 21 seconds for 5 activities to 45 seconds for 
15 activities. In contrast, BRF exhibits the highest time 

complexity (67→89 seconds), while SPGAN (56→81 seconds) 

and DSurVD (49→75 seconds) show higher computational 

costs than IBFAM-CNN. 

TABLE IV.  TIME COMPLEXITY IN MALICIOUS ACTIVITY 
DETECTION 

Time Complexity (s) vs Number of Activities 

Activities 5 Activities 10 Activities 15 Activities 

IBFAM-CNN 21 32 45 

BRF 67 79 89 

SPGAN 56 71 81 

DSurVD 49 63 75 

 
Figure 4 illustrates the efficiency advantage of IBFAM-

CNN, making it the most suitable choice for large-scale or real-
time malicious activity detection scenarios. 

 

 

Fig. 4.  Analysis time complexity in malicious activity detection. 

D. Summary of Findings 

Overall, IBFAM-CNN achieves 97% classification 
accuracy on the DCSASS dataset across diverse activity 
classes, significantly outperforming comparative models in 
detection accuracy, false detection ratio, and computational 
efficiency. These findings highlight IBFAM-CNN’s scalability, 
robustness, and suitability for real-world video surveillance 
applications where both precision and efficiency are critical. 

IV. CONCLUSION 

This study presents the Invariant Backward Feature 
Analysis Model Convolutional Neural Network (IBFAM-
CNN) for malicious activity monitoring in video surveillance. 
The model leverages invariant sequential sketch and positional 
attributes to enhance detection accuracy. Preprocessing is 
achieved using the Layer-Based Feature Normalization 
(LBFN)technique, followed by Value-Oriented Segmentation 
(VOS) to group human features. From the segmented images, 
positional and sketch features are extracted across sequences of 
frames to compute various support measures. By incorporating 
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sequential frame features and applying backward tracking, 
IBFAM-CNN significantly improves the precision of malicious 
activity detection. Unlike conventional methods that consider 
only individual frames, this model integrates features from 
multiple preceding frames, achieving enhanced robustness and 
achieving up to 97% detection accuracy in identifying harmful 
activities. 
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