
Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1791

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

EgoSENSE: A Framework for Context-Aware Mobile
Applications Development

Eleonora Milić
Department of Computer Science

Faculty of Electronic Engineering, University of Niš
Niš, Serbia

eleonora.milic@elfak.rs

Dragan Stojanović
Department of Computer Science

Faculty of Electronic Engineering, University of Niš
Niš, Serbia

dragan.stojanovic@elfak.ni.ac.rs

Abstract—This paper presents a context-aware mobile
framework (or middleware), intended to support the
implementation of context-aware mobile services. The overview
of basic concepts, architecture and components of context-aware
mobile framework is given. The mobile framework provide
acquisition and management of context, where raw data sensed
from physical (hardware) sensors and virtual (software) sensors
are combined, processed and analyzed to provide high-level
context and situation of the user to the mobile context-aware
applications in near real-time. Using demo mobile health
application, its most important components and functions, such
as these supposed to detect urgent or alarming health conditions
of a mobile user and to initiate appropriate actions demonstrated.

Keywords-context; context-awareness; mobile services;
personal health monitoring;

I. INTRODUCTION
Context-aware systems take into account the current state

of a user and, in addition, his environment, enabling a mobile
device and the application to adjust in an appropriate way. The
development of affordable sensors with low power
consumption (such as accelerometer, gyroscope, digital
compass, light sensor etc.) and their integration into modern
mobile devices coupled with the recent advances in machine
learning, enabled the creation of a more extensive model of
user context often used for health monitoring [1]. Usage of
context in remote medical monitoring is considered as an
important innovation for reducing healthcare delivery costs and
improving the responsiveness of health care. Remote
healthcare monitoring involves the use of smart devices which
aggregate data from multiple sensors and transmit the data to
the remote server in order to generate high level context.

Existing solutions collect patient’s sensor data and transmit
that data without any local processing to the remote server for
real-time or offline analysis. To significantly reduce the flow of
high volumes of collected data and in order to reduce the
processing of that data on the remote server we propose a
mobile context-aware framework for Android smart devices
where context data processing and analysis is performed locally
on the device itself and appropriate actions are initiated based
on defined changes in the user’s context. Only necessary
context data is sent to the remote server for further use. Our
goal is to collect data from physical and virtual sensors on

mobile devices which provide the basic context and enable
storage, process and analysis of contextual data locally in order
to detect the context of a higher level and the situation of users
on mobile devices.

The subject of this paper, and its realization in practice, is
the study of methods and techniques for gathering and
detecting user context on smartphones, based on sensors
integrated in a mobile device (such as GPS, accelerometers,
temperature, motion detector and sensors for activity
recognition etc.), user’s preferences, his/her environment and
activities. The framework for context data collection,
organization, processing and analysis, needed for generation of
high-level context information, is developed. The appropriate
techniques and components within the framework are
implemented on Android smart devices, as support for the
development of context-aware mobile applications and
services. To provide usefulness and effectiveness of the
proposed framework we implemented a demo mobile health
monitoring application for Android platform, based on Funf 1
and Asper2 open source technologies, as well as sensors for
physical activity, pulse, pressure, temperature and motion
detection. EgoSENSE framework and Personal Health
Monitoring Android application are supposed to detect urgent
or alarming health conditions of a mobile user and initiate
appropriate actions by using the implemented framework and
background services.

II. PROBLEM STATEMENT AND RELATED WORK
The notion of context is defined in numerous fields of

science, such as: linguistics, philosophy, knowledge
representation and problem-solving in artificial intelligence and
communication theory. There are different definitions of
context. According to the Free Online Dictionary of
Computing, context is something which encircles and provides
the meaning for something else. Another definition of context
is from the field of distributed and mobile computing, where
the person is that “something”, and context is comprised of
information of that person’s environment, such as the location
and identity of people and objects surrounding him/her. The

1 http://funf.org/about.html
2https://github.com/mobile-event-processing/Asper

Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1792

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

context can be used to characterize the state of an entity. The
entity is a person, a place or an object that is considered
relevant in user-application interaction. It is necessary to
identify what kind of information fits this definition, the
structure of information, the way to present it and how to use
context in a specific application. Context includes information
such as: location, time, status of application, resources, network
flow, user’s intentions and desires, activity and environmental
conditions [2]. User’s activity is an important part of user
context since it directly influences the possibility of the user to
interact with a mobile device. Context-aware systems are
agents and applications that use different levels of contexts and
adjust their behavior according to current contexts. In order to
gather the context, a context-aware service has to ask for
specific information the context provider or to monitor events
sent by the context providers. In order to construct context-
aware services, specific actions are most often defined to run
according to a set of rules each time when the current context
changes. Solution architects can write a set of rules without
major problems and to specify which method will be run when
a condition is fulfilled. All the rules are memorized in a file and
become part of the context understanding process. This is the
principle used in services for energy saving and many other
services provided by smart devices [4].

Context interpreters are components responsible for context
processing based on logical reasoning. Context processing may
include: deriving higher level context from a low level context,
knowledge discovery, maintaining consistency of knowledge
and resolving conflicts. In order to provide an effective
infrastructural support for the development of context-aware
services in pervasive computing environment, a general
architecture of a context-aware framework has been designed
and described in [4]. It is a distributed middleware which
transfers context from a physical into a semantic space, where
the access to context can be easily divided among context-
aware services. It is comprised of the following mutually
independent components: context providers, context data base,
context-aware services and a service for context service
locating (a mechanism where context providers and interpreters
can sign up their presence so that the application or users can
locate them). In [6], authors proposed ContextDroid as a
framework for context-aware Android phone applications. It
was designed in order to provide developers all the necessary
services for easier development of context-aware applications,
all the while taking into account the battery usage.
ContextDroid integrates several context phrases, so it generally
requires applications that use the least resources possible [6].
Queries are transmitted from the application to the service and
then forwarded to the sensor. The sensor then sends the
acquired data back to the service, which further reasons the
received data and notifies the application if needed. It was
explained how the contextual information are modeled,
acquired, reasoned and, in the end, delivered to the application.
Framework is implemented for Android platform.

ContextPhone [8] is a software platform comprised of four
different connected modules realized through a set of open
source C++ libraries. ContextPhone was running on Symbian
OS and was developed using an iterative human-centered
design strategy. It was developed for the researches who want

to acquire data in a way that is not intrusive for a user and it
requires minimal control and maintenance. All the acquired
data are stored in local file and periodically updated. Aware [9]
is the Android framework developed for context measuring,
inference, logging and sharing, and it was built for developers,
researchers and regular smartphone users. Aware records
hardware, software and data based on user’s actions in its local
memory. These data are further analyzed using plug-ins and are
transformed into information that a user can understand.

Wawelite [11] is a framework for situational awareness in
environment monitoring. Its goal is to provide and organize
situational knowledge by acquiring data from sensors in the
environment. Some examples of such sensors are those that
monitor air pollution, aerosols, cloudiness etc. Applications
that use this framework, written in Java, observe the data
acquired from certain sensors on specific location and for a
specific time period. Samurai [12] is an expandable, event-
based architecture which integrates and demonstrates well-
known software modules for event processing (Esper), machine
learning (Weka) and knowledge representation (Parliament), as
RESTfull services. It acquires, aggregates, represents and
distributes contextual information. Its main characteristics
include:

 Conversion of low-level data and events into characteristics
which are easier to analyze and compare.

 Aggregation of data from various sources in order to increase
accuracy of deduced conclusions.

 Identification of frequent activities in event flow in order to
produce patterns that could be of interest.

WildCat [13] is a generic framework for the development
of context-aware applications, which is based on sensor-based
monitoring and data aggregation. Data are presented
hierarchically, as in Unix file system, and are updated
dynamically. It acquires, models, represents, understands and
delivers context. Data browsing is performed synchronously
and asynchronously, using pull and push methods. Esper is
used for data processing, more specifically CEP (Complex
event processing) engine and language similar to SQL in order
to create queries over data. CAMF [14], or context-aware
framework for machine learning developed for Android
devices, combines machine learning and context-aware
computing to provide services based on patterns of mobile
devices usage coupled with the context surrounding a specific
user. Components that this framework is comprised of are used
for acquiring, modeling, representing, understanding and
interpretation of the context. CAMF is developed so to hide
physical sensors in order to ensure expandability and re-
usability, as well as the possibility for application to work
offline. Framework consists of three major levels. The first
level provides contextual information, the second one records
data and the third level provides Weka machine learning used
over contextual information. CAreDroid [19] is a framework
that is designed to decouple the application logic from the
complex adaptation decisions in Android context-aware
applications. CAreDroid, as part of the Android runtime
system, monitors the context of the physical environment and
intercepts calls to sensitive methods, activating only the blocks

Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1793

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

of code that best fit the current physical context. CAreDroid
allows applications developers to develop context-aware
applications without having to deal directly with context
monitoring and context adaptation in the application code.
System architecture is comprised of three levels: context
sensors that provide context information, system layer for
monitoring and adaptation and application layer.

HARMONI middleware [20] includes a light-weight event
engine that runs on the mobile device, and processes incoming
sensor data streams using rules that are appropriate for the
current context. Research suggests that appropriate context-
aware filtering can significantly reduce the volume of
transmitted medical data. There are four main components:
Event Engine which processes the data readings, Data
Adaptation component for converting sensors proprietary data
formats into a standard sensor stream format, the Rule Manager
and Rule Server on the backend interact with each other to
dynamically alter the processing rules, Data Transmission
component for transmitting compressed data to the backend
infrastructure and Local Action Manager component
responsible for manipulating settings on the local device.

CenceMe [21] middleware inferres physical and social
context and shares information through social network
applications. Social context detected locally on the device is
transferred to a backend server to match common shared social
contexts to raise social awareness. Classification can be done
on the phone with the support of the backend servers, or
entirely on the phone. Empath (Emotional Monitoring for
PATHology) [22] is a middleware to remotely monitor
emotional health for depressive illness. Patients’ diagnosis and
therapeutic treatment planning were supported by reports
generated by aggregating context such as sleep, weight,
activities of daily living, and speech prosody. The behavior
analysis routines run on the server and results would be
displayed on the touch screen fixed station at patients’ homes.
SystemSens [23] middleware captures usage context of mobile
phones. Usage context is the collection of users’ interactions
with research applications. The users’ interactions include
battery, call, CPU usage, cell location, data connection active
and traffic and telephony information events.

Most of the related researches, except [8], are implemented
as a framework for Android smart devices. Common to all
platforms is the general architecture of context-aware
framework where the first level provides contextual
information (sensing), the second records data (storing) and the
third level usually is the application that reacts to a specific,
deducted user’s situation or provides Weka machine learning
used over contextual information (processing and reasoning).
Also common is the usage of built-in sensors, while in [11]
data is acquired form sensors in the environment. Then usually
sensors send the acquired data to the service, which further
reasons the received data and notifies the application if needed.
Unlike most of the listed works, context-aware
systems/frameworks presented in [8-10] use local memory for
storing acquired data. In order to process data in [12] and [13]
integration and demonstration of software modules for event
processing (Esper) is featured. [12] and [14] propose

combination of machine learning and context-aware computing
in order to provide services.

In the most of the proposed solutions mobile devices serve
only as event sources and event filters, while the complete
event processing and machine learning is done on a backend
server. They don’t include advanced processing and analysis of
contextual data, nor generating a higher level of context and
situation. The built-in sensors of smart devices provide
applications with a continuous stream of context data. Event
processing rules are used to aggregate and correlate the sensor
data to more abstract and more meaningful situation data. Until
a few years ago mobile operating systems were rather
inefficient and the computing resources of mobile devices were
very limited. Along with the rise of computing power of mobile
devices the CEP for processing data streams is developed for
mobile devices. The execution of sophisticated event
processing rules directly on the mobile device is still a rather
new approach. Also performing the event handling of
embedded built-in sensors with CEP on the mobile device itself
can be considered as a rather new approach. Complete event
processing and machine learning should be server-independent
and could be processed locally. Our solution showed that
collected sensor data should be processed and stored locally on
device, and notifications for the application U/I or data
transmissions to the remote server are only necessary for events
considered as warning or dangerous health conditions.

III. EGOSENSE – A FRAMEWORK FOR CONTEXT PROCESSING
AND ANALYSIS

To support the development of mobile context-aware
applications we developed a framework for context-aware
services and implemented a demo application with impact on
health care domain. Developed framework integrates
components for: collecting data from sensors, complex events
processing, reasoning and storing important data on resource
limited devices. Events considered as important are presented
to the user as notification of dangerous health condition and
sent to the remote server for further processing and
presentation. Evaluation and demonstration of the proposed
framework is done by the development of a demo Android
application for mHeatlh. The framework is designed in a way
that the layers are totally independent and customizable
depending on user needs. Applications of services in this area
are highly interesting now days and particularly relevant for
health care applications. Actions taken by the highest level in
the architecture in a safe and reliable way are informing the
user and other interested parties about the alarming situation
related to the user's health condition.

Figure 2 presents the organization and the architecture of
the system. The architecture consists of four basic layers,
service executed in the background and U/I component for
adjustment of variable parameters of context-aware service.
The architecture of the system is comprised of three major,
mutually connected subsystems: sensing, thinking and acting.
Sensing subsystem consists of sensors that are being used,
situations that need to be recognized and information that is
going to be acquired. After that, techniques for context
understanding are being realized. Finally, appropriate actions

Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1794

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

are defined according to a specific need. Sensors at the bottom
of the architecture acquire data which are then sent to the layer
for data retrieval and preprocessing. Layer for context
understanding as a result produces contextual information as
needed by the application and services. Management layer can
further perform queries over retrieved context information and
distribute updated values to the background service and
application.

The first level in the architecture retrieves data from
physical sensors via sensor provider. By using Funf framework
[15], application gets the information of user’s location.
Accelerometer and Google Play services send the notification
of physical activity and the position of the user. Motion
detector provides information that is used to calculate speed of
a user’s motions, and sensors provide information about the
temperature, pulse (heart rate) and cardiac pressure of a user.
Sensors data are retrieved over a certain period of time or after
the change of values has been detected. Furthermore, it is
possible to ask for the current value from a specific sensor
using the implemented methods, if there is a need for it. All the
data are deserialized in DTO, i.e. objects for data transfer, and
are propagated to the next level that gathers them and prepares
them for further processing. The next level for acquiring and
analysis of contextual data from sensors, accepts retrieved data
and classifies them in previously defined objects for storing
values that are used for analysis of specified contexts. One
object stores contextual data from specified sensors and every
time one sensor retrieves and pushes a new value a specified
object updates its previously stored values and raises event for
the next level in order to notify it that the change in sensor
values has occurred.

Fig. 1. System Architecture.

CEP (Complex Event Processing) is a software technology
that provide processing of continuous streams of data in near
real-time. When applied on Android smart phones, CEP use
phone sensors and additional contextual information available
on smart phones in real time. CEP is used for processing
generated data flow from sensors and detected events. This
level, after receiving notification and detecting the event,
initiates appropriate actions based on received information by
using Asper. Asper detects every change on sensors, generates
a new event, executes a query on event flow which should
check whether any of the conditions are fulfilled and notifies

the next level every time when one of the above mentioned
user cases is realized.

The highest level (monitoring level), generates a
appropriate message if a condition for warning or alarm is
fulfilled. It further propagates the message to the background
service responsible for sending a notification to a user, sending
notification via web service and sending a text message to all
interested parties. Service is automatically run after an Android
device is turned on and, for variable parameters in cited user
cases, sets predefined values stored in device’s memory. If
there is a need to change parameters using the user interface
component, the user can add desirable values and the changes
will again be stored in devices memory.

IV. IMPLEMENTATION OF EGOSENSE FRAMEWORK
All the values acquired from sensors are joined with the

location of the user and current time. In order to make this data
readable to the end user and usable by mobile applications, it
was necessary to develop a context management framework for
acquiring, processing and analyzing these data so that their
functionality can be used by mobile applications via the
developed API. This framework was developed with the aim to
provide context information of a higher level, that would enrich
user’s location with his/her situation and circumstances. It was
shown how to process and analyze the data acquired from
various physical sensors in order to generate the context,
situation, behavior and activity of a higher level user, which
could allow services to send contextual information to the
interested parties. A demo Android application was developed
using the framework that represents Personal Health
Monitoring, and it should detect urgent or alarming health
condition of a mobile user and initiate appropriate actions.
Android application is based on Funf, Asper and Google Play
Services libraries that have been included in this Android
project in order to integrate their functionalities.

For gathering sensors data and user’s activities which make
up the context, Funf - Open Sensing Framework has been used
together with sensors for motion, activity, pulse, pressure and
temperature detection. For context processing, interpretation
and understanding, CEP (Asper as Android port of Esper) has
been used. The appropriate techniques and components for user
context detection and processing on Android smart devices are
implemented, all of which is brought together in a context-
aware mobile service based on previously developed
components. The following use cases have been selected and if
some of these actions are detected, notifications to a user,
notifications via web services and text message of a warning to
other interested parties are activated:

 The user is still (he/she lies), pulse is higher than P, blood
pressure is higher than K, and cardiac pressure is higher
than S -> Warning!

rule : "warning"
select warningEvent from pattern[every warningEvent =
WarningEvent (UserIsNotWalking(isWalking),
PulseIsHigherThanNormal(pulse, P),
SystolicPresureIsHigherThanNormal(systolicPresure, K),

Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1795

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

DiastolicPresureIsHigherThanNormal(diastolicPresure,
S))]

 The user is moving, the speed is higher than S, temperature
of the environment (body) is above the limit T, and pulse is
increased by 30% in the last minute. User’s current location
is in coordinates: X, Y -> User is in danger!
rule : "danger"
select dangerEvent from pattern[every condition =
DangerEvent -> (timer:interval(60 sec) and dangerEvent =
DangerEvent(PulseIncreasedBy30Percent(condition.pulse),
!UserIsNotWalking(isWalking),
BodyTemperatureIsHigherThanNormal(temperature, T),
MovingSpeedIsHigherThen(speed, S),
CurentLocationIn(location, X, Y)))]

In the demo application we developed a set of methods for

organizing and preserving context data gathered from sensors.
All processing happens in a background service which is
invisible to the user. For example, every time user’s blood
pressure changes that sensor data is being transferred to the
application layer that deals with gathering and context data
organization. If that change has an influence on processed use
cases then client’s Android application generates high-level
context in order to inform user if alarming condition has
occurred. In case of detecting urgent health condition actions
like sending text messages to the interested parties (phone
numbers are preconfigured in the application for every user),
displaying notification on user’s smartphone and sending
notification via web service to web server occur one after the
other. Interested parties in those notifications can see
explanations, with exact time and date, about the problem
originated in a given moment regarding the state of health of
the user and current monitored health parameters which led to
that health condition. Restful Web service is developed in order
to be responsible for sending the notifications related to
detected events in Android application to the Web server. Web
application is developed in order to store alarming health
conditions in SQL database for every user. Also Web
application is used for visualization and analysis of critical
events detected by the user’s smart phone. With simple
architecture containing application layer (service layer) and
data access layer, MVC Web API on server side receives
client’s notifications in form of HTTP Post requests. Received
data are used later for generating all kind of reports for every
user (for example how much disturbing health changes the user
had during every night in this month). In addition the web
server also sends email messages to preconfigured addresses
(email addresses are stored in a database for every user
separately) for every user when notification of his alarming
health condition has been received.

The Android application is tested by several test users on
real mobile devices which run Android operating system with
API level 2.3.5 (Gingerbread) and above. Server application
was hosted on Microsoft Azure cloud server and database was
hosted on SQL Server 2012. The system was active and
reliable 24/7. With an active internet connection, the
application was able to send notifications to the web server
and, of course, to send text messages and display notifications

to the user. When there was no internet connection text
messages were sent to the interested parties and notifications
were displayed on the user’s smartphone. From the database
hosted on Web server reports were generated for specific user
for specified date and time intervals in order to monitor
disturbing changes in their health conditions.

V. EVALUATION
The client application has been developed with the Android

application framework that provides access to the local device
resources like hardware sensors of the device and processing
the data by using CEP. So if the screen consumption is taken
into consideration, and having in mind that the core of Android
operating system consumes 34.9% of processor resources, it
can be said that by testing developed context-aware service on
four different smartphone devices which run different versions
of Android OS we concluded that implemented activity
recognition system does not influence consumption and
processor usage in any significant way. It is proved that the
presented architecture of context-aware service, implemented
through a demo application for the Android operating system,
could be implemented, without any difficulty, for any other
operating system running on smartphones by using similar
open source technologies specialized for use on the selected
operating system. The proposed architecture offers advantages
like reduced network traffic and exploiting local processing
power. To be more specific, sensor data is processed directly
on the mobile device. Cloud server is used for preserving logs
related to alarming health conditions. Because the sensors of
potentially many users may produce high volumes of data, the
overall network traffic is reduced significantly. Also processing
data on the smart devices exploits only the processing power of
mobile devices.

Fig. 2. Amount of transmitted data to the remote server

From Figure 2, we see that appropriate filtering of sensor
data results in a significant reduction in the amount of data
transmitted to the remote (cloud) server. Thus, we conclude
that context-aware events filtering can lead to a significant
reduction in the amount of data that must be transmitted by a
mobile device. In many sensor environments, a large fraction
of the collected data conforms to expected patterns, and data
transmissions are only necessary for notification about the
warning or danger events for user’s health condition. That
behavior can allow locally performing an accurate and
continuous analysis of the users’ health status by minimizing
network transmission and maintaining appropriate levels of
security and privacy by using HTTPS protocol for
communication with the cloud server.

Engineering, Technology & Applied Science Research Vol. 7, No. 4, 2017, 1791-1796 1796

www.etasr.com Milic and Stojanovic: EgoSENSE: A Framework for Context-Aware Mobile Applications Development

CPU utilization regarding developed context-aware service
seems to be appropriate and it doesn’t have a significant
influence on the performance of smart devices because events
processing and reasoning use very small fragments of available
resources. Also, we observed the memory usage of the
reasoning system on the four mobile devices considered. As
further consideration, it is possible to note that memory usage
does not significantly vary depending on the mobile device
used. As the number of collected sensor data increases by time,
the overall memory usage of application grows up which
increase the pattern matching time and the overall reasoning
time.

Fig. 3. Personal Health Monitoring Application screen shots.

In the health care domain, the presented platform proved to
be secure and reliable, because it operates in the background
and it is very reliable from the standpoint of the values
obtained with built-in sensors. The technologies used to handle
sensor data are free and open source, so they can be adapted for
handling users’ specific requests. The user does not need to
interact with the service or to have any technical knowledge,
because the service will perform all the work and inform him
of the alarming situation regarding his health condition.

VI. CONCLUSION
Possibilities of applying context-aware systems are perhaps

the greatest in the field of health care, where we can see an
increasing interest in the systems that can detect human
activities. The methods for activity tracking currently used,
often require a lot of time and resources, and are usually in the
form of an additionally paid person who is in charge of
monitoring the patient and reporting his/her condition or in the
form of making a patient independently notify a doctor about
his/her condition in prescribed time intervals. An automatic
activity recognition system would lower the risk of mistakes
and, in addition, it would increase the quality of health care,
since it would save the time that medical staff usually spends in
acquiring and sorting the data. Furthermore, non-invasive
monitoring will enable people to live their everyday lives
undisturbed while, at the same time, they would offer their
doctors a more precise presentation of their activities. Another
possibility of application is social networks which are

becoming an important part of everyday life. Existing
communication services allow a simple exchange of textual
messages, photos, videos, etc. With the use of sensors, a richer
user context could be shared with friends in a much more
natural and easier way. Automatic activity recognition would
enable users to share their current physical activity with their
friends via social networks. The results of this research work
show that it is possible to develop mobile context-aware
applications which would adapt to a user using his/her current
context and which would, in accordance with the general
context, access services in order to acquire or deliver adjusted
information and services.

REFERENCES
[1] A. K. Dey, “Understanding and Using Context”, Personal and

Ubiquitous Computing Journal, Vol. 5, No. 1, pp. 4-7, 2001
[2] S. Loke, Context-Aware Pervasive Systems: Architectures for a New

Breed of Applications. Auerbach (CRC Press), 2006
[3] M. Baldauf, S. Dustdar, F. Rosenberg, “A Survey On Context-Aware

Systems”, International Journal of Ad Hoc and Ubiquitous Computing,
Vol. 2, No. 4, pp. 263-277, 2007

[4] T. Gua, H. K. Pung, D. Q. Zhang, “A service-oriented middleware for
building context-aware services”, Journal of Network and Computer
Applications, Vol. 28, pp. 1–18, 2005

[5] J. Koolwaaij, A. Tarlano, M. Luther, P. Nurmi, B. Mrohs, A. Battestini,
R. Vaidya, “Context Watcher ─ Sharing context information in everyday
life”, IASTED Conference on Web Technologies, Applications and
Services (WTAS), 2007

[6] B. van Wissen, N. Palmer, R. Kemp, T. Kielmann, H. Bal,
ContextDroid: an Expression-Based Context Framework for Android,
PhoneSense 2010, Zurich, Switzerland, 2010

[7] T. Hasu, ContextLogger2- A Tool for Smartphone Data Gathering, HIIT
Technical Reports 2010-1, Aalto University, Finland, 2010

[8] M. R. H. Toivonen, R. P. A. Oulasvirta, “ContextPhone: A Prototyping
Platform for Context-Aware Mobile Applications”, Pervasive
Computing, Vol. 4, No. 2, pp. 51-59, 2008

[9] AWARE Android Mobile Context Instrumentation Framework, 2014,
http://www.awareframework.com/

[10] J. Dunkel, R. Bruns, S. Stipković, “Event-Based Smartphone Sensor
Processing for Ambient Assisted Living”, 2013 IEEE Eleventh
International Symposium on Autonomous Decentralized Systems
(ISADS), Hannover, Germany, March 6-8 , 2014

[11] M. Stocker, M. Ronkko, M. Kolehmainen, “Abstractions from Sensor
Data with Complex Event Processing and Machine Learning”, 7th Intl.
Congress on Env. Modelling and Software, San Diego, CA, USA, 2014

[12] D. Preuveneers, Y. Berbers, “SAMURAI: A Streaming Multi-tenant
Context-Management Architecture for Intelligent and Scalable Internet
of Things Applications”, International Conference on Intelligent
Environments, Shanghai, 2014

[13] Wildcat, http://wildcat.ow2.org/
[14] A. I. Wang, Q. K. Ahmad, Camf – Context-Aware Machine Learning

Framework For Android, Institutt For Datateknikk Og
Informasjonsvitenskap, 2010

[15] Funf open sensing framewok, http://www.funf.org/about.html
[16] Android Activity recognition, https://tsicilian.wordpress.com/2013/09

/23/android-activity-recognition/
[17] Low-power sensors, https://developer.android.com/about/versions/

kitkat.html
[18] Event Processing with Esper and NEsper, http://esper.codehaus.org/

tutorials/tutorial/tutorial.html
[19] S. Elmalaki, L. Wanner, M. Srivastava, “CAreDroid:

AdaptationFramework for Android Context-Aware Applications”,
MobiCom '15 The 21st Annual International Conference on Mobile
Computing and Networking, 2015

