
Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2459-2463 2459

www.etasr.com Hassan et al.: SLA Management For Virtual Machine Live Migration Using Machine Learning with …

SLA Management For Virtual Machine Live
Migration Using Machine Learning with Modified

Kernel and Statistical Approach

M. K. Hassan A. Babiker M. B. M. Amien M. Hamad
Future University
Khartoum, Sudan

memo1023@gmail.com

Neelain University
Khartoum, Sudan

amin.31766@hotmail.com

University of Gezira
Wad Madani, Sudan

magdy_baker@yahoo.co.uk

Universiti Teknologi Malaysia
Johor Bahru, Malaysia
Taza1040@gmail.com

Abstract—Application of cloud computing is rising substantially
due to its capability to deliver scalable computational power.
System attempts to allocate a maximum number of resources in a
manner that ensures that all the service level agreements (SLAs)
are maintained. Virtualization is considered as a core technology
of cloud computing. Virtual machine (VM) instances allow cloud
providers to utilize datacenter resources more efficiently.
Moreover, by using dynamic VM consolidation using live
migration, VMs can be placed according to their current
resource requirements on the minimal number of physical nodes
and consequently maintaining SLAs. Accordingly, non optimized
and inefficient VMs consolidation may lead to performance
degradation. Therefore, to ensure acceptable quality of service
(QoS) and SLA, a machine learning technique with modified
kernel for VMs live migrations based on adaptive prediction of
utilization thresholds is presented. The efficiency of the proposed
technique is validated with different workload patterns from
Planet Lab servers.

Keywords-virtual machine; migration; machine learning; SLA

I. INTRODUCTION

Resource optimization has been improved significantly by
virtualization. It introduced isolation between application and
the physical resource [1], it allows live virtual machines (VMs)
to seamlessly move between physical hosts. This allows service
providers to host high availability applications and to better
commit to their level of service governed by a service level
agreement (SLA). Most applications in telecommunication
industry permit small fraction of downtime or no downtime at
all [2]. SLA violation may occur due to server’s resources
being over utilized. Therefore, high availability and fault-
tolerant systems are crucial in order to maintain such a
demanding policy which is costly in terms of capital and
operational expenses. Tightly controlled live migration can
provide solution to this problem by moving VMs with little or
no interruption but that is often against the agreed SLA.
However, these interruptions can cause performance
degradation which varies between applications [3-4]. Thus,
predicting live migration at the earliest time possible will
significantly contribute to reducing any performance
degradation due to SLA violation or from the duration of any
interruption. Our objective is to provide a machine learning and

statistical based predictive model to predict VM migration and
consequently maintaining the SLA. It is a heuristic based
predictive model where future SLA violation is to be predicted,
then migration decision will be made by a machine learning
algorithm classifier. CPU utilization, inter VM bandwidth
utilization and memory utilization will be used as potential
classifiers.

II. RELATED WORK

Resource optimization in cloud based data center has been
extensively investigated in recent years. Authors in [5]
suggested that live migration is to be handled by global policies
applied to redistribute the VMs, suggestion based on resources
classification into local and global policies. Authors in [6] have
adopted priority based approach to allocate the resources in the
virtualized clusters. In [9] dynamic consolidation problem was
addressed by using a heuristic based approach for the bin
packing problem. In [8] a threshold-based reactive approach to
dynamic workload consolidation has been proposed. However
it was applicable for certain types of applications. Popular
approaches such as VMware distributed power management [7]
have the drawback that they operate on fixed threshold values
which is not suitable for dynamic and unpredictable workloads
[9]. In our proposed model, we introduce an approach to set the
threshold values dynamically, depending on VMs historical
predicted data of the resource usage by each VM and machine
learning as a decision making approach. Static and dynamic
resource assignment policies in virtualized data centers is
discussed in [10, 11]. Authors in [12-15] classified VM
consolidation as centralized and decentralized. It was suggested
VM migration trigger point to be based on predefined
threshold, where on other hand other approaches [13, 15]
trigger migration after workload analyzed based on learned-
intelligent QoS-based threshold and predictive heuristic
methods [16]. Nevertheless, a few set of approaches [14, 15]
studied workload-independent QoS-based threshold approaches
for the purpose of SLA violation avoidance and efficient
migration management. In [16] VM placement problem with
traffic-aware balancing (VMPPTB) has been discussed and a
longest processing time based placement algorithm (LPTBP
algorithm) is designed to solve it. In addition to that, locality-
aware VM placement problem with traffic-aware balancing

Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2459-2463 2460

www.etasr.com Hassan et al.: SLA Management For Virtual Machine Live Migration Using Machine Learning with…

(LVMPPTB) is proposed. Authors in [17] proposed a VM
placement algorithm named ATEA (adaptive three-threshold
energy-aware algorithm) to reduce the energy consumption and
SLA violation. It is based on historical data collected from
resource usage by VMs to migrate VMs on heavily loaded to
lightly loaded hosts. All previous works did not consider inter
VM bandwidth and memory utilization effects on VM
consolidation problem and on SLA definition especially in
applications that do not tolerate any downtime or performance
degradation like the telecommunication applications [18].

III. SLA VIOLATIONS DETECTION

The VMs experience dynamic variable workloads, in a way
that hardware resources consumed by a VM arbitrarily change
over time. During this variation SLA can be breached or the
host can be over utilized, i.e. if all the VMs request their
maximum allowed physical resources. In such case, the
algorithm must have perfect knowledge of the time when the
SLA violation will occur before it actually occurs. Live
migrations can have negative impact on the performance of
applications in a VM during a migration. The length of a live
migration depends on the total amount of memory used by the
VM and the available network bandwidth. The migration time
and performance degradation experienced by a VMj is
expressed in (1) [15].

/j j jTm M B (1)

0

0.1 () ()
m

o

t T

dj j

t

U U t d t


  (2)

where Udj is the performance degradation by VMj during
migration, t0is the time when the migration starts, Tmj is the
time taken to complete the migration,Uj is the CPU utilization
by VMj , Mj is the amount of memory used by VMj and Bj is
the available network bandwidth.[15]

j dj djS x U  (3)
In (3) xdj is the performance degradation when the allocated

resource utilization for VMj is not aligned with the agreed SLA
and Sj is the total performance degradation by VMj. Thus, from
(3) in order to minimize the total performance degradation,
either Udj or xdj should be minimized. In this work we
concentrate on minimizing xdj as Udjis not only influenced by
the CPU utilization Uj, but is also depended on the amount of
memory used and the available network bandwidth as well.
Moreover, it is more likely that VMj will experience
performance degradation while the host resources utilization is
above the agreed SLA more than during the actual live
migration. In order to avoid SLA violation and performance
degradation, host should perform regular check on the system
utilization where an SLA violation detection algorithm should
be executed. One of the earliest methods relied on setting static
CPU utilization threshold to differentiate between overload and
non-overload states of the host. It is simple but inefficient for
dynamic workloads, particularly when different types of
applications share a physical node. In such case the system

should be able to automatically adjust its behavior based on the
workload patterns adopted by the applications [15].

A. Local Regression

Our approach, as depicted in Figure 1, relies firstly on work
load prediction based on statistical analysis of historical data
collected during the VMs’ lifetime. Local regression (LR) has
proved its efficiency as predictor method [17]. It is a model
used to build up a curve from localized subsets of data that
approximate the original input with the original data. LR
algorithm, derived from local regression algorithm. For each
new observation a new trend line is found [15] ො݃(ݔ) = ොܽ + ෠ܾ(4) ݔ

This trend line is used to predict the next observation ො݃(ݔ௞ାଵ) . The new observation can be a host resource
utilization such as CPU and memory ො݃(ݔ௞ାଵ) ≥ − ௞ାଵݔ ,1 ௞ݔ ≤ ௠ (5)ݐ

where tm is the maximum time required for a VM migration

Fig. 1. Proposed Method

B. Classification Trees

When a class is already known on prior in the training
samples, classification trees are effective. Let tp be a parent
node and tl, tr left and right child nodes of the parent node
respectively. Assume the learning sample with variable matrix
X with M number of variables xj and N observations. Let class
vector Y consist of N observations with total amount of K
classes. Classification tree is based on splitting rule that
performs the splitting of learning sample into smaller parts. We
already know that each time data have to be divided into two
parts with maximum homogeneity of left and right child nodes
will be equivalent to the maximization of change of impurity
function Δi(t): [19]

  () [()]p cit t E ii t  (6)
where tc represents the left and right child nodes of the parent
node. Assuming that the Pl, Pr probabilities of right and left
nodes, we get:[19]

  () () ()p l l r ri t Pi t P i ti t    (7)

Therefore, at each node classification trees solves the
following maximization problem:[20]

arg max ,

j=1,..., M [i(t () ()]

R
j j

p l l r r

x x

Pi t P i t



 
 (8)

Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2459-2463 2461

www.etasr.com Hassan et al.: SLA Management For Virtual Machine Live Migration Using Machine Learning with…

From (8) all possible values of all variables in matrix X for
the best split question will be searched through xj<xk

K which
will maximize the change of impurity measure Δi(t) [19].

C. Support Vector Machine

Support vector machines (SVMs) support nonlinear
classification and can find the hyper plane of maximal margin.
Given a training set of N data points 1{ }N

k k ky x  where xk є
n is the kth output pattern, the support vector method

approach aims at constructing a classifier of the form:

1
() [(,)]

N

k k kk
y x sign a y x x b


   (9)

Input (10) shows an example of hard-margin SVM with
noise free training data to be correctly classified by a linear
function. Data points D (or training set) are represented
mathematically [20, 21]

1 1 2 2{(,),(,),..........,(,)}m mD x y x y x y (10)

where xi is a n-dimensional real vector, yi is either 1 or -1
indicating the class to which the point xi belongs to. The SVM
classification function F(x) takes the form [20]

F(x) = w·x−b (11)

where b is the bias and is the weight vector , which will be
calculated during the training process. First, to correctly
classify the training set F(x) (or w and b) we must return
negative numbers for negative data points and positive numbers
otherwise, for every point xi in D in (12) [20]

wx-b>0 if yi = 1 , wx-b<0 if yi = -1 (12)

D. K-Nearest Neighbors

The k-nearest neighbors (KNN) is one of the simplest
methods for pattern classification. When combined with prior
knowledge it can be used to produce significant results [22]. In
the KNN each unlabeled example is classified by the majority
label among its k - nearest neighbors in the training set.
Therefore its classification performance depends on the
distance metric used to identify nearest neighbors. In the case
of missing prior knowledge, Euclidean distances between
examples represented as vector inputs are used to measure the

similarities in most KNN classifiers. Let 1{ , }n
i i ix y 


 denote a

training set of n labeled examples with inputs ix


 є and
discrete (in our case binary) class labels yi. We use the binary
matrix yij є {0,1} to indicate whether or not the labels match.
Our goal is to learn a linear transformation which we will use
to compute squared distances as [21]:

2(,) || () ||i j i jD x x L x x 
  

 (13)

IV. RESULTS AND ANALYSIS

In this work, workload was collected from CoMon project
[16]. Extracted data was part of more than a thousand VMs's
resource uilization distributed across the world. Samples were
selected from 6 servers for a period of one week with 5 minutes
measurement interval. CPUs and other resources were adjusted

manually with different resource utilizations for the purpose of
this experiment. The collected data did not contain memory and
inter VM bandwidth utilization. In this work average TPR,
Friedman rank summations and average ranking were used as
performance metrics. TPR is defined as VM migration being
correctly classified due to high utilizations. Since the provided
training set is not very large, cross validation has been used to
train, test and validate the classification techniques, the
provided data is divided into 5 folds and each fold is held out in
turn for training and testing.

At the initial stage, data is predicted using local regression
provided that prediction window is less than or equal to the
migration time as in the bond xk+1 - xk≤ tm and this is crucial to
maintain the SLA then different classification techniques are
investigated. Sample data were collected for the six servers
named 146CS4, cs-planetlab3, cs-planetlab4, Fobos, jupiter_cs
and node1. Figure 2 shows sample resource utilization for
146CS4 for one week. For the purpose of the experiment, SLA
has been identified as 90%, 80% and 70% for the 146CS4, cs-
planetlab3 and cs-planetlab4 servers and 80%,70% and 60% for
Fobos, jupiter_cs and node1 severs for the CPU, memory and
Inter VM bandwidth utilization respectively.

Using the workload data described above, all algorithms
mentioned in Table I have been applied and analyzed. TPR
results are shown in Tables II and III respectively and final
ranking is shown in Table IV. Friedman test was conducted to
assess the statistical significance for the obtained results.
Friedman test was chosen for multi classifier performance
assessment due to it is non parametric nature and wide use in
multi domain analysis [22]. The null-hypothesis tested is
defined as that all classifiers perform the same and the obtained
differences are not significantly random. Algorithms will be
ranked for each data set separately. Under the null-hypothesis,
all the algorithms are equivalent and so their ranks Rj should be
calculated as [22]:

2 2

1

12
[] () 3 (1)

(1)

k

F j
j

X R k k
nk k 

  
  (14)

TABLE I. CLASSIFICATION ALGORITHMS

Algorithm Table Column Head

Complex Tree
Fine distinction with Maximum number of

Leave Splits 100
Medium Tree Maximum number of Leave Splits 20

Simple Tree
Coars distinction with Maximum number of

Leave Splits 4

KNN Coars
Coars distinction between classes wih

neightbours set to 100
KNN Cosine Uses Cosine distance metrics
KNN Cubic Uses Cubic distance metrics

KNN Fine
Uses fine detailed distance metrics with

neighbour set to 1
KNN Medium Neighbour set to 10

SVM Coars Gausian Coars distinction with Gausian kernel
SVM Cubic Uses Cubic kernel

SVM Fine Gausian Fine detailed distinction Gausian kernel
SVM Liner Uses Linear Kernel

SVM Medium Fewer Distinctions are used
SVM Quad Uses quadretic Kernel

Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2459-2463 2462

www.etasr.com Hassan et al.: SLA Management For Virtual Machine Live Migration Using Machine Learning with…

(a)

(b)

(c)

Fig. 2. 146CS4 server resource utilization: (a) CPU (b) Memory (c)
InterVM

TABLE II. TPR RESULTS

Algorithm

TPR
146CS4
(90-80-
70)_105

cs-planetlab3
(90-80-
70)_54

cs-planetlab4
(90-80-70)_117

Complex Tree 89.7 96.4 95.9
Medium Tree 89.7 96.4 97.5
Simple Tree 89.7 96.4 96.7
KNN Coars 88.9 0 57.4
KNN Cosine 89.7 0 96
KNN Cubic 89.7 94.6 95.1
KNN Fine 82.9 96.4 98.4

KNN Medium 89.7 94.6 95.1
SVM Coars

Gausian
97.5 100 98.4

SVM Cubic

98.4 98.2 95.1
SVM Fine
Gausian

97.5 94.6 98.4

SVM Liner 89.7 98.2 96.7
SVM Medium 98.4 98.4 98.4

SVM Quad 89.7 96.4 98.4

The Friedman statistic is distributed according to XF
2 with

k−1 degrees of freedom. Level of significance at p < 0.05 is
chosen. If the null-hypothesis is rejected, then we can proceed
with a post-hoc test. The Nemenyi test is used to compare
classifiers to each other. If the corresponding average ranks

differ by at least the critical difference, the performance of two
classifiers will be considered significantly different. In this
work average TPR, Friedman Rank summations and average
ranking are used as performance metrics.

TABLE III. TPR RESULTS

Algorithm

TPR

fobos(80-
70-60)_25

jupiter_cs
(80-70-
60)_17

node1 (80-70-
60)_57

Complex Tree 96 88.2 100
Medium Tree 96 88.2 100
Simple Tree 96 88.2 100
KNN Coars 0 0 0
KNN Cosine 52 10 59
KNN Cubic 92 20 86
KNN Fine 92 47.1 93

KNN Medium 92 10 86
SVM Coars

Gausian
100 10 80.7

SVM Cubic

96.5 64 93

SVM Fine
Gausian

44 5 75.4

SVM Liner 96 11.8 68.4
SVM Medium 88 41.2 41.2

SVM Quad 88 52.9 96.5

TABLE IV. FINAL RANKING

Algorithm

Final Ranking

Average
TPR

Friedman
Rank

Summations

Average
Ranking

Medium Tree 94.63333 13 2.166667
Simple Tree 94 14 2. 333333

Complex Tree 94.3 16 2.666667
SVM Cubic 90 16 2.666667
SVM Coars 79.4 17 2.833333
SVM Quad 86.89 17 2.833333
KNN Fine 84.96 20 3.333333

SVM Medium 77.26 23 3.833333
SVM Liner 76.8 24 4
SVM Fine 68.3 27 4.5

KNN Cubic 76.2 28 4.666667
KNN Medium 76.2 28 4.666667
KNN Cosine 49.6 33 5.5
KNN Coars 24.2 41 6.833333

From Table IV we see that the tree based algorithms show

better performance compared to other algorithms, whereas
KNN shows the worst performance. Medium tree has average
TPR of 94.63% with Friedman Rank summations of 13 and
overall Friedman ranking of 2.166667. Now to measure
statistical significance using Friedman test XF

2 was calculated
as 154.66 and found to be larger than the critical value of
p=23.68 which indicates the statistical significance of the
obtained TPR values. Accordingly null hypothesis that tested
classifiers have the same performance is rejected. Thus,
Nemenyi test is used to pinpoint where the significance lies. qa
is found to be 3.353 and based on two pair testing ,we failed to
reject the null hypothesis between medium, simple and
complex tree in addition to SVM Cubic, SVM Coars, SVM
quad and KNN Fine. However, medium tree shows better
performance in terms of average TPR, Friedman Rank

Engineering, Technology & Applied Science Research Vol. 8, No. 1, 2018, 2459-2463 2463

www.etasr.com Hassan et al.: SLA Management For Virtual Machine Live Migration Using Machine Learning with…

summations and average Friedman ranking. In addition to that,
medium tree algorithm results were consistent among all tested
data.

V. CONCLUSION

In this work, machine learning based approach with
modified kernel along with Friedman rank summation and
average ranking have been used for dynamic live migration
based on adaptive prediction of utilization thresholds. From the
analysis of the proposed approach different classification
techniques have been used to predict VM migration. It is
shown that the regression trees have more accuracy compared
to SVM and KNN. This approach can be used to manage SLA
in virtualized cloud based data centers for critical applications
like telecommunication ones, especially applications with strict
SLA. Further analysis can be made on other dynamic
consolidation problems such as VM placement following the
approach presented in this paper.

REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, A. Warfield, “Xen and the art of virtualization”,
19th ACM Symposium on Operating Systems Principles, pp 164-177,
2003

[2] S. Akoush, R. Sohan, A. Rice, A. W. Moore, A. Hopper, “Predicting the
Performance of Virtual Machine Migration”, IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, 2010

[3] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, “Live migration of virtual machines”, 2nd Symposium on
Networked Systems Design and Implementation, pp 273-286, 2005

[4] A. B. Nagarajan , F. Mueller, C. Engelmann, L. Scott, “Proactive fault
tolerance for HPC with Xen virtualization”, 21st Annual International
Conference on Supercomputing, pp 23–32, 2007

[5] R. Nathuji, K. Schwan, “Virtual power: Coordinated power management
in virtualized enterprise systems”, ACM SIGOPS Operating Systems
Review, Vol. 41, No. 6, pp. 265-278, 2007

[6] Y. Song, H. Wang, Y. Li, B. Feng, Y. Sun, “Multi-tiered on-demand
resource scheduling for VM-based data center”, 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pp. 148-
155, 2009

[7] VMware Inc, VMware distributed power management concepts and use,
2010

[8] A. Beloglazov, R. Buyya.,Adaptive Threshold-Based Approach for
Energy-Efficient Consolidation of Virtual Machines in Cloud Data
Centers, Dept. of Computer Science and Software Engineering,
University of Melbourne, 2010

[9] T. C. Ferreto, M. A. S. Netto, R. N. Calheiros, C. A. F. De Rose, “Server
consolidation with migration control for virtualized data centers”, Future
Generation Compute Systems, Vol. 27, No. 8, pp 1027–1034, 2011

[10] T. Wood, G.Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, M. D.
Corner, “Memory buddies: exploiting page sharing for smart co-location
in virtualized data centers”, ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pp. 31-40,2009

[11] T. Hirofuchi, H. Nakada, S. Itoh, S. Sekiguchi, “Reactive consolidation
of virtual machines enabled by post copy live migration”, 5th
international workshop on Virtualization technologies in distributed
computing, pp 11-18, 2011

[12] D. Kakadia, N. Kopri, V. Varma, “Network-aware virtual machine
consolidation for large data centers”, 3rd International Workshop on
Network-Aware Data Management, 2013

[13] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, L. Yuan, “Online self-
reconfiguration with performance guarantee for energy-efficient large-
scale cloud computing data centers”, IEEE International Conference on
Service Computing, pp. 514-521, 2010

[14] M. Sindelar, R. K. Sitaraman, P. Shenoy, “Sharing-aware algorithms for
virtual machine co location”, AMC 23rd symposium on Parallelism in
algorithms architectures, pp. 367-378, 2011

[15] A. Beloglazov, “Energy-efficient management of virtual machines in
data centers for cloud computing”, PhD Thesis, Department of Computer
Science, Melbourne University, 2013

[16] T. Chen, X. Gao, G. Chen, “Optimized Virtual Machine Placement with
Traffic-Aware Balancing in Data Center Networks”, Scientific
Programming, Vol. 2016, Article ID 3101658, 2016

[17] Z. Zhou, Z. Hu, K. Li, “Virtual Machine Placement Algorithm for Both
Energy-Awareness and SLA Violation Reduction in Cloud Data
Centers”, Scientific Programming, Vol. 2016, Article ID 5612039, 2016

[18] M. Khalaf Alla H. M., A. Babiker, M. B. M. Amien, M. Hamad,
“Review in cloud based next generation telecommunication network”,
Jurnal Teknology, Vol. 78, No. 6, pp. 51–57, 2016

[19] R. Timofeev, Classification and Regression Trees (CART). Theory and
Applications, MSc Thesis, Humboldt University, Berlin, 2004

[20] H. Yu, S. Kim, “SVM Tutorial: Classification, Regression, and
Ranking”, In: Handbook of Natural Computing, pp. 479-506, Springer,
2012

[21] K. Q. Weinberger, L. K. Saul, “Distance Metric Learning for Large
Margin Nearest Neighbor Classification”, Journal of Machine Learning
Research, Vol. 10, pp. 207-244, 2009

[22] N. Japkowicz, M. Shah, Evaluating Learning Algorithms: A
Classification Perspective, Cambridge Press, 2011

