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Abstract—In this paper, a comprehensive study on the seismic 
behavior of fractured concrete gravity dams during ground 
shakings is carried out considering dam–reservoir interaction 
effects. To gain the seismic behavior of the whole system, finite 
and boundary elements are employed to model the liquid region 
and the cracked structure, respectively. Formulation and 
different computational aspects of the suggested staggered hybrid 
approach are thoroughly argued. A computer code was 
developed in order to discuss the presented hybrid BE–DE 
technique and comparisons are made between the obtained 
results and those reported in the literature. To gain this goal, 
several problems of seismic excitations in frequency- and time-
domains are presented employing the proposed approach, 
showing that the present results agree well with the results from 
other numerical procedures. The cracked Koyna Dam is 
scrutinized, considering the dynamic interaction between dam 
and reservoir with focus on the nonlinear behavior due to its top 
profile crack. The developed numerical model is rigorously 
validated by extensive comparisons with available results in the 
literature in which the dam–reservoir interaction were simplified 
by added masses. It can be concluded that there is significant 
disparity between the overturning and sliding response schemes 
of the nonlinear analysis and those of added mass technique. 

Keywords-seismic behavior; concrete gravity dams; boundary 
elements; distinct elements; dam–reservoir interaction  

I. INTRODUCTION 

Concrete gravity dams behave differently from other 
structures because of their size and their interactions with the 
reservoir and foundation. In fact, concrete gravity dams might 
have well cracked at their foundation or at a specific height 
caused by seasonal temperature variations, concrete shrinkage 
or earlier earthquakes. Apart from those cracks with confined 
depth that exist on both the upstream and downstream faces 
and which will possibly develop subjected to static or dynamic 
conditions, some cracks may have expanded so much that they 
almost penetrate the monoliths. Consequently, these existing 
cracks weaken the stability of concrete gravity dams principally 
due to the nonlinear behavior of sliding and overturning, during 
strong earthquakes. Therefore, nonlinear response of cracked 

concrete gravity dams has been investigated by different 
techniques to study the propagation of cracks in this type of 
dams. A number of researches focused on the propagation of 
cracks in the dam, something that includes opening and closing 
of the cracks [1-3]. 

Several researches have been conducted based on 
experiments, focusing mainly on the process of crack initiation 
and propagation [4-6]. On the other hand, little attempts have 
been made for the case in which cracks are expected to 
penetrate from upstream to downstream in non-overflow 
monoliths of the dam. In comparison with various researches 
concerning crack event and propagation in concrete gravity 
dams, little efforts have been done to demonstrate the seismic 
behavior of cracked concrete gravity dams. The overturning 
analysis of the Koyna Dam was first investigated by authors in 
[8] assuming no sliding of the top block, which was regarded as 
a rigid body, ignoring the interaction between the top and 
bottom blocks and adopting a horizontally penetrated crack. 
Their results indicated that under these assumptions the top 
block remained stable and overturning of the top profile would 
not happen under future earthquake of similar magnitude. 
However, the top block is comparatively large, and the 
interaction between the two blocks may considerably affect 
their behavior. Authors in [9] employed contact elements 
located at the dam–foundation interface in order to ascertain 
the seismic sliding and uplifting response of concrete gravity 
dam monoliths. Authors in [10] scrutinized the frictional base 
sliding of concrete gravity dams subjected to seismic ground 
motion, in which the whole dam was modeled as a single-
degree-of-freedom system. Presented results indicate that the 
dam flexibility affects significantly the sliding displacement in 
the downstream direction. Based on the single-degree-of-
freedom system criterion, authors in [11] developed an 
empirical formula for estimating the seismic induced slip of 
concrete gravity dams at the rock interface with finite-element 
analysis. Employing finite element method (FEM), authors in 
[12] calculated the base sliding of the gravity dams during 
ground excitation. Results of their parametric study of typical 
gravity dams revealed how the earthquake-induced sliding is 
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affected by the characteristics of the ground motion and dam 
system.  

By using FEM, authors in [13] investigated experimentally 
the friction model of concrete lift joint interfaces and applied 
the model to assess the static and dynamic behavior of concrete 
gravity dams. They simulated the contact conditions with gap-
friction elements that are appropriate for the case of small 
displacement and concluded that the sliding displacement is 
reduced in multi-crack cases. Using the continuous mass of 
liquid as lumped masses in the horizontal direction for the 
reservoir effects, authors in [14] investigated some important 
phenomena such as the jounce of the upper block of the 
fractured Koyna dam in detail, by using the distinct element 
method (DEM). Afterwards, authors in [15] developed a rigid 
model with three-degrees-of-freedom considering sliding, 
rocking, rock-sliding, and drifting modes. They concluded that 
a large coefficient of friction does not surely prevent sliding, 
and rocking and drifting modes should be mainly considered in 
estimating the stability of cracked concrete gravity dams. 
Employing rigid block models, authors in [16] suggested a 
convenient and simple tool to supply a conservative estimate of 
upper cracked block residual sliding displacements. Authors in 
[17] inspected the stability of a gravity dam on jointed rock 
foundation and also the seismic stability of the upper part of the 
fractured Konya dam using discontinuous deformation analysis 
(DDA). Authors in [1] examined the seismic response of Pine 
Flat Dam with penetrated cracks using the finite element 
modeling technique but limited in scope to small deformation 
of the continuum. 

Hydrodynamic interaction in Dam–reservoir system is a 
significant aspect in seismic response of concrete gravity dams 
that may be taken into account by various numerical methods 
[18, 19]. A number of previous researches on the dynamic 
behavior of concrete gravity dams with penetrated cracks were 
performed considering the simplified added mass technique for 
reservoir effects [14, 16, 20]. In fact this technique, applying 
the results of rigid dam–incompressible fluid interaction, leads 
to approximate results in the seismic response of fractured 
concrete gravity dams. More authentic results may be achieved 
through the use of numerical methods, among which FEM and 
BEM (boundary element modeling) are most popular. To 
particularly perform the nonlinear dam analysis, due to the 
needs for iterative solutions and very short consecutive time 
steps, minor degrees of freedom for reservoir domain is a more 
proper way. Besides, in the FEM modeling of reservoir, a 
radiating condition (for instance, Sommerfeld condition) 
should be employed to the far-field truncated boundary of 
reservoir to consider radiation damping. Thanks to substantial 
characteristic of BEM that is more felicitous for boundless 
domains, the technique is able to consider the radiating 
damping with much less additional attempt compared with the 
FEM analysis of reservoir. 

Consequently, the dynamic analysis of dam–reservoir 
system is achieved by employing the BE equations governing 
the reservoir region coupled with the dam FE equations of 
motion as a straightforward approach for observation of the 
whole system behavior [21, 22]. Using a hybrid DE–BE 

method, authors in [23] modeled the seismic behavior of the 
cracked Koyna dam focusing on the upper profile crack.  

With the significant improvements of discontinuous media 
methods like DEM, it becomes not very difficult to investigate 
the stability of fractured dams in destructive earthquakes. In 
this paper, DEM is employed to assess the seismic response of 
the Koyna dam with penetrated cracks subjected to 
earthquakes. This analysis method allows relative motion 
between elements, and is specifically appropriate for problems 
in which the relative motion between blocks contributes 
considerably to the general structure deformation. As a result, 
reservoir effects are accurately modeled by the use of BEM, 
and then a coupled BEM–DEM algorithm is developed to 
analyze the seismic behavior of cracked gravity dams 
examining dam–reservoir interaction effect. 

II. HYBRID FORMULATION 

A coupled numerical method which combines the distinct 
elements for the fractured concrete gravity dam and the 
boundary elements for the reservoir domain is developed in the 
time domain. A sketch of dam-reservoir system is exposed in 
Figure 1. 

 

 
Fig. 1.  Cracked dam scheme on rigid foundation. 

The following assumptions are considered in the 
formulation of governing equations: 

 Seismic response analyses are carried out using the 
horizontal acceleration component. 

 The dynamic dam-foundation interaction is ignored. 

 The dam–reservoir system is analyzed under two-
dimensional (2D) condition.  

 The liquid in the reservoir is inviscid and compressible 
resulting in an irrotational flow with negligible 
amplitudes.  

 The nonlinear analysis of the dam is employed for the 
existing cracked zone and the linear elastic analysis is 
adopted for the deformable blοcks. 

 Uplift pressures are disregarded in the cracked zone. 

A. BEM Formulation for the Reservoir Domain 
A short explanation of the reservoir BEM follows. 

Emphasis is principally devoted to the important aspects of the 
method, subjected to some modifications compared to previous 
works [24, 25]. These modifications may be remarked as:  
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 At the far away from the upstream face of the dam, the 
domain is left opened because the radiation boundary 
condition is automatically satisfied by employing the 
Hankel fundamental solution as the most exact Green’s 
function of boundless domains. 

 Dynamic boundary conditions of the free surface 
gravitational waves and the bottom partial absorption 
are considered. 

For a compressible, irrotational and inviscid fluid, the 
governing equation of liquid motion is expressed by the well-
known Helmholtz differential equation (1): 
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    (1) 

in which,  is the velocity potential, and c denotes the acoustic 
wave velocity in fluid. Considering harmonic ground motion, 
the velocity potential in the reservoir can be described in the 
frequency domain as φ(t) = φ(ω)exp(iωt), where ω represents 
the exciting frequency and φ(ω) the complex-valued frequency 
response function for the velocity potential. The boundary 
element method is used to solve the Helmholtz equation with 
the following boundary conditions (see Figure1): 

a) Dynamic and kinematic boundary condition of the 
reservoir free surface (S4): 
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b) The boundary condition at the fluid–solid interface (S1): 
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n
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where n is the unit normal vector, an is the normal acceleration 
on the interface and ρ is the mass density of the fluid. 

c) The boundary condition at the foundation–reservoir 
interface (S2) for the reservoir bottom partial absorption: 
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in which, β=(ρbcb/ρc) is the acoustic impedance ratio of the 
foundation to reservoir water, ρb and ρ represent the mass 
densities of foundation material and water respectively, and cb 
represents the compression wave velocity of the foundation. 

d) And eventually, for the reservoir up stream radiation 
condition (S3) of acoustic waves, no additional discretization is 
required as elucidated above. 

The linearized Bernoulli equation for pressure represents 
the hydrodynamic pressure acting on the dam system. 

P
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Employing the constant boundary element formulation, the 
following equations may be derived to solve the motion of 
liquid in discretized form [25]. 

Hφ Gq      (6) 

where H and G stand for boundary element coefficient matrices 
for the potential vector φ  and the flux vector q, respectively. 
The components of H and G coefficient matrices can be 
obtained as followings: 
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in which si is the boundary of the ith constant element, and φi
* 

and qi
*denote the values of the fundamental solution φ*and q*at 

the ith constant element respectively. The fundamental solution 
φ* and its normal derivative q* are: 
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in which r is the distance between the points on the boundary, 
i.e. source and field, H0

(1) (kr) and H1
(1)(kr) show the Hankel 

functions of the first kind of order zero and of order one 
respectively, and n represents the outward normal to the 
boundary. Discretized form of boundary element equations of 
the reservoir domain may be written and separated into the 
following expressions, according to three types of assumed 
boundary conditions: 
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where the subscripts w, i and b indicate the boundary nodes on 
the reservoir free surface, dam–reservoir interface and reservoir 
bottom surfaces, respectively. Substituting (2) – (4) into (9) the 
following expression is obtained: 

-1
s s

2

,

w w

i b

g
i

c








 

φ D G q

D H G

H G

    (10) 

Inspection of (10) reveals that φ could be determined, since 
all sub-matrix components of D are known. 
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B. Distinct Element Method 
The distinct (or discrete) element method (DEM) has been 

exhaustively illustrated in many papers. This method was 
primarily proposed in [20] for the investigation of jointed and 
cracked rock masses. In this section, a brief review of some 
substantial aspects, especially those that would be subject to 
modification for their usage to the coupled dam–reservoir 
system, are reviewed. The openings are considered as interface 
boundary conditions between distinct blocks, and put into the 
problem domain according to their locations and orientations. 
The domain in DEM is divided into polygonal blocks by joints 
and the blocks are supposed to be quite deformable. 
Deformable blocks are discretized into a mesh of finite 
difference triangular elements in the DEM program [26] for 
stress-strain analysis, whose formulation is similar to the so-
called constant strain triangle (CST) finite element. Failed 
contacts will be effaced and new contacts will be recognized 
and established when the block contact relationship varies. 
Normal and shear springs and dashpots are placed between 
contact elements for simulating the interaction behavior of 
contact points of block elements (see Figure 2). 

 

 
Fig. 2.  Spring-dashpot contact model. 

The normal spring is linear-elastic in compression. Zero 
tension in the normal direction of contacts is presumed in the 
normal springs for modeling penetrated cracks. When normal 
compressive forces attain zero, joints open and blocks separate 
at that point. As a result, the analogous contact will be deleted. 
The shear spring is specified as linear elastic–perfectly plastic 
and assumed to follow Coulomb’s friction law. The stiffness 
damping forces regarding the normal and shear dashpots are 
linearly related to the corresponding normal and shear 
velocities of the blocks at contact. The linear coefficients may 
be supposed to be identical for both normal and shear dashpots. 
The increments of normal and tangential spring forces in each 
time step (Δt) at the interfaces of blocks are found for updating 
the normal and shear contact spring forces at time (t+Δt). To 
investigate the motion of each point in all the blocks Newton’s 
second law is used which is resulted from the known forces 
acting on them. 

Explicit time marching scheme is applied to solve the 
dynamic equilibrium equations, which by employing the 
central difference method the movement of the ith grid point 
can be described individually as 

( /2) ( /2) ( / )t t t t
i i xiu u F g t       (11) 
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where mi is the lumped mass of the ith grid point and g is the 

ground acceleration. ( /2)t t
iu  and ( /2)t t

iv  indicate the 
horizontal and vertical velocity which may be used to attain the 
displacement components at the next time step as 
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The resultant forces Fxi and Fyi in (11) and (12) represent 
the summation of forces applied at the ith grid point including 
the resultant contact force if the grid point is on the boundary 
of the block, and the elastic forces owing to elastic deformation 
of the block. Dynamic response is achieved by using an explicit 
time marching scheme, which is equal to that used by the 
explicit finite difference method for continuum analysis. This 
usually requires a sufficiently small time step to overcome 
numerical instabilities principally caused by disturbances 
propagation between adjacent discrete elements during a single 
step [20, 27]. 

C. Hybrid BEM–DEM Algorithm 
In present section, the proposed hybrid BEM–DEM 

algorithm is described. In order to consider the dam–reservoir 
interaction, the influence of the reservoir when the dam is 
subjected to ground excitation should be taken into account. 
This may be achieved by the assessment of hydrodynamic 
pressure at any instant of time t, by solving the fluid domain 
applying (10). In this equation, qs depends on the horizontal (ui) 
and vertical (vi) displacement components of the dam upstream 
face under water which are calculated by (13) and (14). The 
foregoing equations are, in turn, updated employing (11) and 
(12) in which, the resultant forces Fxi and Fyi are functions of 
hydrodynamic pressures caused by ground excitation at the 
DEM grid points of the dam upstream face. To vanquish this 
problem, a staggering solution technique is used, in which at 
each time step (Δt), both the hydrodynamic pressure and the 
dam displacement components are iterated concurrently till a 
desired level of convergence is attained. For displacement 
iterations in the staggering scheme, in all nodes of the dam 
upstream face, the convergence criterion is prescribed by the 
following norm: 
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in which j shows the iteration number and ε is a small 
convergence tolerance value. Thanks to intrinsic non-linear 
behavior of the whole system (i.e., hydrodynamic interaction 
problem coupled with cracked concrete dam) dynamic 
response, the most straightforward procedure may be 
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considered as the time domain analysis of BEM–DEM 
formulation. Since the time domain analysis of BE formulation 
is more intricate in comparison with the frequency domain 
formulation, the latter has been selected to construct the 
coupled formulation in the present research [25]. This 
frequency domain analysis (i.e., forward and inverse Fourier 
transformations) is carried out for very short consecutive time 
steps of Δt (e.g. 0.1s) of ground motion time history to permit 
the algorithm to follow the correct path of a non-linear 
phenomenon. It is gainful remarking that, as the maximum 
sliding displacement occurring does not exceed a couple of 
centimeters, no considerable errors may be resulted in the 
boundary elements whose lengths are of the order of several 
meters. In fact, the present method is an Euler–Lagrangian one, 
in which an Eulerian and Lagrangian formulation are applied 
for the reservoir and the cracked concrete gravity dam 
respectively. In this method, the cracked dam is explained in a 
Lagrangian frame of reference, which deforms under the 
reservoir forces, while the Eulerian reservoir mesh does not 
need re-meshing since the sliding displacements are very small. 

III. BENCHMARK EXAMPLES FOR ACCURACY VERIFICATION 

A program has been developed to implement the proposed 
algorithm. Several numerical examples are scrutinized to 
determine the validity and accuracy of the proposed modeling 
technique. 

A. Rigid Dam Example 
In this section, a rigid dam example with infinite reservoir 

whose depth (h) has a constant value of 180m is excited by 
ramp acceleration, in which the reservoir foundation is 
assumed to be rigid. In the analysis, the effects of surface 
waves are neglected, as in the exact analytical solution [29], 
which is employed for comparison. The time variation of 
hydrodynamic pressure on the dam–reservoir interface is 
acquired by the present algorithm considering both constant 
and linear boundary elements, and is shown in Figure 3.  

 

 

Fig. 3.  Comparison of hydrodynamic pressure acting on the base of the 
dam. 

In the figure, the dimensionless hydrodynamic pressure is 
given by /PC P ah , where a indicates the maximum 
value of the ramp acceleration and h is the height of the 
reservoir. 

B. Flexible Dam Example 
A time history analysis for a flexible dam with infinite 

horizontal reservoir of 180 m in height, 15 m in width and a 
constant depth extending to infinity is carried out as the second 
verification example, using the 1940 El Centro earthquake as 
input ground motion. The reservoir and the dam bottoms are 
assumed to be rigid, the sound velocity of reservoir c is 1440 
m/s and the water is assumed to be compressible and inviscid 
with a mass density of 1000 kg/m3. Figure 4 shows the time 
variation of hydrodynamic pressure at the base of the dam for 
the present study and the same FE-FE model in which, the 
reservoir is modeled by finite elements in the same method as 
the dam. One can judge by considering the figure, that the 
present algorithm gives good results in comparison with 
benchmark solution results.  

 

 
Fig. 4.  Variation of hydrodynamic pressure at the bottom of the dam 
under El Centro earthquake’s ground acceleration. 

IV. SEISMIC ANALYSIS OF FRACTURED KOYNA DAM  

Koyna dam experienced a strong earthquake of 6.5 R 
magnitude on December 11, 1967. During the earthquake, the 
dam suffered severe damage encompassing horizontal cracks 
on both the upstream and downstream faces on a number of 
non-overflow monoliths. In this section, seismic analyses are 
carried out to observe the dynamic behavior of non-overflow 
monoliths of cracked Koyna dam (Figure 5) with a penetrated 
horizontal crack subjected to various ground motions. For this 
purpose, two real earthquake ground motions are selected: the 
1967 Koyna earthquake in the stream direction with a PGA of 
0.49g and the1994 Newhall earthquake with a PGA of 0.678g 
(Figure 6). The material properties of the Koyna dam concrete 
are: mass density = 2640 kg/m3, elastic modulus = 31.0 GPa, 
Poisson ratio=0.2, tensile strength at crack surface = 0, 
dynamic friction angle = 45o and viscous damping ration=0.05. 
Sound velocity of reservoir = 1440m/s, and wave reflection 
coefficient = 1.0.  
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Fig. 5.  Details of fractured Koyna dam with a penetrated horizontal crack 
from upstream to downstream, at its top profile.  

 

 
(a) 

 
(b) 

Fig. 6.  Ground acceleration time histories of the earthquakes considered in 
this study: (a) 1967 Koyna earthquake, (b) 1994 Newhall earthquake 

Figure 7 reveals the plots of time histories of hydrodynamic 
pressure acting at the bottom of the dam expressed as a ratio of 
the maximum hydrostatic pressures under above ground 
motions considering the shell structure to be rigid and/or 
flexible. It can be observed that the effect of dam flexibility on 
the hydrodynamic pressure is considerable and should be taken 
into account. The time variation of horizontal acceleration 
histories of both bottom and top block at the crack level is 
illustrated in Figure 8. The time variation of horizontal 
acceleration histories of bottom block, top block at crack level 
and the top levels of the dam under foregoing ground motions 
is illustrated in Figure and 9. 

It is observed that the peak value of bottom block’s 
acceleration due to Koyna earthquake at the crack level is 
approximately 2.89 g which is about 5.9 times the value of the 
earthquake input, while the analogous acceleration of the top at 
the same level is a little smaller at 2.41 g. Furthermore, the 
shape of the acceleration at the top of the dam is mostly 
different from those at the crack level while the peak value is 
approximate. Similarly, due to Newhall earthquake, the 
corresponding accelerations of bottom and top blocks at the 
crack level are 4.35 g and 3.62 g respectively. According to 
above results, the ground motion has been amplified about 5.4 
and 5.88 times under Koyna and Newhall earthquakes 
respectively.  

Figures 10 and 11 plot the horizontal and vertical 
displacement histories of the crest of the cracked Koyna dam 
obtained by the present hybrid BE–DE method compared to the 
results of FE-DE technique, in which, the positive values of the 
horizontal and vertical displacement are in the downstream and 
upward directions respectively. It is observed that there is no 
damage during the moderately small amplitude shaking. The 
first large horizontal displacement of the dam in the 
downstream direction based on present algorithm is 2.65 cm at 
4.02 s due to Koyna earthquake, while the corresponding value 
due to the other earthquake is 5.56 cm at 4.72 s. Figure 12 
shows the results of horizontal sliding of the top block under 
foregoing ground motions obtained by the two numerical 
coupling models. The figure denotes that the residual 
displacements calculated by using the present hybrid BE–DE 
approach due to Koyna earthquake is 13.1mm, which is 
comparable to the residual displacement of FE–DE analysis (12 
mm).  

 

 
(a) 1967 Koyna earthquake 

 

 
(b) 1994 Newhall earthquake 

Fig. 7.  Hydrodynamic pressure time histories at the dam bottom for 
different conditions under various ground motions 
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(a) Bottom block at crack level 

 

 
(b) Top block at crack level 

 
(c) Top of the dam 

Fig. 8.  Acceleration time histories at different positions under the 1967 
Koyna earthquake. 

Similarly the corresponding displacement due to Newhall 
earthquake is 20.3 mm for the present study and 18.4 mm for 
the FE–DE model. Although the present study results are in 
reasonable agreement with the results of FE-DE model, details 
of the two plots are somehow different mainly because dam–
reservoir interaction has been evaluated using FE analysis. 
Time variation of upper block rotations of the cracked Koyna 
dam under both ground motions is illustrated in Figure 13. We 
observe that the upper block is safe against overturning, as the 
peak rotations of the top block are 0.0018 and 0.0026 under 
Koyna and Newhall earthquake records, respectively. 

 
(a) Bottom block at crack level 

 

 
(b) Top block at crack level 

 

 
(c) Top of the dam 

Fig. 9.  Acceleration time histories at different positions under the1994 
Newhall earthquake. 

V. CONCLUSION 

A numerical method has been developed to analyze the 
seismic response of cracked concrete gravity dams placed on 
rigid foundation subjected to the excitation of horizontal 
seismic waves including dam–reservoir interaction effects. This 
is achieved by coupling DEM, employed to model the cracked 
dam, and BEM, used to analyze the dynamic behavior of the 
reservoir. In the proposed method, the two different media of 
cracked dam and reservoir are solved independently and 
coupling effects are taken into account through the propounded 
iterative scheme where equilibrium condition at the dam–
reservoir interface is satisfied. The proposed hybrid DEM–
BEM approach elucidated in this paper presents the following 
chief advantages in comparison with other numerical 
techniques accessible for seismic analysis: 
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(a) Horizontal displacement 

 

 
(b) Vertical displacement 

Fig. 10.  Horizontal and vertical displacement time histories at the dam crest 
subjected to the 1967 Koyna earthquake. 

 

 
(a) Horizontal displacement 

 

 
(b) Vertical displacement 

Fig. 11.  Horizontal and vertical displacement time histories at the dam crest 
subjected to the1994 Newhall earthquake. 

 
(a) 1967 Koyna earthquake 

 
(b) 1994 Newhall earthquake 

Fig. 12.  Horizontal sliding of top block of the cracked Koyna dam 
subjected to various ground motions. 

 

 
(a) 1967 Koyna earthquake 

 
(b) 1994 Newhall earthquake 

Fig. 13.  Rotation of top block of the cracked Koyna dam under various 
ground motions. 
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1.  Due to the reduction of problem dimensions in BEM, this 
numerical method performs the dynamic analysis with very 
small size of matrices of reservoir domain and considerably 
less computational efforts. 

2.  Reservoir domain dimensions may be remarkably reduced 
as the far end of the infinite fluid domain is directly 
considered with no boundary elements. 

3.  DEM is applied to model the fractured concrete gravity 
dam, which is widely employed for the investigation of 
blocky media. 

4.  A satisfying level of convergence is simply attained through 
a few iterations. Several harmonic and transient excitation 
problems are examined employing the proposed method, 
and are compared with the results from other analytical 
solutions and numerical methods existing in the literature to 
appraise the accuracy and validity of the present method. 
Result comparison shows that the present method works 
well. Furthermore, considering dam–reservoir interaction 
effects, seismic performance of the Koyna Dam with a 
horizontal crack at a height has been evaluated. It can be 
concluded that the appropriate modeling of the dam–
reservoir interaction is necessary in the seismic behavior of 
fractured gravity dams. 

Considering the above, this method seems to be well 
adapted to handle more complex discontinuous fluid–structure 
domains involving finite and semi–infinite subdomains. Of 
course, more parametric studies are proposed in order to 
calculate optimized time steps that may significantly improve 
the present algorithm. 
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