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Abstract—Oscillators are often followed by square wave forming 
circuits and frequency dividers. Traditionally, the level of the 
phase noise, transferred from the oscillator outputs to the square 
waves obtained is calculated ignoring the correlations in the 
oscillator phase noise spectrum. In this paper, accurate 
expressions are derived, taking into account the phase noise 
mechanisms in the oscillators. The phase noise power spectral 
densities are calculated in both the traditional way and by using 
the proposed expressions and they are compared. The situations 
where the proposed expressions can be useful are identified. 
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I. INTRODUCTION 

A common communication arrangement consists of an 
oscillator (usually nearly sinusoidal), whose waveform is 
converted to rectangular by some kind of square wave forming 
circuit often followed by digital frequency dividers. An 
important present-day example is the local oscillator frequency 
synthesis in highly integrated receivers for cognitive and 
software radio applications where the wide range of 
frequencies needed is obtained by relatively narrow range 
PLLs followed by frequency divider chains [1-3]. The Square 
Wave (SW) may not physically exist. For example, in the 
switching mixers [4], the input RF signal is effectively 
multiplied by a nearly rectangular waveform even if the mixer 
is driven by a sine oscillator. Usually the Power Spectral 
Density (PSD) of the oscillator Phase Noise (PN) is known, but 
the PN of the resulting square wave is what really matters. It is 
widely agreed [5-8] that the phase noise of the formed square 
wave, when considered in the time domain, is a sampled 
version of the oscillator PN, having aliasing as a result. 
Therefore the SW PN spectrum is a sum of frequency 
translated replicas of the oscillator PN spectrum. The 
evaluation of square wave’s PN PSD by summing up frequency 
shifted replicas of the oscillator PN PSD, tacitly assuming that 
the oscillator phase noise is uncorrelated in the frequency 
domain, is widely accepted [5, 6, 8]. Such an assumption leads 
to sufficiently exact results in most cases, but strictly speaking 
is not correct. If the mechanism of phase noise arising in 
oscillators is considered, it turns out that the oscillator phase 
noise is correlated. In this paper, the phase noise PSD of square 
waves obtained from a sine oscillator by edge forming and 

frequency division is evaluated, taking into account the phase 
noise model presented in [9, 10]. The investigations are 
restricted to the phase noise transferred from the oscillator to 
the SW and do not include the phase noise contribution of the 
noise sources in the SW forming circuits and dividers 
themselves.  

II. OSCILLATOR PHASE NOISE 

Real-world oscillations have both amplitude and phase 
noise. However, the inherent amplitude-limiting mechanisms 
of the practical oscillators strongly suppress the amplitude 
noise. Therefore the PN is the dominating one [10]. A 
sinusoidal oscillation with PN can be expressed as 
    ttfAts   02sin , where the excess phase ϕ(t) represents 

the PN. Taking into account that ϕ(t) is small, we obtain:  

        tfAttfAts 00 2cos2sin    (1) 

According to the PN model presented in [10], the excess 
phase ϕ(t) in an oscillator can be expressed as:  

        di
q

t
t




 0
max

1   (2) 

where  0  is called impulse sensitivity function (ISF) and 
is a dimensionless, frequency- and amplitude-independent 
periodic function, qmax is the maximum charge displacement 
across the capacitor in the oscillator LC tank and i(t) is a noise 
current injected to the LC tank that can model different noise 
sources in the oscillator [10]. The ISF reflects the sensitivity of 
the oscillator phase to an impulse injected at phase ω0t. The ISF 
can be approximated by Fourier series. Multiplying its terms by 
the noise current in (2) results in frequency translations of the 
noise spectrum by integer multiples of the oscillation frequency 
f0. Therefore the same components of the original noise i(t) are 
present at different frequencies in the PN spectrum, thus there 
are nonzero correlations between the PN spectral components.  

III. PSD OF THE SQUARE WAVE PHASE NOISE 

A. Phase Noise of Non-Sinusoidal Waveforms 

A non-sinusoidal oscillation is a sum of harmonics, each 
with its own phase noise sidebands which overlap. It is 
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impossible to distinguish the phase noise of the fundamental 
and the phase noise of the other harmonics. But this is not 
necessary. Indeed the total noise PSD is what matters. Let us 
consider a periodic non-sinusoidal noiseless waveform  ts . Its 
fundamental is the component of interest and it can be 
expressed as  tfA W2sin  where A denotes its amplitude. If 
the corresponding noisy waveform can be expressed as 

       tftAtsts W 2cos    (3) 

then, comparing with (1) we can interpret ϕ(t) as phase noise of 
s(t).  

B. Phase Noise After Square Wave Forming 

Although it is intuitively plausible that the square wave 
forming results in a sampling of the oscillator phase noise in 
the time domain, it is highly desirable to examine this 
supposition a bit more rigorously. Let us consider a sinusoidal 
oscillator with an oscillation frequency 0f  followed by an SW 
forming circuit. Without loss of generality, a unity oscillation 
amplitude is assumed. In the general case, a frequency division 
by a factor D  also takes place along with the SW forming. 
(For SW forming without frequency division D=1). The SW 
has a frequency of fSW=f0/D and a duty cycle of 21 . (Other 
duty cycles are hardly applicable in wireless communications.) 
The edges of the SW occur around the time instants 20DTk . 
The peak-to-peak voltage of the SW is VPP. It is easy to 
establish that the fundamental amplitude of the SW is 

PPVA 2 . 

The following assumptions will be adopted:  

1. The edge forming of the pulses can be adequately 
modeled by passing the oscillator sine wave via limiting 
amplifiers with an unsaturated voltage gain α or −α. 

2. The edge duration te of the SW is at least an order of 
magnitude shorter than the oscillator period.  

3. The phase disturbance  tOSC  at the oscillator output is 

nearly constant in time intervals    02 ftt OSC  . 

4. The time extents    02 ftt OSC   are orders of 
magnitude shorter than the edge duration.  

The first assumption can be replaced by another one: The 
edge forming circuit has a perfect threshold behavior and the 
oscillator PN affects the edge positions of the SW 
instantaneously at the oscillation zero-crossing instants only, 
shifting the edges by   00 2  DTkOSC . Then the obtained 
PN PSD of the SW for the frequencies of interest becomes the 
same as the PN PSD obtained here. Obviously, the oscillator 
PN can affect the SW during the edges only. This can be 
modeled by multiplying the excess phase OSC  by 

corresponding time shifted pulses  tp  with a unity amplitude 
and duration te.  

The oscillator waveform is given by:  

 
       

   tntf

tfttftv

OSC

OSCOSC




0

00

2sin

2cos2sin




 (4) 

Let the rising edges of the SW occur when  tvOSC  rises, 

i.e. at 0nDTt   where 00 1 fT   is the oscillator period and n 
is an arbitrary integer. Then the falling edges occur at 

200 DTnDTt  . Hence if the frequency division factor D is 

odd, the falling edges occur when  tvOSC  falls; if D is even, 

then the falling edges of the SW also occur when  tvOSC  rises 
(Figure 1). 

 

 
Fig. 1.  Sine to rectangle conversion for odd and even values of the 
frequency division ratio D 

Therefore, taking assumption 1 into account, the SW during 
the k-th edge can be expressed as:  

      1
1

kD

SW OSCv t v t   
 (5) 

Then the noise during the k-th edge can be expressed as  

        tntn OSC
Dk

k 11     (6) 

For the k-th edge, taking into account assumption 2, we can 
approximate the noise term of  tvOSC  as:  

        kD
OSCOSCOSC tTkDfttn 122cos 00    (7) 

Then after substituting (7) in (6), we obtain:  

            tttn OSC
kkD

OSC
Dk

k  111 1    (8) 

The total noise of the SW can be obtained by summing up 
the noise of all SW edges, multiplied by the corresponding 
gating pulses: 

    









 

k
kSW

DT
ktptntn

2
0   (9) 

Substituting (8) in (9) and taking into account assumption 
2, we can express (9) as:  

     
0

cos 2

             
2

SW SW OSC

k

n t f t t

DT
p t k

  




 

  
 


 (10) 
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After inspecting (10) and comparing it with the noise term 
in (3), we can recognize that the noise of the SW is phase noise 
only. To obtain the SW excess phase  tSW , we bring (10) to 

the form      ttfAtn SWSWSW 2cos  where PPVA 2  is 
the fundamental amplitude of the SW. Then 

     









 

k
OSC

PP
SW

DT
ktpt

V
t

22
0  (11) 

Equation (11) shows that in the time domain the SW PN is 
the oscillator PN non-ideally sampled at a rate of 

SWOSC fDf 22   and scaled by magnitude. Taking into 
account assumptions 1 and 2, it can be established that 

ePP tfV 02 . Then  

     









 

k
OSC

e
SW

DT
ktpt

t

T
t

24
00   (12) 

C. Evaluating the Square Wave Phase Noise PSD 

The PN PSD is found as  

  
 

T

f
fS

TSW

T
SW










2
E

lim


  (13) 

where  fSW  is the Fourier transform of  tSW , the 
subscript Τ denotes a truncation to a finite time interval Τ and 
 XE  denotes expectation [11]. Taking the Fourier transform 

of  tSW , we obtain:  

     





k

TSWOSCSW
e

TSW kffkfP
Dt

f 22
2

1   (14) 

where  fP  and  TOSC f  are the Fourier transforms of  tp  

and  tOSC , respectively. It can be seen that  TSW f  is a 

sum of replicas of  TOSC f  shifted by integer multiples of 

SWf2 . Assuming that  TOSC f  is not correlated in the 
frequency domain, the PN PSD can be found as:  

   
2

21
2 2

2SW SW OSC SW
ke

S P kf S f kf
Dt





 
  
 

   (15) 

where  fSOSC  denotes the PSD of the oscillator PN. Equation 
(15) expresses the traditional way of evaluating the PN PSD. 
However,  TOSC f  is correlated. In the oscillator, each 
component of the spectrum of the original noise i(t) undergoes 
frequency translations by multiples of 0f , as it was discussed 
above. In the general case, this includes frequency translations 
differing by multiples of SWf2  from each other. Next, the 
aliasing due to the sampling causes further frequency 
translations of the oscillator PN spectrum by multiples of 

SWf2 . Therefore, each component of the original noise will get 
to the same frequencies in many (strictly speaking countless) 
different ways, as illustrated in Fig. 2. Then the voltages of 

these replicas of the same noise component should be summed 
up (instead their powers). In contrast, in (15) only power 
summations are performed.  

 

  
Fig. 2.  Frequency translations for D=4. For the sake of clarity, only three 
different ways for only one frequency translation (by 2fSW) are indicated by 
solid arrows and the magnitude decay caused by the integration is not 
presented.  

Let us express  TOSC f  following the oscillator PN 
model presented in Section II. We will deviate a little from the 
original designations of [10]: The ISF will be an explicit 
function of the time, periodic in 00 1 fT   and will be 
designated by γ(t). Its Fourier transform will be denoted by 
 f . Similarly, the Fourier transform of the original noise 

current i(t) will be denoted by  fI . Thus, the phase 
disturbances are expressed by  

        di
q

t
t

OSC 



max

1
  (16) 

Then, taking Fourier transform of (16) and substituting in 
(14), we obtain:  

 

     















k
TSW

n
n

SW

SW

e
TSW

nDkffIC
kff

kfP

Dtjq
f

2
2

2

4

11

max




  (17) 

where nC  are the complex Fourier series coefficients of the 
ISF. The ISF can be well approximated by a limited number of 
Fourier series terms, i.e. n  can be restricted to a certain range 
 maxmax ,nn .  

If D  is an even number, i.e. 2 ,D d  (17) can be expressed 
as: 

 

     


 








k
TSW

n

nn
n

SW

SW

e
TSW

ndkffIC
kff

kfP

Dtjq
f

2
2

2

4

11

max

max

max




 (18) 
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After making the substitution ndkl   and simplifying 
we obtain: 

 

    
  



  






l

n

nn SW

SWn
TSW

e
TSW

fnDlf

fnDlPC
lffI

Dtjq
f

max

max
2

2
2

4

11

max




  (19) 

The second sum in (19) contains the scaling factors of all 
original noise spectrum replicas experiencing the same 
frequency translation. Taking into account the roll-off caused 
by the integration, it can be established that a very good 
accuracy for the frequency range of interest can be preserved if 

a constant     etPfP  0  is assumed. Then (19) is simplified 
to:  

 

    .
2

2

4

11

max

max

max

 


  




l

n

nn SW

n
TSW

TSW

fnDlf

C
lffI

Djq
f




  (20) 

After substituting (20) in (13) and simplifying, we obtain 
the PSD of the SW PN:  

    


  


l

n

nn SW

n
SWiSW fnDlf

C
lffSKS

2

2
max

max
2

2


 (21) 

where iS  denotes the PSD of the original noise  ti  and 

  1
max4  DqK  . If 1D , (17) can be expressed as : 

 

  

   


  

































k

m

mm Tm

Tm

TSW

kff

fmkfIC

kff

fmkfIC

j

K
f

max

max

0

012

0

02

2

122

2

22





  (22) 

After making the substitution k+m=l, we obtain:  

 
   

     































 

 


 





 

l

m

mm

m
T

l

m

mm

m
T

TSW

fmlf

C
flfI

fmlf

C
lffI

j

K
f

max

max

max

max

0

12
0

0

2
0

2
12

2
2






 (23) 

After substituting (23) in (13) and simplifying we obtain the 
PN PSD: 

   

     



































 

 



 





 

l

m

mm

m
i

l

m

mm

m
i

SW

fmlf

C
flfS

fmlf

C
lffS

KS
2

0

12
0

2

0

2
0

2

max

max

max

max

2
12

2
2





 (24) 

The splitting of (24) in two terms reflects the obvious fact 
that the total frequency translation   02 fnk   of the original 

noise PSD can be an even multiple of 0f  for even values of n  

only and an odd multiple of 0f  for odd values of n . In a 
similar way, an expression for SW phase noise PSD for 
arbitrary odd values of D can be derived. It is not shown here, 

because odd division ratios are rarely used. At this point the 
PSD of  tSW  is known. However, we need to know the PSD 
of the PN sidebands around the SW fundamental. The 
multiplication of the excess phase by the cosine in (3) produces 
a sum of two PN spectrum replicas shifted by SWf  and 

SWf , or shifted by SWf2  from each other. Since the PN has a 

sampling rate of SWf2 , the PN spectrum has a periodicity of 

SWf2 , therefore the two shifted PN spectrum replicas are 
absolutely identical. Hence, its summation results in a doubled 
noise voltage and thus the resultant PSD becomes 4 times 
higher than SWS . 

IV. SIMULATION RESULTS 

Equations (21) and (24) were verified by numerous Matlab 
simulations. The discrepancy between the calculated PSD and 
the simulation results was less than one tenth of a decibel. The 

use of the approximation   etfP   increased the prediction 
error to roughly 1 dB for relatively long edge durations. It has 
been observed that when the ISF has only a dc component (a 
purely hypothetical ISF), there is no difference between the 
PSD obtained using the proposed expressions and the PSD 
calculated in the traditional way. Conversely, when the ISF has 
at least one AC component, the traditional calculation gives 
nonzero errors. This is in agreement with our theory, because 
each frequency translation of the original noise happens in a 
unique way in the first case, while in the second case the 
original noise undergoes the same frequency translations in two 
or more different ways. The simulations showed that the error 
of the traditional calculation reaches a few decibels when the 
flicker noise corner ff1  of the original noise  ti  is higher 

than several tens of percent of the oscillation frequency. Errors 
of the traditional calculation of up to several decibels were 
observed when the original noise PSD showed steep changes, 
but this is unlikely for a real-world noise source. It was 
observed in all simulations that for frequency offsets up to tens 
of percent of the oscillator frequency the error of the traditional 
calculation is negligible (below one tenth of a decibel).  

V. SOME EXAMPLES 

First we will examine a usual case: SW forming with a 
frequency division ratio of two. The example ISF is given by: 

 tf02cos21  . The following parameters are chosen: original 

noise PSD of -160 dBm/Hz for fff 1 , oscillator frequency 

2000 f  MHz and maximum charge displacement across the 

capacitor in the oscillator LC tank 11
max 105.1 q C. The 

flicker noise corner frequency is 101 ff  MHz. The flicker 

noise corners in this and in following examples may seem to be 
unrealistically high, but in the contemporary nanoscale CMOS 
processes ff1  can be well beyond 1 MHz [12] and can even 

reach hundreds of megahertz [13, 14]. The PN PSDs calculated 
by the proposed expression (21) and obtained by simulation are 
shown in Figure 3. A perfect agreement between the calculated 
and simulated PSD can be seen. The PSD calculated in the 
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traditional way (15) is also shown. Practically there is no 
difference between two calculated PSDs. In Figure 4 the results 
for 2001 ff  MHz are given, with other conditions 

unchanged. The error of the traditional calculation (15) reaches 
nearly 2 dB for frequency offsets approaching 0f , while the 
PSD calculated by (21) remains close to the simulated PSD. 
However, the PN PSD for such offsets is usually well below 
the thermal noise PSD and the total noise will be dominated by 
the thermal and the device noise of the divider circuits. 
Therefore, the error caused by the simplified calculation will be 
ultimately negligible again.  

 

  
Fig. 3.  Comparison between the calculated PN PSD and the PN PSD 

obtained by simulation for 2000 f MHz, 2D  and 10/1 ff MHz.  

 

 
Fig. 4.  Comparison between the calculated PN PSD and the PN PSD 

obtained by simulation for 2000 f MHz, 2D  and 200/1 ff MHz.  

Let us consider next an example for SW forming without 
frequency division. The oscillator frequency is 1000 f  MHz. 

The ideal ISF [10], i.e.    tft 02cos   , is chosen. The other 
conditions are the same as in the first example. The calculation 
and simulation results are given in Figure 5. The traditional 

calculation erroneously predicts a non-existing steep upsurge of 
the PSD when the frequency offset approaches 0f . The error 
goes beyond 6 dB, while the PSD calculation according to the 
proposed formula (24) gives correct results. As in the previous 
example, the error increases when the flicker noise corner is 
higher.  

 

 
Fig. 5.  Comparison between the calculated PN PSD and the PN PSD 

obtained by simulation for 1000 f MHz, 1D  and 10/1 ff MHz.  

VI. CONCLUSIONS  

A faultless calculation of the square wave phase noise PSD 
cannot be performed if the oscillator and SW forming circuits 
are not considered as one whole. Taking into account the phase 
noise mechanism in the oscillators, expressions for exact 
calculation of SW phase noise PSD were derived. A practically 
perfect agreement between the calculated and the simulated 
PSDs was obtained. However, in most practical cases, 
especially at relatively low frequency offsets, the error of the 
widely used simplified calculation is insignificant. The 
proposed expressions may be useful when the PN PSD at large 
frequency offsets is important and at the same time one or more 
of the following are present: the PSD of the oscillator noise 
sources is relatively high, the flicker noise corner of the 
oscillator noise sources is higher than several tenths of the 
oscillation frequency, there are steep changes in the PSD of the 
oscillator noise sources. In such cases, an accuracy 
improvement of several decibels can be obtained using the 
proposed formulas.  
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