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Abstract—In this work, an analytical study of the effects of Hall 
current and Joule heating on the entropy generation rate of 
couple stress fluid is performed. It is assumed that the applied 
pressure gradient induces fluid motion. At constant velocity, hot 
fluid is injected at the lower wall and sucked off at the upper 
wall. The obtained equations governing the flow are transformed 
to dimensionless form and the resulting nonlinear coupled 
boundary value problems for velocity and temperature profiles 
are solved by Adomian decomposition method. Analytical 
expressions for fluid velocity and temperature are used to obtain 
the entropy generation and the irreversibility ratio. The effects of 
Hall current, Joule heating, suction/injection and magnetic field 
parameters are presented and discussed through graphs. It is 
found that Hall current enhances both primary and secondary 
velocities and entropy generation. It is also interesting that Joule 
heating raises fluid temperature and encourages entropy 
production. On the other hand Hartman number inhibits fluid 
motion while increase in suction/injection parameter leads to a 
shift in flow symmetry. 

Keywords-Hall current; Joule heating; entropy generation; 
couple stress fluid; Adomian decomposition method 

I. INTRODUCTION  

The study of hydromagnetic flow has been extensively 
investigated in the past years due to its applications in MHD 
generators, flow control, shock damping in car absorbers, 
nuclear reactors, plasma studies, purifications of metal from 
non-metal enclosures, geothermal energy extractions, polymer 
technology and metallurgy. Relevant investigation was 
pioneered in the first half of the twentieth century. Thereafter 
several studies have been conducted. Author in [1] investigated 
the spontaneous magnetic field in a conducting liquid in 
turbulent motion. In [2], magnetohydrodynamics at high 
Hartmann numbers were investigated. Author in [3] considered 
the effect of a uniform magnetic field on the Eckman layer over 
an infinite horizontal plate at rest relative to an electrically 

conducting liquid rotating with uniform angular velocity about 
a vertical axis while authors in [4] analyzed the combined 
effect of free and forced convection on MHD flow in a rotating 
porous channel, authors in [5] investigated the radiation effect 
of magnetohydrodynamics flow of gas between concentric 
spheres. In [6], authors considered the radiative effect on 
velocity, magnetic and temperature fields of a 
magnetohydrodynamic oscillatory flow past a limiting surface 
with variable suction In [7], author considered the 
hydromagnetic natural convection flow between vertical 
parallel plates with time-periodic boundary conditions, Authors 
in [8] studied convection heat and mass transfer in a 
hydromagnetic flow of second grade fluid in the presence of 
thermal radiation and thermal diffusion. In the studies above 
where the effect of magnetic field is reported, small and 
moderate values of the magnetic field are assumed. However, 
the current trend of research is geared toward a strong magnetic 
field and a low density gas due to its numerous applications 
such as in space flight, nuclear fusion research, 
magnetohydrodynamic generators, refrigeration coils, electric 
transformers, Hall accelerators and biomedical engineering 
(e.g. cardiac MRI and ECG). Hall current occurs when the 
applied magnetic field is very strong or gas is ionized with low 
density leading to a reduction in conductivity normal to the 
magnetic field, as a result of the free spiraling of electrons and 
ions around the magnetic lines of force before collisions. This 
then induces a current in the direction of both electric and 
magnetic fields. This is referred to as Hall effect, the induced 
current is called Hall current [9-15]. 

In this study, the Hall current and Joule heating effects on 
the flow of couple stress fluid with entropy generation is 
considered. The study is essential due to the fact that entropy 
generation occurs in moving fluid with high temperature which 
can lead to loss of resources and effort if the inherent 
irreversibility in the fluid flow is not well addressed. Authors in 
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[16] submitted that all processes that produce, convert and 
consume energy must be re-examined very carefully and all 
available-work destruction mechanisms must be removed. To 
the best of our knowledge similar study has not yet been 
reported in literature, although various factors responsible for 
the entropy production have been studied, for instance in [17] 
authors considered effects of velocity slip and temperature 
jump on the entropy generation in MHD flow over a porous 
rotating disk. Also, authors in [18] presented entropy 
generation on MHD nanofluid blood flow due to peristaltic 
waves. Recently, authors in [19] studied the thermodynamic 
analysis of hydromagnetic third grade fluid flow through a 
channel filled with porous medium. In [20], the effect of 
thermal radiation on the entropy generation of hydromagnetic 
flow through porous channel was investigated. More studies on 
the factors responsible for entropy production are reported in 
[21-26]. Several techniques such as Homotopy perturbation 
[27], differential transform method [28-29], variational 
iteration technique [30], finite difference technique [31] etc. are 
available in literature. However, the Adomian decomposition 
method is applied in this work due to its simplicity in 
application and rapid convergence, (see Tables I and II). 
Furthermore, the method has been used to analyze various 
linear and nonlinear problems such as the fractional-order 
differential equations [32], the time dependent Edem–Fowler 
type equation [33], the Navier–Stokes equations [34], the 
evolution model [35], the Flierl–Petviashivili equation [36], the 
fourth-order wave equation [37], the peristaltic transport model 
[38], the Fokker–Planck equation [39] and the Bratu’s problem 
[40]. 

II. PROBLEM FORMULATION 

Fully developed, steady, incompressible and electrically 
conducting couple stress fluid between two parallel plates of 
distance h apart has been investigated. The coordinate system is 
taken such that the x-axis is along the lower plate in the flow 
direction, the y-axis is normal to the xy-plane while z-axis is 
made perpendicular to the plates. A constant pressure gradient 
is induced along the x-direction. Hot fluid is injected into the 
channel wall at the lower plate and sucked off at the upper plate 
with the same velocity. Following [41], the generalized Ohm’s 
law with Hall current is 

0

( ) ( )e eJ J B E q B
B

          (1) 

It is further assumed that if (jx, jy, jz) are the components of 
the current density J, the equations of conservation of electric 
charge 0J   shows that jz is constant which is assumed to 
be zero because jz=0 at the plates which are electrically non-
conducting. It then implies that jz=0, everywhere in the flow. 
Furthermore, the electrical field E=0 [42]. Following the given 
assumptions, (1) becomes: 
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0y xj mj uB       (3)  

Note that e em    represents the Hall parameter. Solving 

(2) and (3) for jx and jy gives: 
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The governing equations for the flow following [43-44] are: 

Momentum equation along axis x:
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Momentum equation along axis y:  
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Energy equation: 
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Introducing the following dimensionless variables, 
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Equations (6), (7) yield the following dimensionless form; 
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III. ADOMIAN DECOMPOSITION  

The Adomian decomposition method is applied by writing 
(10), (11) and (12) in integral form as: 
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Using the partial sum in (17) and the Adomian polynomials 
for the non-linear terms in (18), (14)-(16) yield (19)-(21). The 
final stage for the implementation of ADM is the coding of 
equations (19)-(21) in symbolic Mathematica software, which 
yields a very large symbolic solution. 

0 0

0

( ) ( ),   ( ) ( ),  

( ) ( ),

n n
n n

n
n

u y u y w y w y

y y 

 

 





 



 

   (17)  

2 2 2
0 0 1 0 1 2 1 0 2

2 2 2
0 0 1 0 1 2 1 0 2

: , 2 , 2
.

: , 2 , 2

n

n

A u A u A u u A u u u

B w B w B w w B w w w

     


       (18) 

 

32
1

0

2

2

2
0 0 0 0

2

( )
3!

,

1

r

n
n

y y y y

b
u y b y y

du d u
s G

dY dY dYdYdYdY
M

u mw
m



  

 
    

 
   



   

 (19) 

 

32
1

0

2 2

2 2
0 0 0 0

( )
3!

,
1

r

n
n

y y y y

f
w y f y y

dw d w M
s w mu dYdYdYdY

dY dY m



  

 
    



   

 (20) 

 

3 4
0

2 2

2 22 2

2 2 2
0 0

( )

Pr

+ .

r

n
n

y y

n n

y b b y

d du dw
s Br

dy dy dy

Br d u d w
dYdY

a dy dy

J A B









  

    
      

    
                 
 

 
 
 



 

 (21) 

A. Results Verification 

The approximate solution obtained by ADM can be verified 
by comparing our result and the one in [44] as displayed in 
Table I. 

B. Entropy Generation Analysis 

The local entropy generation expression [35] for the flow is 
given as 
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Using (9) in (22) yields  
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Entropy generation within the flow can be analysed by 
letting 

 

2 2 2

1 2

2 22 2
2 2

2 2 2

,
d Br du dw

N N
dy dy dy

Br d u d w Jh
w u

a dy dy





      
                

    
            

  (24) 

If Bejan number (Be) is less than one-half, irreversibility 
due to viscous dissipation dominates entropy generation and 
when (Be) is greater than one-half irreversibility due to heat 
transfer dominates the fluid flow. Bejan number (Be) equal to 
one-half indicates that both contribute equally to entropy 
generation. The Bejan number can be written as: 
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(s>0 is suction and s<0 is injection) 

v kinematic viscosity 

NS dimensionless entropy generation rate 

Be Bejan number 

EG  entropy generation parameter 

Ω temperature difference parameter 

Cp specific heat at constant pressure 

η fluid particle size effect due to couple stresses 

h channel width 

ρ fluid density 

Β0 uniform transverse magnetic field 

Μ magnetic field parameter 

Jh Joule heating parameter 

a couple stress parameter 

Pr Prandtl number 

m Hall current parameter 
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