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Abstract—Multiple logistic regression is a methodology of 
handling dependent variables with a binary outcome. This 
method is becoming increasingly widespread as a statistical 
technique that represents a discrete probability model. Many 
studies have focused on the application but less on the 
methodology building. This study aims to provide an applied 
method for multiple logistic regression which is called modified 
Bayesian logistic regression modeling as an alternative technique 
for logistic regression analysis that focuses on a combination of 
the bootstrap method using SAS macro and weighted techniques 
based on variances using SAS algorithm. Data on oral cancer 
were applied to illustrate a real scenario of oral health data. This 
data will be applied to the multiple logistic regression algorithm 
and modified Bayesian logistic regression. Results from both 
cases are strongly supported by clinical studies. Through the 
proposed algorithm, the researcher will have an option whether 
to analyze the data with the usual or an alternative method. Final 
results indicate that the modified procedure can provide more 
efficient results especially for the case which involves statistical 
inferences. 

Keywords-multiple logistic regression; bootstrap; Bayesian and 
weighted techniques 

I. INTRODUCTION 

The logistic regression, analyzes the relationship between 
multiple independent variables and categorical dependent 
variables [1]. The multiple logistic response functions is 
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The multiple logistic regression models can, therefore, be 
stated as follows: Yi are independent Bernoulli random 
variables with expected values E{Yi}=πi where: 
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be constants. Alternatively, if the X variables are random 

 iE Y  is viewed as a conditional mean, given the values of 

Xi1+Xi2+…+Xi,p-1. 

A. Bootstrapping, Weighted Techniques and Bayesian 
Approach with SAS 

Authors in [2] introduced the bootstrap method which 
emphasizes on an empirical density function (EDF). The basic 
concept of bootstrap is that it is initiated with an original 
sample which is taken from the studied population. The second 
step is to copy the original sample a number of times in order to 
create a pseudo-population. Then, it draws several samples 
considering random sampling approach thus providing a new 
comprehensive sample from the original sample. It stores the 
new set of data from the original dataset and creates a new 
distribution for further analysis [2, 3]. The Bayesian analysis 
involves the posterior distribution. In the stage of Bayesian 
estimation procedures, the posterior distribution will play an 
important role especially in statistical inferential. While 
running the analysis the summary statistics for the posterior 
distribution samples are produced by default. The SAS 
statements of OUTPOST provide an option that saves the 
samples in the SAS data set for further processing. PROC 
GENMOD procedure fits generalized linear models with 
Bayesian methods (considering Bayesian estimation 
procedures) with a normal error term [4]. In SAS programming 
procedure, the SEED option is to maintain reproducibility. By 
default, the uniform prior is a flat prior with a distribution that 
reflects ignorance of the location of the parameter. Its placing 
an equal likelihood for all possible values which regression 
coefficients can take. PROC GENMOD also produces 
convergence diagnostics where ODS Graphics is enabled in 
SAS statements which provides a section of assessing Markov 
chain convergence diagnostics and their interpretation [5]. 
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Weighting is a very important technique which involves 
adjusting data to reflect dissimilarities in the number of 
population units that represent each respondent [6]. There are 
several techniques that can be used as a weighted method like 
weighted by mean, standard deviation or variances to apply to 
the model according to the sample population of interest. 
Moreover, a weighted technique allows assigning different 
weights to the different cases in data analysis. The aim of the 
weighted method is to correct the skewness and to make the 
sample more representative of a true population. 

II. METHODOLOGY: ALGORITHM BUILDING AND RESULTS 

We used secondary oral medical data which involved 23 
oral cancer patients from Universiti Sains Malaysia (USM). 
The selected variables are nerve invasion (nerv_inv), gender 
(gen), betel quid (bet), tumour site (tum_site) and tumour size 
(tum_size). To explore the underlying association between 
nerve invasion and the selected explanatory variables, a set of 
the regression model is fitted in this section. Let us define the 
following dichotomous variables for the model: Yij=0 has not 
nerve invasion and Yij=1

 
has nerve invasion. The proposed 

model is given in equation form as follows:  
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Then the logistic regression model for (1) is given as:  
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The estimated model for our case is given in (2). Before we 
apply the equation there are two main steps needed to be done 
which are bootstrapping and weight data. 

A. Multiple Logistic Regression Modeling on Nerve Invasion 

 Cancer cell data should be entered as follows in SAS 
algorithm to calculate the multiple logistic regressions.. 
Data cancer; 
input Nerv_inv Gen Bet Tum_site  Tum_size ; 

datalines; 
0 0 0 1 1
0 1 0 2 0
0 1 0 2 0
0 1 0 2 0
0 1 0 3 0
0 1 0 2 0
0 1 0 3 0
0 0 0 2 0
1 0 1 1 1
0 0 0 4 0
0 0 1 1 1
1 0 1 3 1
0 0 1 4 0
0 0 1 1 0
0 0 1 1 1
0 0 0 2 0
0 1 0 4 0
0 0 0 2 0
0 1 0 2 0
0 1 0 2 0
1 0 1 2 0
1 1 0 2 0
1 0 0 4 0

         ; 
run; 
ods rtf file='abc.rtf' style=journal; 

 Run the analysis using multiple logistic regression. Below 
is the syntax of multiple logistic regression.  

/* Run The Logistic Regression Through Proc Logistic*/ 
ods graphics on; 
proc logistic descending data=cancer; 
      model Nerv_inv(event='1') = Gen Bet Tum_site 

Tum_size / rsquare expb lackfit; 
      roc 'Gen Bet Tum_site Tum_size ' Gen Bet Tum_site 

Tum_size ; 
run; 
ods graphics off; 
ods rtf close; 

B. Results: Using Multiple Logistic Regression Modeling on 
Nerve Invasion 

In Figure 1 and Table I the results of using the above syntax 
are shown. None of the variables in the list is significant. The 
area under the ROC curve is 0.70556. The model can 
accurately discriminate 71.0% of the cases (it significantly 
discriminates more than half of the cases). 

C. Modified Multiple Bayesian Logistic Regression on Nerve 
Invasion 

 Adding bootstrapping to the calculation. 
The following syntax calculates the data using a bootstrap 

method and prints them out:  

%macro bootstrap (data=_last_, booted=booted, boots=4, 
seed=1234); 

data &booted; 
pickobs = int(ranuni(&seed)*n)+1; /* This procedure  is 

randomly select an integer from 1 to n*/ 
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effectiveness of the results, it is necessary to have a good 
way of calculation with some improvement of the proposed 
strategy. The approached method can have a better predicting 
result in future for the decision making. In this paper, the 
algorithms have a good potential to determine the potential 
factors that lead to oral cancer. Some recommendations are 
raised in the following study findings: 

 There is a need to explore more on the methodology 
improvement in order to optimize the gained output. This 
could include a higher level of a combination of 
theoretical, methodology building and computation 
which may lead to higher precision and accuracy of the 
results. 

 Performance measurements can be taken into 
consideration when measuring quality of the 
recommended algorithms.  

This knowledge will empower researchers and serve as a 
roadmap to improve future studies. 
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