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Abstract—Accurate state of charge estimation and robust cell 

equalization are vital in optimizing the battery management 

system and improving energy management in electric vehicles. In 

this paper, the passive balance control based equalization scheme 

is proposed using a combined dynamic battery model and the 

unscented Kalman filter based state of charge estimation. The 

lithium-ion battery is modeled with a 2nd order Thevenin 
equivalent circuit. The combined dynamic model of the lithium-

ion battery, where the model parameters are estimated 

depending on the state of charge, and the unscented Kalman 

filter based state of charge, are used to improve the performance 

of the passive balance control based equalization. The 

experimental results verified the superiority of the combined 

dynamic battery model and the unscented Kalman filter 
algorithm with very tight error bounds. Furthermore, these 

results showed that the presented passive balance control based 

equalization scheme is suitable for the equalization of series-
connected lithium-ion batteries. 

Keywords-combined dynamic modelling; li-ion battery; passive 

balance control; SoC based equalization; SoC estimation; 
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I. INTRODUCTION  

Conventional fossil fuel vehicles are emitting a 
considerable amount of CO2. In response to the concern for the 
protection of environment, automotive industries proposed 
electrical vehicles (EVs) as a solution for conventional fossil 
fuel vehicles [1-3]. Rechargeable battery technologies which 
have become an alternative power are used in the EVs. 
Batteries with different chemicals such as Ni-based batteries, 
Li-based batteries, Na-based batteries and Lead Acid batteries 
are used in EVs. Li-ion batteries are more preferred in electric 
vehicles due to their significant advantages such as high energy 
density and nominal cell voltage, long life and having no 
memory effect [4, 5]. The high performance and safe use of Li-
ion batteries depends on the efficiency of their battery 
management system (BMS). The State of Charge (SoC) of the 
Li-ion battery, defined as the ratio of the remaining capacity 
and maximum available capacity of a battery, is a key 
component of the BMS for the equalization of battery packs on 
EVs. SoC cannot be measured directly from the battery. 
Therefore, SoC should be estimated by using an accurate 

battery model and measured signals such as current and voltage 
[6-8]. 

Modeling of Li-ion battery in EVs applications can be 
mainly divided into three categories: electrochemical models, 
mathematical models and electrical equivalent circuit (EEC) 
models [9]. The complexity of the electrochemical models and 
the low accuracy of mathematical models led to the 
investigation of the EEC models. EEC models can be classified 
based on the different circuit topology used. Partnership for a 
New Generation of Vehicles (PNGV), Randles, National 
Renewable Energy Laboratory (NREL) and Thevenin models 
are the most used electrical circuit models in EV applications 
[10, 11]. SoC estimation is more powerful with an accurate 
battery model. There are many methods to estimate the SoC of 
a Li-ion battery, methods such as coulomb counting (CC), open 
circuit voltage (OCV), neural network (NN), fuzzy logic, and 
Kalman filter based algorithms [12-16]. CC method is the basic 
approach which is widely used for SoC estimation, but it 
accumulates error problems. In addition, the initial SoC must 
be known in order to use this method [17, 18]. OCV method is 
another basic technique which can be used to determine SoC 
directly, but this method suffers from long resting time [19, 
20]. NN and fuzzy logic methods define the battery as a black-
box system and can achieve accurate SoC results. However, 
these methods are in need of a large and of good quality 
training data set. The model performance strongly depends on 
the data set used [21, 22]. Kalman filter (KF) which can solve 
initial SoC and cumulative error problems is widely used as an 
accurate SoC estimator, but it is only suitable for linear systems 
[23, 24]. Extended Kalman filter (EKF) known as the nonlinear 
extension of the conventional KF, is the most commonly used 
filter to estimate SoC. EKF linearizes the battery model using 
Taylor series expansion and Jacobian matrix [25]. EKF ensures 
accurate estimation of the SoC of the battery using the 
measured load current and terminal voltage. The accuracy of 
EKF based SoC estimation depends on the precision of the 
battery model and information of the system noise and 
covariance matrix [26-28]. However, the EKF has drawbacks. 
The linearization process using Jacobian matrices could have 
high computation cost. Unscented Kalman filter (UKF) uses an 
unscented transformation with a set of sigma points to estimate 
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SoC without linearization [29]. Due to this transformation, 
UKF has more robust accuracy than EKF in estimating 
posterior mean and covariance of the state distribution [30-33]. 
Changes in internal impedance or capacity reduction due to cell 
aging cause deviations in cell behavior. Therefore, equalization 
of the cells in the battery pack is essentially required. Cell 
equalization can be mainly categorized into SoC based and 
voltage-based methods [34-36]. In the voltage-based method, 
the voltage is measured directly on the battery and is easily 
used in cell equalization. Voltage, which is the external 
characteristics of the battery cannot reflect the capacity or the 
internal resistance. Therefore, the voltage-based method is 
unsuitable for determining the battery imbalance. On the other 
hand, SoC is affected by both internal and external 
characteristics of the battery such as battery voltage/current, 
temperature, internal resistance, and capacity. To improve the 
cell equalization, the SoC based method is more suitable 
because SoC represents a comprehensive performance of the 
battery characteristic [37]. 

In this study, the second order Thevenin equivalent circuit 
method is chosen considering optimum model accuracy and 
complexity. Equivalent circuit parameters are associated with 
SoC to reflect the dynamic characteristics of the Li-ion battery. 
The combined dynamic battery model (a combination of 
Thevenin equivalent circuit model, OCV method and CC 
method) is used to better represent the dynamical behavior of 
the Li-ion battery. According to the combined dynamic battery 
model, UKF based SoC estimation is used to implement the 
equalization of Li-ion battery packs. In order to protect series-
connected Li-ion cells from cell inconsistencies, passive 
balance control (PBC) is used with SoC based equalization. 

II. COMBINED DYNAMIC MODELING OF LI-ION BATTERIES 

The dynamic model of the Li-ion battery was formed by 
combining different methods. The combined dynamic battery 
model is constructed using second order Thevenin model, OCV 
method, and CC method. The schematic diagram of the 
combined dynamic battery model is shown in Figure 1. 

 

 
Fig. 1 The schematic diagram of the combined dynamic battery model 

SoC is obtained from the load current by using the CC 
method. The definition of the CC method is: 
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where ����  is the present SoC, ����  is the initial SoC, ��  is 
the maximum available capacity, �  is the charge-discharge 
efficiency, and �	,� is the load current. 

The relationship between OCV and SoC is determined by 
the OCV method. OCV is defined as electrical potential 
difference between the two terminals of the battery when it is 
disconnected from the electrical load. OCV has a non-linear 
relationship with SoC which is obtained by the curve fitting 
method using the rest points of the OCV of the test data. 
Second order Thevenin equivalent circuit model, given in 
Figure 2, is chosen as the cell characteristic of Li-ion battery 
due to its high precision and low complexity. The equivalent 
circuit parameters can be changed dynamically depending on 
SoC. 

 

 
Fig. 2 Second order Thevenin equivalent circuit model 

The state-space representation of the combined dynamic 
battery model is: 
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where �
��, ����  is the ohmic resistance, �
�� , ����  and 
�
�� , ����  are polarization resistances, �
��, ����  and 
�
��, ���� are polarization capacitances, and �� and �� are the 
polarization voltages crossing on �� and ��. 

III. UKF ALGORITHM 

UKF is a widely used state estimator for nonlinear systems. 
The UKF uses the unscented transformation principle rather 
than linearizing the nonlinear functions as in the EKF. The 
UKF consists of four major steps: initialization, sigma point 
calculation, state prediction and measurement update. In the 
initialization step, mean of initial state �̅�

�  and covariance P�
� 

are estimated as Gaussian random vectors: 

0 0
s sx E x =    (5) 

( )( )0 0 0 0 0

T
s s s s sP E x x x x = − −  

 (6) 

Then, � set of sigma points are selected by using unscented 
transformation principle in sigma point calculation step: 
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Each sigma point passes through the non-linear functions 
�
. �  and �
. � . Priori state estimate ���|��� , priori error 
covariance matrix ��|���  and measurement of system output 
vector  ���� are calculated in state prediction step: 
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Finally, the measurement covariance �3�  and the cross-
correlation covariance �4�,3� are calculated. Kalman gain 5� is 
calculated based on measurement covariance and cross-
correlation covariance. Posteriori state estimate ���|�  and 
posteriori error covariance matrix ��|�  are calculated in the 
measurement update step: 
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IV. PASSIVE BALANCING CONTROL FOR SOC BASED 
EQUALIZATION 

Battery packs used in EVs, contain many cells. These cells 
interact with each other. Inconsistencies that may occur in these 
interacted cells can lead to reduced capacity, overcharge and 
over-discharge. Cell equalization is essentially required to 

prevent cell inconsistencies in the battery pack. Traditionally, 
PBC is used to protect Li-ion cells from cell inconsistencies 
with SoC based equalization. The fixed shunting resistor 
method shown in Figure 3 is one of the most common used in 
PBC. This method is accomplished by using a switch and drain 
resistor in parallel with each battery cell. 

 

 
Fig. 3 Schematic diagram of fixed shunting resistor method 

V. EXPERIMENTAL VALIDATION 

In order to validate the UKF based balancing performance 
of Li-ion battery packs, an experimental test bench was set up. 
This test bench consisted of a programmable dc power supply 
(Gwinstek PSH-3620A), a programmable dc load (Gwinstek 
PEL-2002/2040), a real-time controller (Dspace DS1104), a Li-
ion battery (Panasonic NCR18650B), a balancing circuit and a 
PC as shown in Figure 4. The balancing circuit shown in 
Figure 5 is developed to perform SoC based equalization for 
battery packs by using PBC. The SoC of each cell is compared 
with the average SoC in the cell balancing circuit. When the 
difference is over a predetermined threshold of inconsistency, 
the equalization begins. Otherwise the equalization process 
stops. 

 

 
Fig. 4 Experimental test bench 

A. Determinaton of OCV 

Impulse discharge test was performed to determine OCV in 
the experimental test bench. In this test, the Li-ion battery was 
discharged for 5 minutes and rested for 2 hours. This process 
continued until the battery was fully discharged. The OCV was 
obtained using the resting points of the discharge process with 
the curve fitting method. 
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Fig. 5 The balancing circuit 

 
Fig. 6 OCV-SoC non-linear relationship 

The OCV curve, given in Figure 6, can be represented with 
a sixth degree polynomial as: 
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B. UKF Based SoC Estimation 

UKF algorithm has been tested on the combined dynamic 
battery model to estimate SoC. The initial parameters of the 
UKF were defined as: state variable �� $ 6���� 0 078 , 
covariance matrix � $ 9:,;
1,1,1� , weight matrix 
< $ 9:,;
10���, 10���, 10���� and � $ 10. Q and R weight 
matrices were determined by trial and error. The ���� was set 
to 0.8 (80%), in order to better interpret the sensitivity to the 
initial state of UKF algorithm. SoC estimation performance 
based on UKF is shown in Figure 7.  

 
Fig. 7 UKF based SoC estimation 

It can be seen that the UKF algorithm can quickly eliminate 
the initial SoC error and accurately track the SoC after the 
elimination of the initial error. The calculated estimation error 
signals are shown in Figure 8 with the initial SoC error. In 
order to verify the performance of the UKF algorithm, detailed 
calculations were carried out by using the comparison of the 
estimation results. It is clear that the UKF algorithm with the 
combined dynamic battery model provide robust performance 
in detailed calculations (Table I). 

TABLE I.  DETAILED CALCULATIONS FOR UKF RESULTS 

 Mean Error Mean square error Error variance 

UKF Results 1.91% 1.6380 ×10-4 1.0133×10-4 
 

 
Fig. 8 Error signal of UKF based SoC estimation 

C. Real-time User Interface 

The interfaces of the battery equalization, shown in Figure 
9 and Figure 10 are built in MATLAB/Simulink and DS1104 
ControlDesk respectively. The architecture consists of a 
measurement block, a Li-ion battery block and a cell balancing 
block. The measurement block captures battery voltages, 
battery currents and initial SoCs of the individual Li-ion cells. 
Battery voltage and battery current data of Li-ion battery cells 
were measured online by using the DS1104 R&D controller 
board. The initial SoC was determined by the use of these data 
and CC method. The obtained data were given as input to the 
Li-ion battery block. The Li-ion battery block estimates SoC by 
using UKF for the cell balancing block. In the Li-ion battery 
block, the SoC was estimated with the combined dynamic 
battery model based on the UKF algorithm. The combined 
dynamic battery model consists of a second order Thevenin 
equivalent circuit, OCV, and CC. The cell balancing block 
keeps the SoC of the cells at the same level with the PBC. The 
algorithm of the equalization process is given in Figure 11. 
Voltage and current of the Li-ion cells were obtained. The 
initial SoC of each Li-ion cell was determined by the OCV 
method. The SoC of each Li-ion cell was estimated and 
compared with the average SoC. When the SoC difference of 
each Li-ion cells was over the predetermined threshold of 
inconsistency, the balancing switch turned on, otherwise it 
stayed off. 
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Fig. 9 Matlab interface of the equalization process 

 
Fig. 10 Graphical user interface of the equalization process 

 
Fig. 11 Algorithm of the equalization process 

D. Validation of PBC 

The PBC is applied to four series of Li-ion cells to test and 
verify the presented equalization scheme. 

In the first experiment, the battery pack is discharged at the 
load current which is randomly varied between 0,65A and 1A. 
To examine the performance of the balancing process, the PBC 
is turned off after 180min. The result of the first experiment is 
shown in Figure 12. In the second experiment, the balanced 
battery cells are charged for 180s. Afterwards, only the PBC of 
B1 cell (first battery cell) is turned off during the charging 
process. Unbalanced battery cells are charged for 320s and 
afterwards the PBC of the B1 cell is turned on for balancing in 
the discharge process. When the cells are equalized, the PBC of 
the B1 cell is turned off again during the charging process for 
600s. Then the PBC of B1 cell is turned on for balancing in the 
charge process until the cells are equalized. The result of the 
second experiment is shown in Figure 13. As shown in Figure 
12, cell inconsistencies were successfully prevented during 
discharge process until the PBC was off. On the other hand, 
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cell inconsistencies were quickly observed when the PBC was 
turned off. Likewise, it was seen that the unbalanced cells 
equalize rapidly during both charging and discharging 
processes as shown in Figure 13. Experimental results validate 
that PBC can equalize the Li-ion cells accurately and rapidly by 
using UKF-based estimation with combined dynamic battery 
model. 

 
Fig. 12 SoC vs time, first experiment 

 
Fig. 13 SoC vs time, second experiment 

VI. CONCLUSION 

This paper presented a SoC based equalization scheme 
based on PBC. A combined dynamic model of the Li-ion 
battery was proposed by using a second order Thevenin model, 
OCV, and CC method. In the combined dynamic model, the 
parameters of the equivalent circuit vary depending on SoC. 
Accurate SoC estimation of each Li-ion cell was implemented 
by UKF. The SoC based equalization utilizing PBC was 
applied to equalization of the unbalanced of series-connected 
Li-ion batteries. The simulation architecture utilizing PBC was 
designed in MATLAB/Simulink. Real-time experimental 
verification was performed with a real-time controller Dspace 
DS1104. Two different experiments were performed to validate 
the effect of the designed PCB unit. In the first experiment, the 
battery pack was discharged under variable loads and cell 
imbalance was successfully prevented by the PCB unit during 
the discharge process. In the second experiment, the battery 
pack was tested under the charge/discharge conditions at 
different times and unbalanced cells equalized rapidly during 

charging and discharging process. The experimental results 
show that the presented PCB based equalization scheme and 
UKF based SoC estimation can perform well in real-time 
applications. 

ACKNOWLEDGMENT 

The authors would like to thank the Scientific and 
Technological Research Council of Turkey (TÜBİTAK-3501, 
114E515) for the financial support. 

REFERENCES 

[1] M. A. Hannan, M. S. H. Lipu, A. Hussain, A. Mohamed, “A review of 
lithium-ion battery state of charge estimation and management system in 
electric vehicle applications: Challenges and recommendations”, 
Renewable and Sustainable Energy Reviews, Vol. 78, pp. 834–854, 
2017 

[2] V. H. M. Nguyen, C. V. Vo, L. D. L. Nguyen, B. T. T. Phan, “Green 
scenarios for power generation in Vietnam by 2030”, Engineering, 
Technology & Applied Science Research, Vol. 9, No. 2, pp. 4019-4026, 
2019 

[3] E. V. Palconit, M. L. S. Abundo, “Transitioning to green maritime 
transportation in Philippines: Mapping of potential sites for electric ferry 
operations”, Engineering, Technology & Applied Science Research, 
Vol. 9, No. 1, pp. 3770-3773, 2019 

[4] G. E. Blomgren, “The development and future of lithium ion batteries”, 
Journal of the Electrochemical Society, Vol. 164, No. 1, pp. A5019-
A5025, 2017 

[5] X. Hu, C. Zou, C. Zhang, Y. Li, “Technological developments in 
batteries: A survey of principal roles, types, and management needs”, 
IEEE Power and Energy Magazine, Vol. 15, No. 5, pp. 20-31, 2017 

[6] P. Shen, M. Ouyang, L. Lu, J. Li, X. Feng, “The co-estimation of state of 
charge, state of health, and state of function for lithium-ion batteries in 
electric vehicles”, IEEE Transactions on Vehicular Technology, Vol. 67, 
No. 1, pp. 92-103, 2018 

[7] X. Wang, J. Xu, Y. Zhao, “Wavelet based denoising for the estimation 
of the state of charge for lithium-ion batteries”, Energies, Vol. 11, No. 5, 
pp. 1144, 2018 

[8] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, “A review on the key issues for 
lithium-ion battery management in electric vehicles”, Journal of Power 
Sources, Vol. 226, pp. 272-288, 2013 

[9] A. Fotouhi, D. J. Auger, K. Propp, S. Longo, M. Wild, “A review on 
electric vehicle battery modelling: from lithium-ion toward lithium–
sulphur”, Renewable and Sustainable Energy Reviews, Vol. 56, pp. 
1008-1021, 2016 

[10] X. Lai, Y. Zheng, T. Sun, “A comparative study of different equivalent 
circuit models for estimating state-of-charge of lithium-ion batteries”, 
Electrochimica Acta, Vol. 259, pp. 566-577, 2018 

[11] C. Zhang, W. Allafi, Q. Dinh, P. Ascencio, J. Marco, “Online estimation 
of battery equivalent circuit model parameters and state of charge using 
decoupled least squares technique”, Energy, Vol. 142, pp. 678-688, 2018 

[12] R. Xiong, J. Cao, Q. Yu, H. He, F. Sun, “Critical review on the battery 
state of charge estimation methods for electric vehicles”, IEEE Access, 
Vol. 6, pp. 1832-1843, 2017 

[13] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, “State of the art of 
lithium-ion battery SOC estimation for electrical vehicles”, Energies, 
Vol. 11, No. 7, pp. 1820, 2018 

[14] Y. Zheng, M. Ouyang, X. Han, L. Lu, J. Li, “Investigating the error 
sources of the online state of charge estimation methods for lithium-ion 
batteries in electric vehicles”, Journal of Power Sources, Vol. 377, pp. 
161-188, 2018 

[15] W. Y. Chang, “The state of charge estimating methods for battery: A 
review”, ISRN Applied Mathematics, Vol. 2013, Article ID 953792, 
2013 

[16] N. C. Eli-Chukwu, “Applications of artificial intelligence in agriculture: 
A review”, Engineering, Technology & Applied Science Research, Vol. 
9, No. 4, pp. 4377-4383, 2019 



Engineering, Technology & Applied Science Research Vol. 9, No. 6, 2019, 4876-4882 4882  
  

www.etasr.com Muratoglu & Alkaya: Unscented Kalman Filter based State of Charge Estimation for the Equalization … 

 

[17] K. S. Ng, Y. F. Huang, C. S. Moo, Y. C. Hsieh, “An enhanced coulomb 
counting method for estimating state-of-charge and state-of-health of 
lead-acid batteries”, 31st International Telecommunications Energy 
Conference, Incheon, South Korea, October 18-22, 2009 

[18] S. Wang, C. Fernandez, L. Shang, Z. Li, H. Yuan, “An integrated online 
adaptive state of charge estimation approach of high-power lithium-ion 
battery packs”, Transactions of the Institute of Measurement and 
Control, Vol. 40, No. 6, pp. 1892-1910, 2017 

[19] C. Zhang, J. Jiang, L. Zhang, S. Liu, L. Wang, P. C. Loh, “A generalized 
SOC-OCV model for lithium-ion batteries and the SOC estimation for 
LNMCO battery”, Energies, Vol. 9, No. 11, Article ID 900, 2016 

[20] L. Lavigne, J. Sabatier, J. M. Francisco, F. Guillemard, A. Noury, 
“Lithium-ion open circuit voltage (OCV) curve modelling and its ageing 
adjustment”, Journal of Power Sources, Vol. 324, pp. 694-703, 2016 

[21] M. Charkhgard, M. Farrokhi, “State-of-charge estimation for lithium-ion 
batteries using neural networks and EKF”, IEEE Transactions on 
Industrial Electronics, Vol. 57, No. 12, pp. 4178-4187, 2010 

[22] L. Xu, J. Wang, Q. Chen, “Kalman filtering state of charge estimation 
for battery management system based on a stochastic fuzzy neural 
network battery model”, Energy Conversion and Management, Vol. 53, 
No. 1, pp. 33-39, 2012 

[23] G. Burgers, P. J. V. Leeuwen, G. Evensen, “Analysis scheme in the 
ensemble Kalman filter”, Monthly Weather Review, Vol. 126, No. 6, pp. 
1719-1724, 1998 

[24] O. Aydogdu, M. L. Levent, “Kalman state estimation and LQR assisted 
adaptive control of a variable loaded servo system”, Engineering, 
Technology & Applied Science Research, Vol. 9, No. 3, pp. 4125-4130, 
2019 

[25] K. Fujii, Extended Kalman filter, The ACFA-Sim-J Group, 2013 

[26] F. Claude, M. Becherif, H. S. Ramadan, “Experimental validation for li-
ion battery modeling using extended Kalman filters”, International 
Journal of Hydrogen Energy, Vol. 42, No. 40, pp. 25509-25517, 2017 

[27] S. Jung, H. Jeong, “Extended Kalman filter-based state of charge and 
state of power estimation algorithm for unmanned aerial vehicle li-po 
battery packs”, Energies, Vol. 10, No. 8, pp. 1237, 2017 

[28] M. Mathew, S. Janhunen, M. Rashid, F. Long, M. Fowler, “Comparative 
analysis of lithium-ion battery resistance estimation techniques for 
battery management systems”, Energies, Vol. 11, No. 6, pp. 1490, 2018 

[29] E. A. Wan, R. V. D. Merwe, “The unscented Kalman filter for nonlinear 
estimation”, Adaptive Systems for Signal Processing, Communications, 
and Control Symposium, Alberta, Canada, October 4, 2000 

[30] Y. He, X. Liu, C. Zhang, Z. H. Chen, “A new model for state-of-charge 
(SOC) estimation for high-power li-ion batteries”, Applied Energy, Vol. 
101, pp. 808-814, 2013 

[31] W. He, N. Williard, C. Chen, M. Pecht, “State of charge estimation for 
electric vehicle batteries using unscented Kalman filtering”, 
Microelectronics Reliability, Vol. 53, No. 6, pp. 840-847, 2013 

[32] H. He, H. Qin, X. Sun, Y. Shui, “Comparison study on the battery SoC 
estimation with EKF and UKF algorithms”, Energies, Vol. 6, No. 10, pp. 
5088-5100, 2013 

[33] S. Peng, C. Chen, H. Shi, Z. Yao, “State of charge estimation of battery 
energy storage systems based on adaptive unscented Kalman filter with a 
noise statistics estimator”, IEEE Access, Vol. 5, pp. 13202-13212, 2017 

[34] Y. Ma, P. Duan, Y. Sun, H. Chen, “Equalization of lithium-ion battery 
pack based on fuzzy logic control in electric vehicle”, IEEE Transactions 
on Industrial Electronics, Vol. 65, No. 8, pp. 6762-6771, 2018 

[35] D. D. Quinn, T. T. Hartley, “Design of novel charge balancing networks 
in battery packs”, Journal of Power Sources, Vol. 240, pp. 26-32, 2013 

[36] Y. Zheng, L. Lu, X. Han, J. Li, M. Ouyang, “LiFePO4 battery pack 
capacity estimation for electric vehicles based on charging cell voltage 
curve transformation”, Journal of Power Sources, Vol. 226, pp. 33-41, 
2013 

[37] Y. Li, C. Wang, J. Gong, “A combination Kalman filter approach for 
state of charge estimation of lithium-ion battery considering model 
uncertainty”, Energy, Vol. 109, pp. 933-946, 2016 

 


