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Abstract—Wind energy has attracted much attention as a clean 
energy resource with low running cost over the last decade,. 

However, due to the unpredictable nature of wind speed, the Unit 

Commitment (UC) problem including wind power becomes more 

difficult. Therefore, engineers and researchers are required to 

seek reliable models and techniques to plan the operation of 

thermal units in presence of wind farms. This paper presents a 
new attempt to solve the stochastic UC including wind energy 

sources. In order to achieve this, the problem is modeled as a 

chance-constrained optimization problem. Then, a method based 

on the here-and-now strategy is used to convert the uncertain 

power balance constraint into a deterministic constraint. The 

obtained deterministic problem is modeled using Mixed Integer 

Programing (MIP) on GAMS interface whereas the CEPLEX 
MIP solver is employed for its solution.  

Keywords-stochastic optimization; mixed-integer programming; 

unit commitment; wind energy sources 

I. INTRODUCTION  

A. Research Background 

Wind power generation has attracted much attention due to 
the emergence of energy crises and the related environmental 
issues. Thus, engineers and researchers in power systems have 
encountered new challenges due to the intermittent and 
stochastic nature of Wind Power (WP). One of the main 
challenges is to study the Unit Commitment (UC) when Wind 
Energy Sources (WESs) are incorporated into the main power 
network. The UC problem aims to determine which units have 
to be committed/uncommitted from the economic perspective 
[1]. The production levels of the committed units must be 
specified in order to meet the predicted load at a minimum total 
production cost over a planning horizon varying from one day 
to one week. In general, most of the operation costs include the 
start-up and shut-down costs [2]. The minimization of the 
operation cost is affected by several operating constraints, 
which can limit the search space. Power balance constraint, 
generation limits, spinning reserve constraints, minimum up-
time/down-time constraints, unit initial status, and ramp rate 
limits of units are the most used constraints in the UC problem 
formulation [3-4]. The decision variables for the UC problem 
consist of both states of units, which are based on 
binary/integer variables (i.e. 1 when the unit is ON and 0 when 
the unit is OFF) and the output power of the committed units, 
which are continuous/real variables. For a long time, the UC 

problem has been mainly formulated as a mixed-integer 
optimization problem [5-9]. Recently, the issues of climate 
change have begun to be a global concern and some countries 
have made immediate decisions to decrease their gas emissions 
[10]. On the other hand, WESs are characterized by the lowest 
generation cost and the largest available energy amongst all 
renewable energy sources [11]. Due to the aforementioned 
reasons, some countries are committed to using WES. The 
integration of WES into power grids is usually accompanied by 
several difficulties, such as the stochastic availability of wind 
energy [12]. Therefore, scientific researches and technological 
developments, that seek to resolve this kind of problems, are in 
the process of finding the best solutions. The UC and power 
dispatch problems are among the most investigated related 
issues [13-14]. Accordingly, the UC problem should be 
modified in order to consider the uncertain characteristics of 
the WES in the power balance constraint. 

B. Related Work 

The UC problem has mostly been considered as a nonlinear 
mixed-integer optimization problem [5]. Priority List (PL), an 
earlier technique for solving the UC problem, has been based 
on sorting thermal units in a list according to their production 
costs in an increasing manner [13]. Units to be committed are 
extracted from the list in order to meet the hourly power 
demand. The PL method seems to be easy and can provide a 
quick pre-estimation of the optimum solution but it is criticized 
for its high convergence time and the large required number of 
units [14]. Several other strategies and formulations have been 
proposed to solve the UC problem such as dynamic 
programming (DP) [15], Lagrangian Relaxation (LR) [16-17], 
Benders Decomposition (BD) [18-19], Mixed-Integer Linear 
Programming (MILP) [20-22], neural networks [23-24], and 
meta-heuristic techniques [2, 25-28]. However, these strategies 
have certain limitations [4]. For example, DP-based approaches 
are considered as impractical for the case of large power 
networks. Compared with the DP method, the LR method is 
more effective because of its flexibility in managing various 
types of constraints. However, the coupling constraints are not 
often met by the dual optimum solution provided by the LR 
approach. Another limitation of the LR method is the 
sensitivity of the optimum solution of the UC problem to the 
Lagrange multipliers. Optimization methods based on the 
MILP approach have also been criticized for their high CPU 
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time especially when the power system is large in size [2]. 
Regarding the meta-heuristic based techniques, despite they 
can achieve hopeful results when their parameters are well 
tuned, they are not above criticism. One of their main 
disadvantages is the requirement of delicate tuning of the 
optimization algorithm parameters which is a fundamental step 
to ensure their effectiveness. 

Nowadays, due to the improvements in the mathematical 
modeling solvers utilized in optimization problems, MILP-
based models are becoming the most used for solving the UC 
problem. Two main features justified the use of the MILP in 
the modern optimization solvers: (i) the Mixed-Integer 
Programming (MIP) solver provides feasible solutions, and (ii) 
the level of optimality is controllable [29]. Instead of focusing 
on the optimization algorithm, nowadays solvers require 
excellent problem modeling. MIP solvers like CPLEX, 
GUROBI and XPRESS [30] have become quite popular in both 
academia and industry, especially after the year 2000. In recent 
years, several works regarded modeling and solving the 
Stochastic UC (SUC) including the WESs problem. The main 
contributions of these works are focused in the forecasting 
methods of WP. As WES is a fluctuating electrical energy 
source, the forecasts of wind power generation are useful for 
UC and dispatch problems [31]. In [32], a combined wavelet 
and time series methods based on short-term forecasting 
procedure for small farms was presented. An approach using 
chaos theories for prediction of wind speed and WP was 
proposed in [33]. Other prediction techniques based on 
artificial intelligence, such as neural networks [34-36], fuzzy 
logic systems [38] and evolutionary algorithms [38] have been 
also developed. According to the used methodology, 
forecasting procedures can be categorized into two categories: 
physical and statistical approaches. Physical approaches, also 
called deterministic approaches, are based on numerical 
weather data [39-40]. Statistical approaches use a historical 
data base to estimate the future wind speed and WP at any 
future time [41]. In recent years, more emphasis has been given 
to Probability Density Functions (PDFs) to describe the 
stochastic characteristics of wind speed [42-45]. One of the 
pioneer works in investigating power generation scheduling 
with WES is described in [43]. The authors used a stochastic 
programming approach called Here-and-Now (HN) strategy to 
model the stochastic optimization problem. Although, it is 
demonstrated that the impact of the random WP on the power 
dispatch can be easily evaluated when such a strategy is 
applied, the production cost has been approximated by a 
quadratic function.  

According to [46], the HN strategy is used when the 
decision must be made even before the first realization of the 
random variables. The basic idea of this approach is to 
transform the stochastic problems into equivalent deterministic 
programs. In HN approach, the decision variables of the 
stochastic problem are detached from the random variables. 
Furthermore, all uncertain variables are described by chance 
constraints. PDFs and Cumulative Distribution Functions 
(CDFs) are used to convert these constraints into deterministic 
constraints. The Weibull distribution function has been widely 
used to describe the random wind speed and WP 
characteristics.  

C. Study Aims and Contribution 

Even though an enormous amount of research work has 
been conducted on the integration of WP resources into power 
systems, the UC problem with simultaneous integration of 
these devices is hardly studied. Thus, this study aims to 
develop an efficient model for the Chance-Constrained UC 
(CCUC) problem with both wind turbines and thermal 
generators, where the violation of the power balance constraint 
caused by the uncertain output power of the WESs is restricted 
by a user-defined probability. This probability represents the 
tolerance in which the power balance constraint cannot be 
satisfied at a given time t. In the problem formulation, all 
operating constraints and power system losses are considered. 
The HN strategy, used for modeling the economic dispatch 
[43] is extended for the CCUC problem formulation. Using that 
strategy, the CCUC problem is converted into a deterministic 
optimization problem. Weibull PDF is employed to describe 
the WP. The obtained deterministic problem is then 
implemented in GAMS interface and the CEPLEX MIP solver 
is employed for its solution. The effectiveness of the proposed 
strategy is evaluated on a six-unit system including wind farm. 
The results are compared with those obtained in other works. 

II. DETERMINISTIC UC PROBLEM FORMULATION 

Mostly, the UC problem is formulated as a minimization 
problem. It aims to meet the load profile over a planned time-
horizon with minimum total operating cost subject to several 
equality and inequality constraints. The decision variables of 
the problem are the status of each unit which is a binary value 
and the power output of each online unit which is a continuous 
variable. 

A. Objective Function 

As given in (1), the principal components of the total 
operating cost of the thermal units are the fuel cost and the 
transitional costs which are start-up and shut-down costs [46]: 
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The fuel cost of the i-th unit at time t depends on its real 
output power at the same time and it can be approximated by: 

( ) ( )2t t t

i i i i i i iC P a b P c P= + +     (2) 

where, ai, bi, and ci are the cost coefficients of the i-th unit. N is 
the number of thermal units, T is the scheduling period in 

hours, t
iP  is the generation in MW of unit i at time t, 

t
iu is the 

status of unit i at time t (1 for ON and 0 for OFF), and t
iS  and 

t
iD  are start-up and shut-down costs of unit i at time t. 

The start-up cost is the required cost to restart the unit from 
the OFF status to the ON status. It comprises mainly of the 
reheating and maintenance costs. That cost depends on the 
offline duration preceding the start-up. Several expressions 
such as two-valued staircase, linear and exponential-based 
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functions have been proposed [4] to describe the start-up cost. 
The first function adopted in this paper is: 

,

,

t D C
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     (3) 

where hiS  and ciS  are the hot start-up and cold start-up costs 

of unit i respectively, ,
t
i OFFT  is the duration in hours for which 

the unit i is continuously OFF at time t, and D
iT  and C

iT  are 

minimum down time and minimum up time in hours of unit i 
respectively. 

The transition cost of thermal units from the online status to 
the offline status may be considered constant and it does not 
depend on the online duration preceding the shut-down. 
However, it is often ignored in the UC problem formulations. 

B. Deterministic Constraints 

Four operating constraints are taken more frequently into 
account in the classical UC problem. 

1) Power Balance Constraint 

At each hour t, the total generated power must meet the 

predicted load t

DP  plus the total real losses 
t

LP  as described by 

(4): 
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1
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2) Unit Limits 

The output power t

iP  of the i-th committed unit must be 

within its lower and upper limits. 

min maxt

i i iP P P≤ ≤     (5) 

3) Minimum Up/Down Times 

These constraints signify the minimum required durations 
for which the de-committed/committed unit can be turned 

ON/OFF. ,
t
i ONT  is the duration in hours for which the unit i is 

continuously ON at time t.   
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4) Spinning Reserve Constraints 

Spinning reserve is the reserve capacity of all units 
synchronized on the grid and ready to take load. At each hour t, 
the spinning reserve constraint is described as: 

1

N
t t t t

i i D

i

P u P SR
=

≥ +∑     (7) 

where tSR  is the system spinning reserve at time t. 

III. EQUIVALENT CHANCE-CONSTRAINED UC MODEL 

The output power of any WES depends on wind speed and 
the technical characteristics of the turbine. Moreover, wind 

speed is influenced by several factors depending on the 
geographical location. Indeed, wind speed uncertainty may be 
characterized by probability principles [43]. The incorporation 
of WES in the UC problem can be described by including new 
constraints into the classic UC model. These constraints 
describe the stochastic characteristic of wind speed that 
obviously influences the output power of the WES. In this 
study, the following stochastic constraint is included in the 
CCUC problem formulation: 

1
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i
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where σ is a user-defined parameter in the range [0,1] that 
represents the tolerance that power balance constraint cannot be 

satisfied at a given time t, t
DP  is the total power demand and 

t
LP  is the total system losses calculated using B-loss formula 

[13]. tW  is the output power of the WES at hour t. Obviously, 
power balance constraint (4) is replaced by the following 
equation, which results from the integration of the WES: 
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1
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The probability distribution has been widely used to 
describe the stochastic characteristics of wind speed [44]. In 
this study, the two-parameter Weibull PDF described by (10) is 
proposed to approximate wind speed distribution. The 
probability to have wind speed equal to or less than v, called 
CDF is given in (11). 
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where v is the wind speed. Parameters k and c are the shape and 
scale factors which depend on the geographical location of the 
wind turbine. 

After predicting wind velocity from the Weibull PDF, the 
output power W of the wind turbine can be determined as: 

( ) 0, if orin outW V V v V vφ= = < >     (12) 
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( ) , ifr r outW V w v V vφ= = ≤ <     (14) 

where 
inv , 

outv  and 
rv  are cut-in, cut-out, and rated wind 

speeds respectively. 

Using probability theories and (12)-(14), the probability to 
have a WES between zero and rated power can be described as 
[43]: 
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From (15), the stochastic constraint given in (8) can be 
converted into the following deterministic constraint: 
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IV. IMPLEMENTATION OF THE SOLVING METHOD 

In order to have minimum fuel cost, the output power of the 
wind turbine must be maximum as much as possible. However, 
it is required to make sure that this power meets the constraint 
in (16). To meet this objective, for each time-horizon t, wind 
power is increased gradually until constraint (16) is not verified 
or until the maximum generation of the wind turbine is 
reached. Then, the total generation will be subdivided 
economically between all thermal units in order to cover the 

total load power t

DP  plus the total losses for the same time-

horizon minus the suggested wind turbine output Wt. The MILP 
is used in this study to model the CCUC problem. In order to 
apply the MILP solvers effectively, nonlinearities must be 
removed from the problem. Therefore, the quadratic form of 
the fuel cost of thermal units is converted into piecewise linear 
functions. The CCUC problem is implemented in GAMS and 
the CEPLEX MIP solver is employed for its solution.  

V. CASE STUDY 

To test the performance of the proposed strategy in solving 
the stochastic UC problem incorporating both thermal 
generation units and WES, two test cases are considered in this 
study (all system data are taken from http://motor.ece.iit.edu/ 
data): (a)Case 1: 6-bus system without WES and (b) Case 2: 6-
bus system with WES 

A. Case 1: 6-Bus System without WES 

As given in Figure 1, the 6-bus system consists of three 
thermal generating units, seven transmission lines and three 
loads. 

 
Fig. 1.  The 6-bus system. 

The generating units and the transmission line 
characteristics are shown in Tables I and II. The hourly demand 

is illustrated in Table III. The objective is to deliver the 
required energy with the minimum operation cost, and 
assuming wind power is unavailable in this case. The network 
operator would satisfy the demand whilst taking into 
consideration the power supply limitations and the transmission 
line’s constraints. The optimum hourly power supply of the 
three generating units obtained after the convergence of the 
optimization algorithm is depicted in Figure 2. It is clear that 
Unit 1 supplies the majority of the required demand due to its 
high capacity and low production cost. 

TABLE I.  UNIT DATA 

 
Unit 1 Unit 2 Unit 3 

Pmin (MW) 100 10 10 

Pmax (MW) 220 200 50 

Cost coefficients 

c ($/MW2h) 0.014 0.02 0.086 

b ($/MWh) 19.96 23 29.14 

a ($) 200 150 50 

Start-up cost ($) 50 40 0 

Shut-down cost ($) 100 200 0 

Minimum up time (h) 4 3 1 

Minimum down time (h) 4 2 1 

Ramp up rate (MW/h) 40 30 20 

Ramp down rate (MW/h) 50 35 20 

TABLE II.  LINE DATA 

Line From To X (pu) Flow limit (MW) 

1 1 2 0.17 140 

2 1 4 0.258 110 

3 2 4 0.197 140 

4 5 6 0.14 140 

5 3 6 0.018 130 

6 2 3 0.037 150 

7 4 5 0.037 50 

TABLE III.  HOURLY DEMAND IN MW 

Hour Demand Hour Demand 

1 170 13 236.1 

2 175.19 14 242.18 

3 165.15 15 243.6 

4 158.67 16 248.86 

5 154.73 17 255.79 

6 155.06 18 256 

7 160.48 19 246.74 

8 173.39 20 245.97 

9 177.6 21 237.35 

10 186.81 22 237.31 

11 206.96 23 232.67 

12 228.61 24 195.93 

 

 

Fig. 1.  Power supply in Case 1 (without wind power). 
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TABLE IV.  OPERATION COST ($) OF GENERATING UNITS IN CASE 1 

Time (h) Unit 1 Unit 2 Unit 3 Total 

1 4010 
  

4010 

2 4139.75 
  

4139.75 

3 3888.75 
  

3888.75 

4 3733.08 
  

3733.08 

5 3638.52 
  

3638.52 

6 3646.44 
  

3646.44 

7 3776.52 
  

3776.52 

8 4094.75 
  

4094.75 

9 4200 
  

4200 

10 4430.25 
  

4430.25 

11 4934 
  

4934 

12 4975.25 590 350 5915.25 

13 4662.5 1110 
 

5772.5 

14 4564.5 1350 
 

5914.5 

15 4600 1350 
 

5950 

16 4668.965 1415.036 
 

6084.001 

17 4567.319 1700.928 
 

6268.247 

18 4564.239 1709.592 
 

6273.831 

19 4678.5 1350 
 

6028.5 

20 4659.25 1350 
 

6009.25 

21 4443.75 1350 
 

5793.75 

22 4442.75 1350 
 

5792.75 

23 4451.75 1230 
 

5681.75 

24 4408.25 390 
 

4798.25 

Total 104179.083 16245.556 350 120774.639 

 

Unit 1 is committed alone at hours 1-11 since the hourly 
demand is less than its maximum capacity of 22MW. At hours 
1-11, the hourly demand variation does not exceed the ramping 
limit of Unit 1. Unit 3 does not have start-up/shut-down costs, 
while these costs are very high in Unit 2. Therefore, Unit 3 has 
been specifically turned on at hour 12 with Unit 2 to reduce the 
operation cost. The hourly operation cost is shown in Table IV. 
The operation cost begins with $4010 when Unit 1 was only 

operated at hour 1. However, the operation cost is increased to 
$6273 at the peak time (hour 18), which represents an increase 
of 56% in the total cost as compared with hour 1. 

B. Case 2: 6-Bus System with WES 

In this case, the 6-bus system of Case 1 with an extra wind 
farm is used. The wind farm comprises of 50 WESs of the 
same parameters as shown in Table V. The hourly availability 
of wind power in MW of the wind farm is depicted in Table 
VI. For the applicability of the problem, tolerance σ should 
verify the following inequality [43] which ensures 

[ ]0.1447,1σ ∈ : 

( )Pr 0 1W σ= ≤ <     (18) 

TABLE V.  WIND PARAMETERS 

K C vin vout vr 

1.7 15 5 45 15 

TABLE VI.  HOURLY WIND POWER IN MW 

Hour Wind power Hour Wind power 

1 44 13 84 

2 70.2 14 80 

3 76 15 78 

4 82 16 32 

5 84 17 4 

6 84 18 0 

7 100 19 10 

8 100 20 0 

9 78 21 6 

10 64 22 56 

11 100 23 82 

12 92 24 52 
 

TABLE VII.  POWER SUPPLY OF THE GENERATING UNITS (MW) IN CASE 2 WITH VARIABLE WIND TOLERANCE 

 
σσσσ = 0.2  σσσσ = 0.25  σσσσ = 0.3  σσσσ = 0.35 

Hour 
Units 

PW  Units 1 to 3 PW  
Units 

PW  
Units 

PW 
1 2 3 1 2 3 1 2 3 

1 164.81 
  

5.19  160.4 
  

9.6  156.13 
  

13.87  151.9 
  

18.1 

2 166.92 
  

8.27  159.89 
  

15.3  153.06 
  

22.13  146.32 
  

28.87 

3 156.2 
  

8.95  148.59 
  

16.56  141.2 
  

23.95  133.9 
  

31.25 

4 149.01 
  

9.66  140.8 
  

17.87  132.83 
  

25.84  124.95 
  

33.72 

5 144.84 
  

9.89  136.42 
  

18.31  128.26 
  

26.47  120.19 
  

34.54 

6 145.17 
  

9.89  136.75 
  

18.31  128.59 
  

26.47  120.52 
  

34.54 

7 148.71 
  

11.77  138.69 
  

21.79  128.97 
  

31.51  119.36 
  

41.12 

8 161.62 
  

11.77  151.6 
  

21.79  141.88 
  

31.51  132.27 
  

41.12 

9 168.41 
  

9.19  160.6 
  

17  153.02 
  

24.58  145.52 
  

32.08 

10 179.27 
  

7.54  172.86 
  

13.95  166.64 
  

20.17  160.49 
  

26.32 

11 195.19 
  

11.77  185.17 
  

21.79  175.45 
  

31.51  165.84 
  

41.12 

12 217.78 
  

10.83  208.56 
  

20.05  199.62 
  

28.99  190.78 
  

37.83 

13 216.21 10 
 

9.89  217.79 
  

18.31  209.63 
  

26.47  201.56 
  

34.54 

14 192.76 40 
 

9.42  214.75 10 
 
17.43  216.97 

  
25.21  209.28 

  
32.9 

15 184.41 50 
 

9.19  186.6 40 
 

17  219.02 
  

24.58  211.52 
  

32.08 

16 195.08 50 
 

3.78  191.88 50 
 

6.98  218.77 10 10 10.09  215.69 10 10 13.17 

17 205.3 50 
 

0.49  204.9 50 
 

0.89  214.52 40 
 

1.27  214.13 40 
 

1.66 

18 206 50 
 

0  206 50 
 

0  206 50 
 

0  206 50 
 

0 

19 195.55 50 
 

1.19  194.55 50 
 

2.19  193.58 50 
 

3.16  192.61 50 
 

4.13 

20 195.97 50 
 

0  195.97 50 
 

0  200.97 45 
 

0  200.97 45 
 

0 

21 186.63 50 
 

0.72  191.03 45 
 

1.32  215.45 10 10 1.9  214.87 10 10 2.48 

22 185.71 45 
 

6.6  215.1 10 
 
12.21  219.66 

  
17.65  214.28 

  
23.03 

23 213.01 10 
 

9.66  214.8 
  

17.87  206.83 
  

25.84  198.95 
  

33.72 

24 189.8 
  

6.13  184.59 
  

11.34  179.54 
  

16.39  174.54 
  

21.39 
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The problem is solved for various values of the threshold 
tolerance σ. In this case, σ is changing from 0.2 to 0.35. The 
injection of wind power has completely changed the power 
production of the generating units. The impact of wind power 
(PW) on the supply of the generating units is demonstrated in 
Table VII. It is clear that the penetration rate of wind energy 
increases if the tolerance increases and vice-versa. The results 
obtained for the proposed approach are compared with those 
found for the stochastic security-constrained unit commitment 
(SSCUC) investigated in [46]. From Table VIII, it is clear that 
the proposed strategy provides minimum cost when a wind 
farm is integrated. Moreover, if the tolerance increases the 
production cost decreases thanks to the increase of the WP 
output. 

TABLE VIII.  TOTAL PRODUCTION COSTS 

Method 
Proposed approach 

SSCUC [46] 
σσσσ = 0.2 σσσσ = 0.25 σσσσ = 0.3 σσσσ = 0.35 

Total cost ($) 116,203 112,418 108,845 105,415 121,445.015 

 

VI. CONCLUSION 

Due to the high emergence of renewable energy sources in 
nowadays power grids, it is important to take into account the 
intermittent characteristics of these sources. A strategy for 
solving the UC problem comprising uncertain production is 
proposed in this paper. In order to address the uncertainty of 
the output of the WES, the power balance constraint is 
represented as a chance-constraint with a pre-defined 
probability called tolerance. The stochastic UC problem is 
reformulated as a deterministic mixed-integer optimization 
problem. To do so, the HN strategy was used to convert the 
chance constraint into a deterministic constraint. The 
applicability of the proposed method is tested on the six-unit 
system including wind farms. The simulation results show that 
with low values of tolerance both systems (with and without 
WES) are equivalent. Moreover, the more the tolerance 
increases, the more wind power penetration increases and, 
accordingly, fuel cost decreases. 
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