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Abstract-This paper presents a method for using a model 

reduction algorithm to design low-order digital filters. Designing 

an IIR digital filter that meets the specifications often leads to a 

high-order digital filter. To reduce the computation time and 

increase the response rate of the filter, we need to reduce the 

order of the high-order digital filter. Applying the LQG balanced 

truncation algorithm to reduce the demand for high-order digital 

filters shows that low-order filters can completely replace high-

order digital filters. The simulation results show that the use of 

the LQG balanced truncation algorithm in order to reduce the 

filter order is correct and efficient. 

Keywords-model order reduction algorithm; LQG balanced 

truncation algorithm; digital filter 

I. INTRODUCTION  

A filter is a circuit that removes or "filters out" a specified 
range of frequencies. In other words, it decomposes the 
spectrum of the signal into frequency components that will pass 
and frequency components that will be suppressed. Analog 
filters use analog electronic circuits made up of components 
such as resistors, capacitors, and optical amplifiers to produce 
the required filtering effect. A digital filter uses a digital 
processor to perform numerical calculations on the sampled 
values of the signal [1-7]. The processor can be a general-
purpose computer such as a PC or a dedicated DSP (Digital 
Signal Processor) chip. We know that during digital signal 
processing, the bandwidth of the frequency band can be varied 
as filters will suppress unwanted frequency components and 
the bandwidth of the processed signal will decrease and we can 
reduce the sampling frequency to match the signal's spectral 
width, which will reduce the number of computations in the 
digital filter.  

Compared with analog filters, digital filters have the 
following advantages: it is easy to change the filter structure 
without affecting the hardware, they are easy to design, deploy, 
and test, digital filters are extremely stable with time and 
temperature, they have high signal processing flexibility, and 
they can handle both low-pass and high-pass filtering 
accurately [1-2]. Due to the superior properties of digital filters, 
the application of digital filters is increasingly being expanded 
in the fields of telecommunications, speech processing, image 

processing, antenna systems, digital audio engineering, and 
multiplexing systems. 

Filter design involves constructing a filter transfer function 
that satisfies a given frequency response. To design a digital 
filter, there are two basic ways: 

 Method 1: Design an analog filter that satisfies the given 
requirements and then apply the equivalent transformation 
to form a digital filter. 

 Method 2: Apply computer-aided optimization methods to 
determine whether a digital filter satisfies the requirements. 

Of these two designs, the first is commonly applied due to 
its ease of implementation. The second method is highly 
complex, so it is rarely used. To design an analog filter, it is 
necessary to solve two problems: The first is to determine the 
main requirements of the filter to be designed. The second is to 
determine whether the filter is designed to be FIR (Finite-
Impulse Response) or IIR (Infinite-Impulse Response.) 

 Design of the FIR filter: the output is the impulse response 
vector h = [h0, h1, h2, …. ,hN]. 

 Design an IIR filter: the output is the coefficient vectors of 
the numerator and denominator of the transfer function  
b = [b0, b1, …, bN] and a = [ 1, a1, a2, …, aN]. 

The FIR filter has the advantage of a stable, linear phase 
characteristic. Its disadvantage is that when a large frequency 
response is desired, the large filter length N increases 
computational cost. The IIR filter has the advantages of low 
computational cost and efficient implementation in cascade of 
2

nd
-order circuits. The disadvantages of the IIR filter are that 

there is instability due to the quantization of the coefficients 
which can push the poles outside the unit circle and that it is 
not possible to achieve linear phase over the entire Nyquist 
interval. 

FIR response models are preferred over IIR models in 
practical applications such as signal processing [1, 2], 
telecommunications [8], and control systems [9-11]. However, 
the IIR model often arises from signal and system modeling 
and controller and filter design [1, 2, 11], so it is still used in 
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practice. Since the FIR model is more popular than the IIR 
model, efficient methods are often used to approximate the IIR 
model using the FIR model. 

The IIR model approximation problem can be stated as 

follows: Given an IIR model  zG , which is a stable rational 

transfer function, find   1 1

0 1 1... m

mz t t z t z
  

   T  such that 

the norm ,F  which is the transfer function error 

     z z z F G T , is minimized, choosing which standard 

to evaluate the error due to the requirements of each problem. 
Due to the existence of an approximation problem in the design 
of IIR filters, they are usually of high order. High-order filters 
will lead to many disadvantages in the process of using filters, 
so in the filter design process, it is necessary to apply model 
reduction methods to reduce the order of high-order filters. The 
problem of model order reduction can be stated as follows: 
Consider a linear, continuous, time-invariant parameter system 
with many inputs and many outputs, described in state space by 
the following system of equations: 

 



x Ax Bu

y Cx

ɺ

    (1) 

in which x  R
n
, u  R

p
, y  R

q
, A  R

nxn
, B  R

nxp
, and C  

R
qxn

. The goal of the order reduction problem for the model 
described by the system of (1) is to find the model described by 
the system of equations: 

r r r r

r r r

 



x A x B u

y C x

ɺ

    (2) 

where xr  R
r
, u  R

p
, yrR

q
, Ar  R

rxr
, Br  R

rxp
, and Cr  

R
qxr

, with r  n so that the model described by the system of (2) 
can replace the model described by the system of (1), and at the 
same time satisfy some of the following requirements: 

 The order reduction error is small and can be evaluated. 

 The order reduction algorithm needs to calculate efficiently 
and stability. 

 The order reduction algorithm can be performed 
automatically based on the formula for calculating the 
upper bound of the order reduction error. 

 Important properties of the root system, such as stability 
and passivity, should be preserved in a reduced order 
system. 

 It must be suitable for each specific requirement of each 
order reduction problem. 

Over the years, hundreds of studies have been published 
that dealt with solving the problem of order reduction of high-
order models. Most of them focused on solving the problem of 
order reduction for linear systems. Depending on the properties 
of the original system that need to be preserved in the order 
reduction system, there are many different order reduction 
methods. However, they can be classified based on the 
following basic techniques: 

 Singular Perturbations Analysis (SPA) [12]. 

 Modal Analysis (MA) [13-16]. 

 Singular Value Decomposition (SVD) analysis [19]. 

 Moment Matching (MM or Krylov methods) [17]. 

 Combined SVD and MM [18]. 

Among the above order reduction techniques, we pay the 
most attention to the group of methods based on SVD analysis 
and information from the single Hankel values of the system. 
The most important proposal of this group of methods is the 
balanced truncation method [20]. The balanced truncation 
method is implemented by applying the equivalence condition 
to the simultaneous diagonalization of the control and observed 
Gramian matrix of the system. Through the process of 
diagonalizing two Gramian matrices, it is possible to convert 
the original model represented in any basis system into an 
equivalent system representing the coordinate system in 
internal equilibrium space. From that equilibrium space, the 
low-order model can be found by removing the eigenvalues 
that contribute little to the relationship between the input and 
the output of the system, as well as the states that are less 
controlled and observed. The balanced truncation method was 
further developed in [21], and the relationship with Hankel's 
norm was determined in [22, 23]. In addition to the balanced 
truncation method, the SVD-based method has a number of 
other methods such as the stochastic balancing method [24], 
[25], the LQG balancing truncation algorithm [26], etc. Each 
order model reduction algorithm has its advantages and 
disadvantages and should be used for appropriate cases. 

In this paper, we are most interested in the LQG balancing 
truncation algorithm [26] and use it to reduce the high-order 
filter. 

II. THE LQG BALANCED TRUNCATION ALGORITHM 

Given a linear, continuous, time-invariant parameter system 
with many inputs and outputs, described in state space by (1) 
and according to the balanced truncation algorithm, to 
determine the transition matrix T , we need to determine the 
control grammian matrix and the observed gramian matrix by 
solving a system of Lyapunov equations. However, the 
condition for the system of Lyapunov equations to have a 
solution is that the original system (1) must be stable. If the 
original system (1) is unstable, we cannot solve the system of 
Lyapunov equations. To solve this problem, the LQG balanced 
truncation algorithm [26] proposes to calculate the controllable 
Gramian matrix and the observable Gramian matrix of the 
unstable system through an extended Riccati system of 
equations. Once the control and observation Gramian has been 
determined, it becomes possible to determine the transition 
matrix T . The detailed content of the LQG balanced truncation 
algorithm [26] is as follows: 

Input: The sytem  ,  ,  A B C  is described in (1) (unstable 

system). 
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Step 1: Calculate the control gramian matrix P  and the 

observed gramian matrix Q  according to the extended Riccati 

system of equations as follows: 

' ' ' ' 0

' ' ' 0

   

   

AP PA PC C P BB

A Q QA QBB Q C C
 

Step 2: Determine the triangular matrix on R  by Cholesky 
analysis of the controlled gramian matrix: 

TP RR  

Step 3. Use matrix R  to calculate SVD analysis of control 
gramian matrix as follows: 

T TRQR UΛV  

Step 4: Calculate matrix 
1/2L V . 

Step 5: Calculate the non-singular matrix
1 -1/2LT T R U . 

Step 6: Calculate    1 1,  ,  ,  ,   A B C T AT T B CT . 

Step 7: Choose r such that r < n, where r is the order of the 

reduced system. Represent  ,  ,  A B C  in block form as 

follows: 

 11 12 1

1 2

21 22 2

, , 
   

     
   

A A B
A B C C C

A A B
 

where x x x

11 1 1,  ,  
r r r p q r

R R R  A B C . 

Output: Reduced system  11 1 1,  ,  A B C . 

III. REDUCING THE ORDER OF THE DIGITAL FILTER 

Consider a IIR digital filter with a transfer function in the 
form of H(z) in (3) and the general structure of a laddered IIR 
filter [1-2]: 

 
1

0 1 1

1

0 1 1

...

...

N N

N N

N N

N N

b z b z b z b
z

a z a z a z a







   


   
H     (3) 

In [27], the authors have determined the transfer function 
model of the 6

th
-order IIR digital filter as follows: 

   
 

z
z

z


A
H

B
  

with: 

 
  3

5 4 3 2

6 5 4 2

0.1242 0.1581 0.5273 0.2154 0.0647 0.6889

1.095 1.299 1.113 0.4261.028 0.6043

z z z z z

z z z

z

z zz z

     

    

A

B

 

The 6
th

-order IIR digital filter has a non-minimum phase 
form and has a polarity very close to the unit circle in the z-
plane. Therefore, it is prone to digital errors and is not suitable 
for performing Digital Signal Processing (DSP). At the same 
time, the order of the digital filter is high, so when used in 
practice, there will be many disadvantages. To overcome this 
implementation difficulty, we need to reduce the order of the 
IRR digital filter. To do so, we convert the 6

th
-order digital 

filter to the form of linear analog filter through the 
transformation 1z s  . The obtained result is: 

   
 
s

s
s


C

H
D

 

with: 

 
 

5 4 3 2

6 5 4 3 2

0.1242 0.4629 0.0823 1.504 1.959 1.401

4.905 10.82 13.13 9.533 3.834 0.9407

s s s s s

s s s s s

s

s s

     

    





C

D
 

Performing order reduction of the 6th-order digital filter 
according to the steps of the LQG balanced truncation 
algorithm [26], the results are:  

Step 1: The control Gramian matrix P  and the observed 

Gramian matrix Q  have the following form: 

 0.1607    0.0009   -0.2016   -0.0036    0.0943   -0.0013

 0.0009    0.4125    0.0118   -0.4250   -0.0607    0.0813

-0.2016    0.0118    0.8439    0.0004   -0.8583   -0.0320

-0.0036   -0.4250    0.0004
P

    0.8738    0.1547   -0.3196

 0.0943   -0.0607   -0.8583    0.1547    1.8095    0.1140

-0.0013    0.0813   -0.0320   -0.3196    0.1140    0.3995

0.3205    0.4039    0.4465    0.52

 
 
 
 
 
 
 
 
  

Q

28    0.3373    0.3733

0.4039    0.5175    0.5839    0.6999    0.4634    0.5471

0.4465    0.5839    0.6753    0.8327    0.5671    0.7160

0.5228    0.6999    0.8327    1.0586    0.7419    0.9968

0.3373    0.4634    0.5671    0.7419    0.5336    0.7543

0.3733    0.5471    0.7160    0.9968    0.7543    1.1679

 
 
 
 
 
 
 
 
  

 

Step 2-4: The matrices ,R U , and L  have the following 

form: 

0.4008    0.0023   -0.5030   -0.0089    0.2353   -0.0033

    0         0.6423    0.0202   -0.6616   -0.0954   0.1266

    0             0        0.7685    0.0121   -0.9604   -0.0471

    0             0 
R

        0           0.6602    0.1596   -0.3563

    0             0         0              0         0.8929     0.1551

    0             0         0              0            0          0.4798

 









-0.0412    0.0204   -0.5517   -0.7850    0.1946   -0.1985

-0.1800   -0.1740   -0.2263   -0.1283   -0.8878    0.2855

-0.1460   -0.6028   -0.4883    0.4562    0.0765   -0.4037

 0.3772   -0.7024 










U
   0.1683   -0.2285    0.2089    0.4900

 0.7612   -0.0154    0.1140   -0.0702   -0.3421   -0.5342

 0.4720    0.3352   -0.6038    0.3195    0.0868    0.43669

1.0691 0 0 0 0 0

0 0.355 0 0 0 0

0 0 0

 
 
 
 
 
 
 
 
  

L
.0109 0 0 0

0 0 0 0.0078 0 0

0 0 0 0 0.0065 0

0 0 0 0 0 0.0001

 
 
 
 
 
 
 
 
  
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Step 5: The non-singular matrix T  has the form: 

 0.4244    0.5900    0.7316    0.9695    0.7049    1.0172

-0.5988   -0.6398   -0.5389   -0.3893   -0.0826    0.4162

-0.2020   -0.0591   -0.0283   -0.0529    0.0361   -0.1311

-0.1191   -0.0274    0.0346
T

    0.0053   -0.0172    0.0589

 0.0182   -0.0757   -0.0336    0.0415   -0.0335    0.0146

-0.0203    0.0185   -0.0160    0.0158   -0.0084    0.0101

 
 
 
 
 
 
 
 
  

 

Step 6: The system is in equilibrium equivalent form: 

 0.0120   - 0.4910    0.0785    0.0465    0.0073   - 0.0081

 0.4910   - 0.4415    0.3529    0.2060    0.0301   - 0.0343

 0.0785   - 0.3529   -1.8800   -1.2871   - 0.8508    0.3832

 0.0465   - 0.2060   -1.2871
A

   - 0.9049   -1.6577    0.3143

-0.0073    0.0301    0.8508    1.6577   - 0.0255    0.0558

 0.0081   - 0.0343   - 0.3832   - 0.3143    0.0558   -1.6653

 0.4244

-0.5988

-0.2020

-0.1191

 0.018

 
 
 
 
 
 
 
 
  

B

 

2

-0.0203

0.4244  0.5988  - 0.2020  - 0.1191 - 0.0182  0.0203

 
 
 
 
 
 
 
 
  

C

 

The results of the order reduction of the digital filter are 
shown in Table I. 

TABLE I.  RESULT OF ORDER REDUCTION OF THE 6
TH 

ORDER FILTER  

Order Hr(s) r 
H H  

5 
4 3 2

5 4 3 2

0.1238 0.2611 0.405 0.7221 0.8147

3.24 5.188 4.469 1.952 0.5468

s s s s

s s s s s

    

    
 9.7456.10-4 

4 
3 2

4 3 2

0.1235 0.2711 1.003 0.01749

3.214 1.635 0.7117 0.01141

s s s

s s s s

   
   

 0.0437 

3 
2

3 2

0.1376 0.08334 0.6907

2.309 1.161 0.4662

s s

s s s

  

  
 0.0266 

2 
2

8

-0.1784 s + 0.3335

0.4294 0.235s s 
 0.0904 

 
The step response and the bode response are two basic 

responses that evaluate the quality of the filter. Therefore, we 
will use them to evaluate the quality of the low-order digital 
filter. The step response and bode response of the low-order 
digital filters are shown in Figures 1-4. We can see that the step 
response of the 5

th
-order digital filter coincides with the step 

response of the 6
th

- order digital filter (Figure 1). In Figure 2 
we see that the step response of the 3

rd
-order digital filter 

almost coincides with the step response of the 6
th

-order digital 
filter and the step response of the 4

th
-order digital filter has a 

small deviation from the step response of the 6
th

-order digital 
filter. The step response of the 2

nd
-order digital filter has a large 

deviation from the step response of the 6
th

-order digital filter. 
Figure 4 shows the bode response of the 5th-order digital filter. 
It is noted that the 4

th
-order digital filter completely coincides 

with the bode response of the 6
th

-order digital filter. 

 

Fig. 1.  Step response of 5th- and 6th-order digital filters. 

 

Fig. 2.  Step response of 6th-, 4th-, 3rd-, and 2nd-order digital filters. 

 

Fig. 3.  Bode response of the 6th-, 5th-, and 4th-order digital filters. 

In Figure 4, we see that: 

 In the frequency range  < 9.37rad/s, the frequency 
amplitude response of the 3

rd
-order digital filter coincides 

with the frequency amplitude response of the 6
th

-order 
digital filter. 

 In the frequency range  > 9.37rad/s, the frequency 
amplitude response of the 3

rd
-order digital filter has a small 

deviation from the frequency amplitude response of the 6
th

-
order digital filter. 
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Fig. 4.  Bode response of the 6th-, 3rd-, and 2nd-order digital filters. 

 In the frequency range  < 2.07rad/s and  > 12.5rad/s, the 
frequency phase response of the 3

rd
-order digital filter 

coincides with the frequency phase response of the 6
th

-order 
digital filter. 

 In the frequency range 2.07rad/s <  < 12.5rad/s, the 
frequency phase response of the 3

rd
-order digital filter has a 

small deviation from the frequency phase response of the 
6

th
-order digital filter. 

 In the frequency range  < 2.7rad/s, the frequency 
amplitude response of the 2

nd
-order digital filter coincides 

with the frequency amplitude response of the 6
th

-order 
digital filter. 

 In the frequency range  > 2.7rad/s, the frequency response 
of the 2

nd
-order digital filter has a large deviation from the 

frequency response of the 6
th

-order digital filter. 

 In the frequency range  < 1.33rad/s and ω > 29.8rad/s, the 
frequency phase response of the 2

nd
-order digital filter 

coincides with the frequency phase response of the 6
th

-order 
digital filter. 

 In the frequency range of 1.33rad/s <  < 29.8rad/s, the 
frequency phase response of the 2

nd
-order digital filter has a 

large deviation from the frequency phase response of the 
6

th
-order digital filter. 

Comment: If minimum order reduction error is desired, the 
5

th
-order digital filter can be used instead of the 6

th
-order digital 

filter. If we want a low-order digital filter with the smallest 
order, but with quality almost equivalent to that of a 6

th
-order 

digital filter, we can choose a 3
rd

-order digital filter to replace 
the 6th order digital filter. 

The novelty of the current paper is that the LQG algorithm 
has been used to determine a low-order filter that can replace 
the high-order filter. The paper has evaluated the error of order 
reduction according to both the formula for evaluating the 
order reduction error and the error on step response 
characteristics and bode response characteristics. In [27], the 
author does not specify the order of the order reduction system, 
only focuses on converting the filter from IIR form to FIR form 
by order reduction algorithms and then evaluates the limit of 
order reduction error at some frequencies. In the future, we will 

evaluate the order reduction error at frequency points to 
compare the obtained results with the results in [27]. 

IV. CONCLUSION 

Digital filters have many advantages, so they are widely 
used in technical fields. The most common digital filter design 
method is usually to design first an analog filter and then 
convert it to digital filter form. Digital IRR filters often arise in 
engineering problems, so they are increasingly utilized and 
studied in research. The design of digital IRR filters often has 
to apply approximation methods, so the resulting filter is often 
of high order. To make the digital IRR filter simple and low in 
computational cost, we need to apply model order reduction 
algorithms to reduce the order of the high-order IRR filter. This 
article has applied the LQG balanced truncation algorithm to 
reduce the order of a 6

th
-order digital filter. The results of 

comparison and evaluation of low-order filters show that the 
resulting 5

th
-order digital filter can replace the 6

th
-order digital 

filter without any change in filter quality. Also, a 3
rd

-order 
digital filter can be used instead of a 6

th
-order digital filter if it 

is accepted that the quality of the low-order filter is only 
approximately that of the 6

th
-order filter. The simulation results 

show the correctness of the filter order reduction results using 
the LQG balanced truncation algorithm. 
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