
Engineering, Technology & Applied Science Research Vol. 13, No. 3, 2023, 10843-10848 10843  
 

www.etasr.com Kumar & Kumar: Free Vibration Analysis of Steel-Concrete Pervious Beams 

 

Free Vibration Analysis of Steel-Concrete 

Pervious Beams 
 

Prashant Kumar 

Department of Civil Engineering, National Institute of Technology Patna, India 

pk0895300@gmail.com (corresponding author)  

 

Ajay Kumar 

Department of Civil Engineering, National Institute of Technology Delhi, India 

sajaydce@gmail.com 

Received: 4 April 2023 | Revised: 22 April 2023 | Accepted: 24 April 2023 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.5913 
 

ABSTRACT 

This study investigated the free vibration analysis of steel-concrete porous beams with partial or complete 

shear interface using a finite-element model based on the cubic order beam theory. The present model 

assumes uniform porosity distribution along the beam thickness. It is assumed that the axial displacement 

will vary cubically along the thickness of the layer. The cubic order beam theory is implemented using a 

continuous C
0
 finite element containing three nodes and each node has eight degrees of freedom. Shear 

locking is eliminated in the present model by the numerical integration of the stiffness matrix. Comparing 

the present model with the published literature, it is found that the present model is robust in predicting 

the free vibration of the steel-concrete porous beam. 

Keywords-steel-concrete porous beams; finite element method; free vibration; porosity; partial shear interface 

I. INTRODUCTION  

New construction materials are constantly developed for 
various innovative engineering structures which must 
withstand static and dynamic loads. More and more companies 
are adopting cost-effective materials, while enhancing the 
safety and efficiency of engineering projects. Many 
engineering practices use composite beams, such as steel-
concrete beams, in buildings and bridges, wood-concrete 
floors, linked shear walls, etc. [1, 2]. In structural design, it is 
necessary to focus on the materials and the strength of the 
connectors. The structure of composite beams is affected by the 
interlayer slip under loading. The impact of partial contact on 
the structural behavior was investigated in [3]. The Euler–
Bernoulli beam theory was used in [4] to investigate the free 
vibration characteristics of steel-concrete composite continuous 
beams. Various experimental and analytical studies have been 
conducted to analyze composite beams [5]. Applying the 
eigenfunction expansion method along with the quasistatic 
decomposition method, an analytical solution is presented in 
[6]. Authors in [7, 8] worked on the vibrational behavior of 
nanocomposite beams. Under the effect of a moving load, the 
beam is reinforced by random straight Single-Walled Carbon 
NanoTubes (SWCNTs). 

The accurate results of Higher-order Beam Theory (HBT) 
intrigued researchers, so TBT has been replaced with HBT in 
order to obtain more accurate solutions. Authors in [9] built on 
Reddy's approach to an HSDT for multi-layered anisotropic 

composite laminates having complete shear interaction. C
0
 

finite element models were presented for evaluating composite 
and sandwich beams and the penalty function approach was 
used to find a C

0
 continuous finite element formulation [10, 

11]. Analysis of 3 different porosity variations in the thickness 
direction and their impact on the vibrational properties of the 
beam are presented in [12]. Free and forced lateral vibration 
analysis of beams made from Functionally Graded Materials 
(FGMs) using the Finite Element Method (FEM) is presented 
in [13]. The state-space technique was used in [14] to expand 
the static analysis to dynamic analysis without the use of axial 
force.  

From the literature review, it can be seen that there are a 
few studies regarding the free and forced vibration of a porous 
steel-concrete beam with a partial shear interface. Therefore, 
the present study uses the cubic order equation for axial 
displacement. A linear finite element model is developed for 
the dynamic analysis of a porous composite beam. The 
proposed composite beam has a partial or complete shear 
interaction. The homogeneous porosity distribution along the 
beam thickness is used to parametrically calculate the material 
properties. Different interfacial stiffness values are used to 
calculate the fundamental frequency. The present model is 
effective for analyzing the free vibrations of porous beams 
made of steel and concrete under various boundary conditions 
and moving loads. Several new findings are presented in this 
paper, making it useful for the subsequent analysis of the free 
vibration of porous composite beams in the future. 
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II. FORMULATION 

A. Porosity Distribution  

This study evaluates how steel and concrete porosity 
influence the free vibration of composite beams. Due to the 
uniform distribution of porosity, the variation in Young’s 
modulus, shear modulus, and mass density of the concrete and 
the steel layer is calculated by: 
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where Ei(y), Gi(y), ρi(y) are the Young’s modulus, shear 
modulus, and mass density of the concrete (upper) layer and 
steel (lower) layer of the beam along the transverse direction 
(where i = c-concrete, s-steel). 
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where the range of the porosity coefficient for mass density 
(em), porosity coefficient of concrete (e0), and porosity 
coefficient of steel (e1) are 0 < ��� < 1 , and 0 < �� < 1 .  
ei = emi = 0 means that porosity is zero at maximum elastic 
modulus and greater porosity gives lower elastic modulus. 
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B. Mathematical Formulation 

High-order beam theory is used to investigate the free 
vibration analysis of a composite beam having a shear interface 
as shown in Figure 1. The displacement field that was selected 
is unique. Transverse shear stresses must cease on the beam 
surfaces and remain nonzero elsewhere for the requirements to 
be satisfied, which determines the shape. The beam's axial 
displacement is considered as the thickness's cubic function. 
The axial displacement equation for the upper layer is 
expressed in (5). 
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Fig. 1.  Porous steel-concrete composite beam with shear flexible 

interface. 
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where ���	 = ���, �� , �� is the axial displacement along the top 
layer's reference axis passing through its centroid, �� =  ���� is 
the bending rotation, and �� =  ���� and �� = ����  are high-
order terms.  

The transverse displacement is assumed to be the same for 
both layers and can be represented as: 

( , , ) ( , , ) ( )c c s sW x y z W x y z W x W     (6) 

The partial shear interaction between two layers of the 
composite beam is modelled by taking distributed shear springs 
at their interface. The interfacial stiffness and the shear slip at 
the interface are used to figure out the shear stress at the 
interface. Interfacial slip (s) is calculated in (7) with u’c and u’s 
being the axial displacement of the upper and lower layer at the 
interface. 
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( )c ss u u       (7) 

Axial displacement equations, such as (5), are higher-order 
equations that are concerned with the warping of transverse 
sections, but do not describe the commonly used displacement 
parameters adopted in beam theories. So, higher order terms 
are eliminated by using shear stress-free conditions at the 
extreme surfaces of the composite beam. The shear stress at 
any point in the upper layer is calculated by: 
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where γc is the shear strain and Gc the shear modulus of 
porous concrete layer. 
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Shear stress-free conditions are applied at the top and 

bottom surface of the beam to find the displacement equation. 
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The normal stress and normal strain at any point of the 
beam are calculated by: 
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where σj is the normal stress, τj the shear stress, Ej the modulus 
of elasticity, Gj the shear modulus, εj the normal strain, and γj 
the shear strain of the jth

 layer, j=c represents the upper layer 
and j= s represents the lower layer of two-material composite 

beams. ��	�  is a function of yj and ����  is the function of xj 

which is coordinated along the axial direction. The 

expressions of ��	� and ���� are: 
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The strain energy as a function of stress and strain can be 
found by (11)-(12). 
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Numerical integration is used to evaluate the cross-section 
rigidity matrix ��	� and ��	�. Stored strain energy is calculated 
by (7) and distributed shear springs stiffness (ks): 
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C. Finite Element Formulation 

First of all, the 3-nodded iso-parametric C
o
 element is 

selected. This theory assumes 8 nodal degrees of freedom to 
solve the present problem using a one-dimensional finite 
element approximation written as: 
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The unknown nodal displacement vector ��� on the middle 
surface of a typical element is given by: 
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where ψi is the shape function. 

The generalized strain vector as a function of the nodal 
displacement vector {d} can be found by: 
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where [Pi] is the interpolation function differential operator 
matrix. 

The strain vectors are calculated by (13), (16), and (18) as a 

function of the stiffness matrix lK   . 
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Similarly, the interfacial stiffness and stiffness due to the 
penalty function approach are given below: 
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Now we can integrate (21), (22), and (23) and combine 
them to find out the element stiffness matrix [K]. 

  'l pK K KK                 (24) 

An element's mass matrix and its geometric stiffness matrix 
can be found in the same way as the element stiffness matrix is 
calculated above. Equations (16)-(18) are used to find out the 
displacement component vector at a point in the beam layer:  
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where jF   is a matrix of order 2×8 which contains the 

coefficient of displacement component expressed in (25) and 
[X] is a shape function matrix of order 8×24. 

Now, the consistent mass matrix of 3-nodded elements is 
developed by using (25) and is expressed as: 
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T T

j j j
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Free vibration analysis is conducted to find out the 
fundamental natural frequency from the given equation: 

   2 0
g gK M        (27) 

where ω is the vibration frequency and    the eigenvector. 
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III. RESULTS AND DISCUSSION 

A finite element technique based on the cubic order beam 
theory was used to examine steel-concrete beam features to 
assess the effectiveness of the recommended model. The 
findings are produced by implementing the proposed model in 
FORTRAN code. 

A. Comparison Study 

For the validation of the results, a two-layered simple 
support composite beam having a T-cross section is considered. 
The four different Boundary Conditions (BCs) SS, SC, CC, and 
CF (SS = Simply Supported, C = Clamped, F = Free) and the 
partial interaction of the composite beams were taken into 
consideration. The results used for validation are taken [14], in 
which the state-step approach is used to tackle this issue. In this 
example, the cross-sectional size and material characteristics of 
a two-layered composite beam are stated as: span length (L) of 
beam equal to 4m, the upper and lower elements are 
0.05×0.30m

2
 and 0.15×0.05m

2
, respectively, the modulus of 

elasticity of the upper (E1) and lower elements (E2) are 12Gpa 
and 8Gpa, respectively, the modulus of rigidity of the upper 
(G1) and lower element (G2) are 5GPa and 3GPa, respectively, 
and the mass densities of the upper and lower elements are 
taken as ρ1 = 2400Kg/m

3
 and ρ2 = 500Kg/m

3
, respectively, 

using partial interfacial spring stiffness ks = 50MPa. 

The free vibration frequencies (rad/s) for various BCs are 
listed in Table I. Fifty elements throughout the length of the 
beam are used to determine the present findings. The natural 
frequency of a Simply Supported (SS) beam determined in [14] 
and using the state-space technique is contrasted with the 
present results. The error percentages are also listed in 
parentheses. In the present simulation, the results are quite 
accurate and in close agreement with those in [14] with an 
accuracy of 99.76%. 

TABLE I.  VALIDATION OF THE FUNDAMENTAL 
FREQUENCY OF A COMPOSITE BEAM (E0=E1=0). 

S.No. BC 
Fundamental frequency (rad/s) 

Present [14] 

1. CF 25.06 25.12 (0.24) 

2. SS 64.56 64.85 (0.45) 

3. SC 88.78 89.56 (0.88) 

4. CC 116.66 118.50 (1.58) 

Note: Parameters in parentheses represent percentage errors. 

 

B. Steel-Concrete Porous Beam 

In the present study, steel-concrete two-material composite 
beams with different porosity, BCs, and different interfacial 
shear stiffness values are taken for analysis. The beam's cross-
section (Figure 2) is made up of a rectangular slab with a 
thickness and width of 0.15m and 2.25m respectively, an I-
shaped steel joist with a flange dimension of 0.1780×013m, 
and a web dimension of 0.380×0078m. The material properties 
of the two layers are as follows: beam span L = 15m, the 
modulus of elasticity EC and the modulus of rigidity GC of the 
upper (concrete) element are 13.55GPa and 6.775GPa, 
respectively, and the modulus of elasticity ES and the modulus 
of rigidity GS of the lower (steel joist) element are 200GPa and 
100GPa, respectively. The maximum densities of the concrete 

element and the steel layer are taken as ρC = 2396.45Kg/m
3
 and  

ρS = 7948.89Kg/m
3
, respectively, and the uniform porosity 

distribution of the concrete and steel element is taken as 0, 
0.05, 0.10, 0.20, 0.30, and 0.4. In the case of partial interaction, 
it is assumed that the interfacial shear spring stiffness ks is 
100MPa. A moving point load of magnitude 100KN is applied. 
The point load is traveling from the left support to the right 
support at a constant speed v0 of 16.67m/s. 

 

bc

tc

bf

tw

tf

hw

 

Fig. 2.  Cross section of the steel-concrete porous flanged composite beam. 

C. Effect of Boundary Conditions, Porosity, and Interlayer 
Spring Stiffness on Fundamental Frequency 

In both cases, the fundamental frequency of a SS steel-
concrete porous beam with partial or complete shear interface 
varies with the porosity as shown in Figure 3. 

 

(a) 

 

(b) 

 

Fig. 3.  Variations of fundamental frequency as a function of (a) porosity 

of the steel element and (b) porosity of concrete and steel elements. 
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It decreases with an increase in the porosity of the concrete 
slab and steel joist. The fundamental frequency of the steel-
concrete porous beam is greater with a complete shear interface 
than with a partial shear interface. Table II describes the effect 
of the porosity of steel (e1=0, 0.05, 0.1, 0.2, 0.3, and 0.4) and 
BCs on the fundamental frequency of complete and partial 
interface steel-concrete porous beams without considering the 
damping effect. It is maximum for the CC (clamped, clamped) 
and minimum for the CF (clamped, free) BC. Table III shows 

the effect of steel and concrete layer porosity variations on the 
fundamental frequency (e0=e1=0, 0.05, 0.1, 0.2, 0.3, and 0.4). 
The different boundary conditions are considered. Table IV 
analyzes the impact of the interfacial shear stiffness (ks) on the 
fundamental frequency. Porosity variation is taken into account 
in this scenario. Fundamental frequencies increase as interfacial 
shear stiffness increases, as can be easily seen. The 
fundamental frequency of a steel-concrete porous simply 
supported beam is expected to change with its porosity. 

TABLE II.  FUNDAMENTAL FREQUENCY OF POROUS BEAM FOR DIFFERENT POROSITY (e1) AND BOUNDARY CONDITIONS 

Porosity 

(e1) 

Fundamental frequency(rad/s) 

Partial composite Full composite 

CF SS SC CC CF SS SC CC 

0.00 5.9217 15.5493 22.0437 29.6486 6.2464 17.4810 27.0829 38.8882 

0.05 5.8527 15.3843 21.8207 29.3481 6.1676 17.2605 26.7407 38.3962 

0.10 5.7815 15.2140 21.5914 29.0400 6.0863 17.0332 26.3879 37.8891 

0.20 5.6318 14.8553 21.1112 28.3985 5.9155 16.5555 25.6468 36.8240 

0.30 5.4703 14.4680 20.5966 27.7164 5.7320 16.0420 24.8503 35.6798 

0.40 5.2944 14.0451 20.0388 26.9833 5.5327 15.4845 23.9859 34.4384 

TABLE III.  FUNDAMENTAL FREQUENCY OF POROUS BEAM FOR eo, e1, AND BOUNDARY CONDITIONS 

Porosity 
Fundamental frequency(rad/s) 

Partial composite Full composite 

eo e1 CF SS SC CC CF SS SC CC 

0.00 0.00 5.9217 15.5493 22.0437 29.6486 6.2464 17.4810 27.0829 38.8882 

0.05 0.05 5.8354 15.3453 21.7723 29.2861 6.1470 17.2027 26.6518 38.2691 

0.10 0.10 5.7489 15.1407 21.5010 28.9246 6.0473 16.9239 26.2198 37.6488 

0.20 0.20 5.5744 14.7276 20.9562 28.2019 5.8467 16.3625 25.3501 36.4000 

0.30 0.30 5.3964 14.3058 20.4039 27.4742 5.6429 15.7920 24.4661 35.1307 

0.40 0.40 5.2130 13.8700 19.8374 26.7337 5.4335 15.2062 23.5586 33.8276 

TABLE IV.  FUNDAMENTAL FREQUENCY OF POROUS SS COMPOSITE BEAM FOR DIFFERENT POROSITY eo, e1, AND INTERFACIAL 
STIFFNESS (ks) 

Porosity Fundamental frequency(rad/s) 

eo e1 ks=10-2 ks=10-1 ks=100 ks=10 ks=102 ks=500 ks=103 ks=104 

0.00 0.00 10.6498 10.6660 10.8244 12.0652 15.5493 16.9769 17.2189 17.4538 

0.05 0.05 10.4803 10.4968 10.6577 11.9090 15.3453 16.7213 16.9527 17.1768 

0.10 0.10 10.3105 10.3273 10.4909 11.7535 15.1407 16.4649 16.6858 16.8993 

0.20 0.20 09.9686 09.9861 10.1557 11.4437 14.7276 15.9478 16.1479 16.3404 

0.30 0.30 09.6212 09.6395 09.8164 11.1336 14.3058 15.4207 15.6003 15.7722 

0.40 0.40 09.2644 09.2837 09.4695 10.8208 14.8700 14.8777 15.0371 15.1888 

 

IV. CONCLUSIONS 

In this paper, one-dimensional finite element methods 
based on cubic order beam theory are used to analyze the free 
vibration of pervious steel-concrete beams. The distribution of 
linear shear springs is used to simulate partial shear interaction 
between layers. The cubic order beam theory is implemented 
using a continuous C

0
 finite element containing 3 nodes. This 

work presents a novel analysis of the effect of porosity on the 
fundamental frequency of layered composite beams. The main 
findings of this study are: 

 As the porosity of the steel-concrete composite beam 
increases from 0 to 0.40, the fundamental frequency 
decreases by 10% in partial interaction and approximately 
13.0% in the complete composite. 

 The presented finite element formulation shows the 
relationship between the fundamental frequency and 

various parameters such as the interfacial shear stiffness 
and end supports. 

 In CF support, the fundamental frequency is minimum, 
whereas it is maximum in CC support.  

 It is greater for a complete shear interface than for a partial 
shear interface. An increase in interfacial shear stiffness 
from 10

-2
 to 10

4
 leads to an increase in fundamental 

frequency by more than 63%. 

 The proposed model is more accurate in predicting the free 
vibration of composite steel-concrete porous beams than the 
existing models based on EBT and TBT. 
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