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ABSTRACT 

Surveillance videos are recordings captured by video recording devices for monitoring and securing an 

area or property. These videos are frequently used in applications, involving law enforcement, security 

systems, retail analytics, and traffic monitoring. Surveillance videos can provide valuable visual 

information for analyzing patterns, identifying individuals or objects of interest, and detecting and 

investigating incidents. Object detection and classification on video surveillance involves the usage of 

computer vision techniques to identify and categorize objects within the video footage. Object detection 

algorithms are employed to locate and identify objects within each frame. These algorithms use various 

techniques, namely bounding box regression, Convolutional Neural Networks (CNNs), and feature 

extraction to detect objects of interest. This study presents the Mayfly Optimization with Deep Learning-

based Robust Object Detection and Classification (MFODL-RODC) method on surveillance videos. The 

main aim of the MFODL-RODC technique lies in the accurate classification and recognition of objects in 

surveillance videos. To accomplish this, the MFODL-RODC method follows a two-step process, consisting 

of object detection and object classification. The MFODL-RODC method uses the EfficientDet object 

detector for the object detection process. Besides, the classification of detected objects takes place using the 

Variational Autoencoder (VAE) model. The MFO algorithm is employed to enrich the performance of the 

VAE model. The simulation examination of the MFODL-RODC technique is performed on benchmark 

datasets. The extensive results accentuated the improved performance of the MFODL-RODC method over 

other existing algorithms with an output of 98.89%. 

Keywords-surveillance videos; object detection; deep learning; classification; computer vision 

I. INTRODUCTION  

The use of surveillance cameras, also known as Closed-
Circuit Television (CCTV), has met a fast development in a 
global scale. The surveillance systems rely on human 
supervisors who find some practical activities in video scenes. 
Monitoring parallel events in surveillance displays is 
complicated and has constraints [2]. Visual surveillance 
systems can support detecting and tracking objects with several 
cameras [3]. An advanced surveillance system includes video 
and image data acquisition devices, data processing - storage 
devices, and analysis modules, components which are 
important for the workflow of the system [4]. Due to the latest 
advances in Deep Learning (DL) based algorithms, Object 
Detection (OD) has seen considerable progress during the last 
few decades [5]. Numerous researchers have explored OD by 
considering every frame of video as an image for detecting 
objects in videos. But humans do not observe all the frames as 

a self-sufficient image in the process of identifying the objects 
in videos, instead of tracking a movement concerning a prior 
frame [6]. Hence, video detection techniques like automotive 
driving, video surveillance, and intelligent robotics are a 
combination of object tracking and OD techniques. OD is a 
standard application in Computer Vision (CV) [7]. The task of 
identifying objects inside the provided images consists of two 
wide-ranging parts namely object classification and OD [8], 
with the latter being far more complex. Furthermore, object 
classification does not work on images that include multiple 
objects. The DL techniques are utilized for OD for many 
reasons [9]. DL algorithms are simpler to use and have 
improved scalability than traditional ML techniques and their 
capability for processing the data in their raw forms. Besides, 
DL algorithms are proficient to learn highly complex features 
by taking the benefits of various levels of representation [10].  



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11747-11752 11748  
 

www.etasr.com Saikrishnan & Karthikeyan: Mayfly Optimization with Deep Learning-based Robust Object Detection … 

 

This study presents the Mayfly Optimization with Deep 
Learning based Robust Object Detection and Classification 
(MFODL-RODC) method. The main aim of the MFODL-
RODC technique lies in the accurate classification and 
recognition of objects in surveillance videos. To accomplish 
this, the MFODL-RODC method follows a two-step process: 
object detection and object classification. The MFODL-RODC 
method uses the EfficientDet object detector for the object 
detection process. The classification of detected objects takes 
place using the Variational Autoencoder (VAE) model. The 
MFO algorithm is employed to enrich the performance of the 
VAE model. The simulation validation of the MFODL-RODC 
technique is performed on benchmark datasets. 

II. RELATED WORKS 

Authors in [11] suggested a new Computational 
Intelligence-based HSA for Real-Time OD and Tracking 
(CIHSART-ODT) method on video surveillance systems. The 
proposed method focuses largely on tracking and detecting the 
objects that occur in video clippings. Furthermore, the 
hyperparameter value of the enhanced RefineDet method is 
finetuned by implementing the Adagrad optimization model. In 
addition, an HSA with a Twin SVM (TWSVM) algorithm is 
used for classifying objects. In [12], a CNN is used for 
enhancing the effectiveness of OD using a Probabilistic Neural 
Network (PNN) during the evaluation of the images of 
surveillance videos. Then, the research makes an effort to 
analyze the essential theories and principles of perceptual and 
neural networks that are normally left out. Authors in [13] 
presented the Multi-Object Detection and Tracking (MODT) 
method. This technique exploits a Kalman filtering model in 
order to track the objects shifting in video captions which are 
converted into morphological operations by employing the 
region-growing method. Kalman filtering is applied after 
distinguishing the objects, for parameter optimization by 
implementing a probability-based grasshopper model. Authors 
in [14] suggested a precise and fast technique for OD. The 
transfer learning of an effective pre-trained model to a suitable 
dataset for its applications was suggested. Fine tuning on these 
pre-trained models was implemented by running 
backpropagation and replacing the softmax layer. In [15], the 
authors introduced a new hybridization of ANN in addition to 
the Oppositional Gravitational Search Optimization (ANN-
OGSO) technique based Moving Vehicle Detection (MVD) 
model. The presented technique comprises two different stages, 
i.e. vehicle detection and background generation. Initially, an 
efficient method was introduced for generating the background. 
Then, the moving vehicles were detected with the ANN-OGSA 
algorithm. In [16], a new Background Modeling mechanism 
was developed by using the Biased Illumination Field FCM 
algorithm for more accurate detection of moving objects. The 
non-stationary pixels were separated from the stationary via 
background elimination. Later, the biased illumination field 
FCM method was used for improving the segmentation 
performance by clustering under noise and changing 
illumination environments Authors in [17] introduced a new 
architecture which integrates enhanced GMM with 
postprocessing for the OD process. In this work, pre-processing 
and post-processing of videos were taken as extrinsic 
improvements. GMM with parameter initialization was taken 

as an essential enhancement. The incorporation of the 
morphological function with GMM assists segmentation and 
enhances detection accuracy by decreasing the false positives. 

III. THE PROPOSED MODEL 

In this study, the novel MFODL-RODC approach for 
effective object recognition in surveillance videos is 
introduced. The purpose of the MFODL-RODC approach lies 
in the accurate classification and detection of objects in 
surveillance videos. To accomplish this, the MFODL-RODC 
method follows a two-step process consisting of the 
EfficientDet-based object detection and MFO with VAE-based 
object classification. Figure 1 demonstrates the overall flow of 
the MFODL-RODC algorithm. The suggested technique is put 
under simulation by employing Python 3.6.5 tool on a PC i5-
8600k, 250GB SSD, GeForce 1050Ti 4GB, 16GB RAM, and 
1TB HDD. The parameter set up is: learning rate: 0.01, 
activation: ReLU, epoch count: 50, dropout: 0.5, and batch 
size: 5. 

A. Stage I: Object Detection 

In the initial phase, the EfficientDet architecture is utilized. 
EfficientDet is an OD model that uses optimization and 
backbone tweaks, such as the use of BiFPN, and a compound 
scale model that homogenously scales the width, depth, and 
resolution of the feature network and class or box prediction 
network simultaneously [18]. First, the EfficientDet is 
exploited as a backbone network, later the recurrent BiFPN acts 
as a feature extraction model for making multiscale feature 
fusion of P3 -P7  features from the EfficientNet. Lastly, the 
fused features are fed into the box and class predictive network 
for classification and bounding box prediction. The input can 
be taken as a low-dimensional compressed representation that 
is extended to a high dimension by a 1×1 convolutional layer. 
The feature is filtered with the depth-wise separable 
convolution for spatial data encoding.  

 

 

Fig. 1.  Overall flow of the MFODL-RODC model. 
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The SE block employs average pooling for squeezing the 
spatial data. The aggregated features are set to excitation 
operators for fully capturing channel‐wise dependency. The 
output features are regarded as a weight of all the channels. 
Finally, the features are connected to the initial inputs with a 
reversed residual model for weighting the channels. BiFPN 
makes various optimizations on Path Aggregation Network 
(PANet) for further fusing high‐level factors in the simplify bi‐
directional network. Furthermore, all the inputs are added with 
a further weight such that the network can learn the feature 
involvement at multiple resolution scales. The final BiFPN 
enables effective multiscale feature fusion by incorporating 
weighted feature fusion and bi-directional cross‐scale 
connection. The compound scaling method is proposed due to 
its accuracy and efficiency. Depth, width, and resolution of the 
images are scaled-up together by a � coefficient, whereby the 
resource used can be calculated. 

B. Object Classification 

Once the objects are detected, the process of classification 
is achieved by employing the VAE technique. A VAE 

comprises of the encoded network ����	 : 
 → �  and the 

decoded network �
��	 : � → 
 , where 
  implies the input 
variable (object) and � represents the hidden object domain � 
[19]. In VAE, input objects �  and hidden parameters �  are 
assumed to have arbitrary variables. Let's assume that �
(
) 
and �
(�)  are the �  and � ’s probability functions, 
correspondingly, where � denotes the group of parameters for 

illustrating the probability. The encoded network ����	  is 

expressed as a conditional probability ��(�|
)  that is 

assumed as an approximation of �
(�|
) . The decoded 

network �
��	  and �  are expressed as the conditional 
probability �
(
|�) and the encoded parameters: ����(�, �) =��∼!"(�|#) log �
(�|�) − )*+,(��(�|�)-�
(�). (1) 

In VAE, the input or the hidden parameters are assumed as 
having arbitrary variables. The purpose of VAE training is to 
maximize a main function which comprises 2 terms: (i) 
Kullback‐Leibler (KL) divergence, (ii) reconstruction. The first 
term inspires the encoding for producing hidden objects that 
follow past distribution, and the second term makes sure that 
the input objects are reconstructed in the hidden variable. The 
VAE main function decreases to objective functions of the 
typical VAEs once the hyperparameter ) is fixed to 1. VAEs 
with ) ≠ 1  are termed as ) ‐VAEs. Figure 2 represents the 
infrastructure of VAE. 

To improve the detection rate of the VAE model, the MFO 
algorithm is employed. MFO is a robust hybrid optimization 
technique inspired by the behaviors of MFS in mating. It 
implements and enhances the global searching of PSO [20]. 
This technique disregards the lifetime of MFs and in its place 
considers an adult directly after hatching while only the 
stronger one survives. A set of male and as female MFS are 

arbitrarily created. The location vector 1 = [�3, �4, … , ��678 ]: 

signifies the search space, and the agents that perform the 
search are seeded at first. The main function (OF) estimates the 
efficiency of the location vector (�). With the velocity vector, 

the MFs location is studied considering the revised movement 
path that can be informed by the individual and social 

movement experience ; = [<3, <4, … , ;�678]: . Based on its 

present optimal location, MF moves up or down the search 
graph. 

 

 
Fig. 2.  Framework of VAE. 

A male MF’s status can be revised by: 1=(> + 1) = <=(> + 1) + �=(>)  (2) 

For the @AB  MF, �=(>)  denotes the existing position and �=(0) falls among � DEF and �DGH. The subsequent time step’s 
MFs position and velocity are denoted by �=(> + 1)  and <=(> + 1), respectively. 

The constant speed is evaluated with the male MFs nuptial 
dance occurring in a certain height. <=�(> + 1) =  I=�(>) + �3 × expN−OPQR. × N�STU>=� −�=�(>). + �4 × expN−OPVR. × NWSTU>� − �=�(>).   (3) 

where �3 and �4 indicate the attractive constants that determine 
the comparative significance of the mental and social elements. 
MFs cannot see one another very well once they are in a X 
environment. Based on (5) and (6), we could define the *Y and *Y  distances that �@  has with �STU>=  and WSTU> , 

correspondingly. The @AB agent velocity from the ZAB dimension 
is represented as <=�, while its location can be represented as �=� .  Z  shows the dimension index ranges from 1 to Z DGH , 
which is the maximum number of dimensions. The optimum 

location �STU>  is apprehended by the @AB  agent at the ZAB 
dimension and is evaluated by (4). The quality‐defining OF for 

these solutions is shown as �( . ): 

�STU>= = \�=(> + 1), �N�=(> + 1). < �(�STU>=)�STU>=, �N�=(> + 1) ≥ �(�STU>=).  (4) 

*Y4 = N∑ (�=� − �STU>=)� 678 �`3 .a.b
  (5) 

*c4 = N∑ (�=� − WSTU>)� 678 �`3 .a.b
  (6) <=�(> + 1) = <=�(>) + d* × e     (7) 

In (7), d*  denotes the nuptial dance coefficient and fg 
indicates an arbitrary integer within [−1,1]. 



Engineering, Technology & Applied Science Research Vol. 13, No. 5, 2023, 11747-11752 11750  
 

www.etasr.com Saikrishnan & Karthikeyan: Mayfly Optimization with Deep Learning-based Robust Object Detection … 

 

Female MFs do not swarm like males do. Instead, they head 
straight to the males for mating. Utilizing h=(>) , it is 

understood that the @AB female MF is placed in the searching 
space after utilizing (8) for adjusting place: h=(> + 1) = <=(> + 1) + h=(>)  (8) 

For modeling this phenomenon, it can be considered that 
one attractive female can be drawn to one attractive males, 
after another attractive female is attracted to the next most 
attractive male, etc. The below equation depicts the speed: <=�(> + 1) =
i<=�(>) + �4 × exp j−OkPlRm × N�=�(>) − h=�(>).�(h=) > �(�=)o=�(>) + �p × e, �(h=) ≤ �(�=)  (9) 

h=�(>)  and o=�(>)  define the place and velocity of the @AB 

female MF from the ZAB dimension at time >, correspondingly. 
Male and female MFs separate distances are represented by *rk4 . The coefficient of walking, �p, is selected arbitrarily. 

The crossover operator is utilized for modeling the MF 
mating performance defined as one male and one female can be 
chosen in all the sets as parents, while males can be attracted to 
particular females. The selection depends on both chance and 
the main function. With the employment of the subsequent 
formulas, the offspring of crossover is predicted: s1 = ) × tuvT + (1 − )) × �TtuvT     (10) s2 = ) × �TtuvT + (1 − )) × tuvT    (11) 

The first two generations of this family are represented by s1  and s2 . )xx  refers to an arbitrary number in a certain 
interval. Male and female signify the biological parents. Fitness 
choice is a vital feature of the MFO system. An encoding 
solution was employed to process the better candidate result. 
Presently, the value of accuracy is the major condition 
employed to plan a FF. y@>zTUU =  max (1)    (12) 1 = :}:}~�}     (13) y1 and �1 represent the false and true positive values. 

IV. RESULTS AND DISCUSSION 

In this section, the object recognition and classification 
outputs of the MFODL-RODC technique are tested on the 
UCSDPed2 dataset [21] comprising of 360 frames as portrayed 
in Table I. 

TABLE I.  DATASET DESCRIPTION 

Dataset Test dataset Frame number Time (s) 

UCSDped2 
Pedestrian1 

360 12 
Pedestrian2 

 

Figures 3 and 4 depict instances, and the initial and 
recognized images. Table II represents the average accuracy 
study of the MFODL-RODC method with other approaches 
[11, 22-24]. The outcomes show that the MFODL-RODC 
method has improved performance in comparison with object 

detectors with maximum accuracy of 98.89% and 96.23% on 
SPed-1 and SPed-2 datasets, respectively. The comparative 
AUC results of the MFODL-RODC technique on two datasets 
are given in Table III. The outputs imply that the MP-PCA, SF, 
and SFMP-PCA techniques gave worse results with minimal 
AUC values. 

TABLE II.  COMPARISON OF THE AVERAGE ACCURACY 
OF MFODL-RODC WITH OTHER APPROACHES 

Methods 
MFODL

-RODC 

CIHSART

-ODT 
DLADT 

Region 

CNN 

FR-

CNN 

Surveillance 

Ped. - 1 
98.89 98.00 97.00 97.00 85.00 

Surveillance 

Ped. - 2 
96.23 91.00 90.00 87.00 82.00 

 

 
Fig. 3.  Sample images. 

 

Fig. 4.  (a) Original and (b) detected images. 

On the other hand, the MDT method exhibited a moderate 
AUC value. A-MDN, AD-VAE, and CIHSART-ODT methods 
showed reasonable AUC values. But the MFODL-RODC 
method showed greater performance with the highest AUC 
values of 99.28% and 96.07% on SPed-1 and SPed-2 datasets.  
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TABLE III.  AUC OUTPUT COMPARISON  

Model SPed-1 SPed-2 

MP-PCA 61.01 69.92 

SF 66.74 55.96 

SFMP-PCA 67.25 61.33 

MDT 82.05 82.99 

A-MDN 91.71 91.25 

AD-VAE 95.39 92.47 

CIHSART-ODT 97.12 93.92 

MFODL-RODC 99.28 96.07 

 

In Table IV, the Running Time (RT) comparison of the 
MFODL-RODC technique with recent models on two datasets 
is shown. The results illustrate that the MDT and SCLF models 
have poor performance with maximum RT values. The A-
MDN model gave slightly decreased RT. Although the AD-
VAE and CIHSART-ODT models have obtained close RT 
values, the MFODL-RODC technique ensured its supremacy 
with minimal RT of 1.93s and 2.20s on pedestrian-1 and 
pedestrian-2 datasets, respectively. 

TABLE IV.  RT OUTPUT COMPARISON  

Model SPed-1 SPed-2 

MDT 20.53 22.88 

SCLF 20.01 18.54 

A-MDN 11.83 13.04 

AD-VAE 3.94 6.09 

CIHSART-ODT 2.57 4.04 

MFODL-RODC 1.93 2.20 

TABLE V.  ROC OUTPUT COMPARISON ON SPED-1 

ROC SF A-MDN AD-VAE 
CIHSART-

ODT 

MFODL-

RODC 

10 16.65 24.63 20.99 47.51 49.01 

20 31.14 46.03 44.43 70.80 72.85 

30 41.86 64.90 67.52 91.16 96.24 

40 52.58 74.63 80.31 93.35 94.63 

50 61.65 82.55 92.69 95.77 99.29 

60 70.51 92.12 95.93 98.58 99.89 

70 87.53 99.12 100.40 98.06 99.78 

80 88.51 93.43 97.86 98.08 99.65 

90 89.89 99.25 97.86 99.69 99.91 

100 90.20 95.27 96.76 96.87 99.48 

TABLE VI.  ROC OUTPUT COMPARISON ON SPED-2 

ROC SF A-MDN AD-VAE 
CIHSART-

ODT 

MFODL-

RODC 

10 19.27 26.64 18.30 28.16 56.07 

20 28.75 48.29 29.00 61.50 62.56 

30 41.05 57.25 69.70 80.01 82.52 

40 55.44 74.39 82.33 93.32 97.16 

50 74.39 88.12 88.15 97.69 99.18 

60 87.87 93.08 95.35 97.18 99.75 

70 98.40 99.06 99.02 97.14 99.70 

80 98.65 99.71 99.09 98.59 99.96 

90 98.06 98.71 98.42 99.01 99.79 

100 98.51 97.79 98.52 100.83 99.89 

 

Tables V and VI shows the comparison of the ROC outputs 
on the SPed-1 and SPed-2 databases. In SPed-1, the SF and 
AD-VAE techniques showed poor detection performance, the 
A-MDN model has slightly improved results, and the 
CIHSART-ODT model has obtained considerably enhanced 

performance. Nevertheless, the MFODL-RODC technique 
showed efficient output with maximum ROC values. In SPed-2 
the SF and AD-VAE approach demonstrated worse detection 
performance, the A-MDN model resulted in somewhat 
improved outcome, and the CIHSART-ODT model obtained 
considerably better performance. However, the MFODL-
RODC approach has illustrated effectual results with maximal 
ROC values. These outcomes ensured the improved 
accomplishment of the MFODL-RODC approach. 

V. CONCLUSION 

The novel MFODL-RODC approach for effective object 
recognition in surveillance videos is introduced in this paper. 
The purpose of the study lies on the accurate classification and 
detection of objects in surveillance videos. To accomplish this, 
the MFODL-RODC technique follows a two-step process, 
consisting of EfficientDet-based object detection and MFO 
with VAE-based object classification. The MFO technique is 
employed to improve the solution of the VAE approach. The 
simulation validations of the MFODL-RODC approach was 
conducted on a benchmark database. The results highlighted 
the enhanced outcome of the MFODL-RODC methodology 
over other known techniques. In the future, advanced DL 
models will be used to classify the detected objects. In addition, 
the computational complexity of the proposed model needs to 
be examined on large-scale real-time datasets. 
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