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Abstract—Maximum correntropy criterion (MCC) based 
adaptive filters are found to be robust against impulsive 
interference. This paper proposes a novel MCC based adaptive 
filter with variable step size in order to obtain improved 
performance in terms of both convergence rate and steady state 
error with robustness against impulsive interference. The optimal 
variable step size is obtained by minimizing the Mean Square 
Deviation (MSD) error from one iteration to the other. 
Simulation results in the context of a highly impulsive system 
identification scenario show that the proposed algorithm has 
faster convergence and lesser steady state error than the 
conventional MCC based adaptive filters. 

Keywords-Maximum correntropy criteria; adaptive filter; 
variable step size; mean square deviation.   

I. INTRODUCTION  

The minimum mean square error (MSE) criterion is a 
widely used criterion for adaptive filters due to its simplicity 
and easy implementation [1]. Recently, information theory 
criterion based adaptive filters have received much attention 
due to their robustness against impulsive noises, in which case 
MSE criterion performs poorly. Correntropy is one such 
information theory criterion which is a non linear measure of 
similarity between two random variables [2, 3]. The 
correntropy is defined as: 

( , ) [ ( , )] ( , ) ( , ) (1)XYV X Y E X Y x y dF x yk k= = ò   

Where κ is a shift–invariant Mercer kernel and 

( , )XYF x y denotes the joint distribution function of (X, Y). If 

τηε kernel is Gaussian, then it is defined as:  
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where   e x y  and  0 s> is the kernel width. The cost 
function under MCC criterion is defined as  
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The adaptive filter using MCCJ as the cost function is 

defined [4] as: 
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The steady state MSE of MCC algorithm is derived in [5] 
using energy conservation argument. From the analysis it is 
evident that MCC based algorithm is an excellent candidate for 
impulsive interference and its performance is dependent on the 
step size and kernel width. Also from [5] it is found that a large 
value of step size increases the convergence at the cost of more 
steady state error and vise versa. This conflicting tradeoff 
between convergence speed and steady state error is resolved in 
[6] using a combinational approach. But the major 
disadvantage with this approach is that the complexity is higher 
as two adaptive filters are used in parallel. Adaptive kernel 
width is proposed in [7] where lesser steady state error is 
obtained but convergence speed is not improved especially 
when the kernel width is larger.  

The variable step size approach has long been used for 
better performance as it gives a more appreciable solution than 
the fixed step size approach [8-10]. Hence, in this paper a 
variable step size for MCC based adaptive filter is proposed so 
as to have better performance in terms of both faster 
convergence and lesser steady state error. The criterion for 
variation is based on the minimization of MSD as it indicates 
how close the filter is to optimal performance. Thus the step 
size is increased or decreased based on the square of the 
instantaneous error obtained. Finally the performance of the 
proposed algorithm is verified through simulation results for 
the identification of highly impulsive unknown system. 

II. PROPOSED ALGORITHM 

Consider an unknown system with input signal vector given 

by ( ) [ ( ), ( 1) , . ( 1)]TX n x n x n x n N= - ¼ - + where ( )x n is the 

input signal. Let ,1 ,2 ,3 ,[ , , . ]T

o o o o o NW w w w w= ¼ be the 

optimal weights of length N. The desired response ( )d n is 

given by 
0

( ) ( ) ( )Td n W X n v n  where ( )v n  is a noise source 

with variance 2
vs which is made of both background noise 

( )
b

v n and impulsive noise ( )
i

v n . The error signal e(n) is given 

as: 

( ) ( ) ( ) ( )Te n d n W n X n   
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where 
1 2 3

( ) [ ( ), ( ), ( ) . ( )]T

N
W n w n w n w n w n= ¼ is the 

estimate of  0W at the nth iteration . If the weight error vector be 

defined as 
0

( ) ( )W n W W n  then (4) can be written in terms 

of weight error vector as:  
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 (n 1) (n)  f ( ( )) ( ) ( ) (6)W W e n e n X n    

Squaring on both sides of (6) we  get:  
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We can write (7) further as: 
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[ (n 1) ] E[ (n) ] ( ) (8)E W W m+ = -D  

where  


2

( ) 2 Re[ ( ( )f ( ( )) ( ) ( ))]

( ( ) ( )f ( ( ))f ( ( )) ( ) ( ))

T

T T T

E W n e n e n X n

E X n e n e n e n e n X n

m m

m

D =

-
 

Thus in order to reduce the MSD from one iteration to the 
other, ( )  should be maximized. Thus differentiating  

( ) respect to  and equating it to zero gives optimal value 
of step size as 

( )
( )

Re ( )f ( ( )) ( ) ( )
( ) (9)

( ) ( ) ( ( )) ( ( )) ( ) ( )

T

o

T T T

E W n e n e n X n
n

E X n e n f e n f e n e n X n
m =  

In order to further simplify (9) we use of the following 
assumptions: 

1. The input  ( )X n is independent and identically distributed 

(i.i.d) with zero mean and ( ( ) ( ))TE X n X n R .  

2. The noise v(n) is i.i.d with zero mean and variance 2

vs and 

is independent of the input  ( )X n  

3. The error ( )e n is  independent of  ( )X n  

4. The error non linearity f ( ( ))e n is independent of ( )X n  

Assumption 1 and 2 are commonly used to analyze 
adaptive filters. Assumption 3 is used in [11] and Assumption 4 
is used in [12] and they are reasonable when the actual weights 
converge to the optimal value. Using assumptions 1 to 4 we 
can write (9) as: 
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If ( ) ( ) ( ) ( ) ( ) ( )
T

a
e n n X n vW n e n v n    where ( )

a
e n  is 

the a priori error ,then squaring on both sides of ( )e n and it 

expectation is taken we get 
2 2 2( ) ( )

a v
E e n E e n s= + Thus 

(10) is written in terms of ( )ne  as:  
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If we assume that the weights ( )W n are independent of the 

input ( )X n , then: 
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A. Practical step size 

From (12) it is found that variable step size may prove 
difficult because of the presence of expectation. Therefore we 
replace the expectation by an instantaneous approximate value. 
Finally using time averaging as adopted in [9], the update 
equation becomes: 

( ) ( 1) (1 ) ( ) (13)n n nm am a b= - + -   

where 
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and a is the 

smoothing factor that ranges between  0 1a< < .Thus we can 
say that whenever the instantaneous error is more or during the 

initial stage of the algorithm , the quantity 
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larger (nearer to but less than  unity). During the same time 
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so that 1/f ( ( ))e n   is more. Therefore the overall step size 
becomes larger so as to have faster convergence. On the other 
hand during the steady state condition or whenever the 
instantaneous error becomes smaller, and 
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of steady state excess mean square error. Therefore 
2
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the same condition f ( ( )e n  becomes larger than the value 
obtained during the initial stage with ( ( )) 1.f e n < Thus  
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1
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small. As a result, the step size becomes smaller so as to have a 
smaller steady state error. During the intermediate value of 
error, the step size is increased or decreased based on the value 
of the instantaneous error. Thus both improvement in 
convergence and steady state error can be obtained 
simultaneously. 

III. SIMULATION RESULTS 

In this section, we present the simulation results to prove 
the performance improvement of the proposed algorithm 
against the fixed step size MCC based algorithm. For this 
purpose an unknown system with 16 coefficients is taken. It is 
assumed that both the filter and the system have the same 
number of coefficients. The input is a zero mean white 
Gaussian noise with unity variance. The noise is made of both 
background noise and impulsive noise. The background noise 

is Gaussian with variance 2

bvs .The impulsive noise is 

generated ( ) ( ) k n A n where   ( )k n  is a Bernoulli process with 

probability of success [ ( ) 1] 
r

P k n p= = .The performance is 

evaluated by normalized  MSD (NMSD) which is given as 

( )0 22
20 10 ( ) /NMSD log W n W=  .The kernel width is fixed 

as 2s = .The performance curves are obtained by ensemble 
averages over 50 independent runs. It is assumed that the 
variance of the noise source is known [ 9]. 

Figure 1 examines the performance of the proposed 
algorithm with signal to noise ratio (SNR) taken as 30 dB, 
signal to interference ratio (SIR) as -10 dB and 

 0.001, 0.01, 0.1
r

p = respectively. For comparison, fixed step 

size MCC algorithm with 0.05, 0.01m = and  0.001m = with 
the same parameters  were also plotted. The plot confirms that 
the proposed algorithm can achieve both faster convergence 
and smaller steady state error than the fixed step size counter 
parts. Also it is evident from Figure 1 that the variable step size 
approach is robust against changing values of pr. Similar 
conclusions can be drawn from Figure 2 and Figure 3 which 
were simulated for different values of SNR, SIR with pr as 
0.001. 

The convergence behavior of our proposed algorithm can 
be analyzed if the time evolution of [ ( )]E nm is made. Fig 4 

shows the plot of [ ( )]E nm Vs n. As per (13) when the 
instantaneous error is larger, the value of  m  is expected to be 
larger in order to obtain faster convergence .On the other hand, 
when the instantaneous error is smaller, then m  is expected to 
become smaller in order to have lesser steady state error.  

 
Fig. 1.  Performance of proposed variable step size MCC and fixed step 
size MCC for different values of pr.The input is white with SNR=30 dB, 
SIR=-10 dB. 

 

Fig. 2.  Performance of proposed variable step size MCC and fixed step 
size MCC for different values of SNR.The input is white with SIR=-10 dB 
and pr=0.001 

 
Fig. 3.  Performance of proposed variable step size MCC and fixed step 
size MCC for different values of SIR.The input is white with SNR=30 dB and 
pr=0.001 
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Thus, Figure 4 confirms the predicted results where 
[ ( )]E nm is initially larger and starts to decrease and reaches its 

minimum during steady state which is required for improved 
performance. In Figure 5, the performance of the proposed 
algorithm is tested for colored input for the same system as 
above with SNR=30 dB, SIR=-10 dB and pr=0.001. The input 
is obtained by passing white Gaussian noise through a first 
order system with pole at 0.8.Thus, it is found from Figure 5 
that the proposed algorithm works well even for colored input. 
The tracking performance of the proposed algorithm is  
analyzed in Figure 6 where the system is made to change 
abruptly after 10,000 samples  with pr=0.001, SNR=30dB, 
SIR=-10 dB.  

 
Fig. 4.  Time evolution of E[μ(n)] 

 
Fig. 5.  Performance of proposed variable step size MCC and fixed step 
size MCC for colored input with pole at 0.8 with SNR=30 dB, SIR=-10 dB 
and pr=0.001. 

IV. CONCLUSION 

Step size is an important parameter which affects the 
performance of MCC based adaptive filters. A fixed step size 
gives rise to the tradeoff between convergence speed and 
steady state error. This paper presented a variable step size 
approach for MCC based adaptive filters based on largest 
decrease in MSD. Here the step size is increased or decreased 
based on the instantaneous error square obtained. Therefore 

improved filter performance in terms of convergence speed and 
steady state error is obtained. The simulations done in the 
context of a system identification scenario that includes 
impulsive noises confirms that the proposed algorithm has 
better performance than the fixed step size MCC based 
adaptive filters. 

 
Fig. 6.  Tracking performance of proposed variable step size MCC and 
fixed step size MCC for white input with SNR=30 dB, SIR=-10 dB and 
pr=0.001 
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