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ABSTRACT 

Despite the deployment of wireless sensor networks in diverse fields (health, environment, military 

applications, etc.) for tracking or monitoring, several challenges, such as extending the lifetime of the 

network under energy constraints, still need to be resolved. Lifetime is the operational time of the network 

during which it can perform dedicated tasks and satisfy the application requirements. The energy 

constraints dictate that the energy consumption of sensors should be minimized since in most cases the 

sensors are battery-powered. Various methods have been proposed to work around this problem using 

scheduling approaches. In this paper, particle swarm optimization-based scheduling was designed and 

implemented to maximize the lifetime of wireless sensor networks formulated as a Non-Disjoint Sets Cover 

(NDSC) problem. The experimental findings show that the proposed approach is extremely competitive to 

the state-of-the-art algorithms, as it is able to find the optimal and best-known solutions in the instances 

investigated. 

Keywords-scheduling; target coverage problem; non-disjoint set covers; wireless sensor networks; lifespan; 

particle swarm optimization 

I. INTRODUCTION  

Wireless Sensor Networks (WSNs) are a type of wireless 
and ad hoc network. WSNs combine sensing, processing, and 
networking over miniaturized sensor nodes (often hundreds or 
thousands). They are typically deployed to monitor large or 
hazardous areas [1]. WSNs offer some significant advantages, 
including the fact that they are less expensive to deploy than 
wired networks. Sensor nodes can be added and withdrawn 
with ease. Furthermore, the node's location can be modified 
without rewiring. Finally, WSNs can be configured into 
different network topologies (star, tree, mesh, etc.). Despite the 
distinct features of WSNs, particularly their simplicity and 
effective cost, they have an anomalous character related to their 
resource restrictions in terms of computing power and energy. 
In fact, in most cases, the sensor nodes are powered by 
batteries. Manual configuration, maintenance and battery 
replacement are often impossible. So, to overcome these 
energy constraints and to save energy consumption and 
therefore extend the network lifetime, many methods have been 
proposed, such as optimal deployment, clustering, multi-hop 

routing, data aggregation, energy harvesting, and sleep-wake 
scheduling [2-4]. Much research is conducted in the direction 
of scheduling sensor activities. The deployed sensors are 
divided into a number of sensor sets each of which can cover 
all the targets and can send all the sensed data to the base 
station. These sensor sets can be disjoint or non-disjoint and are 
activated successively one by one. In each round, only one set 
is active. Only sensors in the active set are used to collect data 
from the surrounding environment and to relay them to the 
sink, whereas all the other sensors go into energy-saving sleep 
mode. Thus, each node or a cover of nodes should save as 
much power as possible by turning off the radio transmission 
when there is nothing to transmit. The process of clustering 
sensor nodes into cover sets and scheduling them to maximize 
the lifespan of the network belongs to the NP-hard problems. 
This kind of problem can be solved using either exact methods, 
like linear programming and branch-bound or metaheuristics, 
namely genetic, invasive weed optimization, and Particle 
Swarm Optimization (PSO) algorithms [4-8]. The former 
approach requires an exponential computation time depending 
on the size of the problem to be solved, while the latter tries to 
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obtain good solutions (not necessarily optimal) in a reasonable 
time. We focused on utilizing PSO since it has been proved to 
be effective in tackling a plethora of problems and it has not 
been investigated enough in extending the lifetime of WSNs. 

In this paper, a PSO algorithm is used to solve WSN 
lifespan maximization problem, formulated as a non-disjoint 
set cover problem. 

II. RELATED WORKS 

This section reviews the related work on scheduling sensor 
activities to maximize network lifetime under application 
requirements that include target coverage. Lifetime is the 
operational time of the network during which it is able to 
perform the dedicated tasks while the coverage is a measure of 
the physical space the sensors are able to observe. Authors in 
[9] presented a greedy algorithm for solving the maximum 
lifetime coverage problem and the energy consumed in the 
sleep/active schedule. An empty blacklist is created when 
constructing a new set cover. Iteratively, a minimal energy 
sensor, which is not present in the blacklist and covers at least a 
new target is chosen. When there are many sensors with 
minimal energy, the selected sensor will be the one that covers 
the largest number of new targets. Unfortunately, this approach 
is not suitable for homogeneous networks. Authors in [10] 
suggested an improved cuckoo search algorithm that partitions 
sensors into a maximum number of NDSC with a sensing range 
that can be adjustable. Each cover provides k-target coverage to 
maximize the lifetime of the WSN. After calculating the upper 
bounds of the maximum number of NDSC, the authors find the 
covers that will be scheduled and activated one by one. 
Unfortunately, the k-target coverage consumes more energy 
than the single-target coverage. Authors in [11] proposed the 
bidirectional mutation hybrid Genetic Algorithm (GA) to find 
the maximum NDSC that completely covers all the targets and 
maximizes the lifetime of the WSN. This algorithm differs 
from the traditional GA in the chromosomes representation and 
in the use of a greedy technique for initialization rather than the 
random initialization. Also, a novel bidirectional mutation was 
utilized to speed up the convergence. The proposed algorithm 
is suitable for heterogeneous WSNs that contain sensors with 
different levels of initial energy. Authors in [12] recommended 
an exact method (LP formulation) and two polynomial-time 
greedy heuristics for target coverage problem in Directional 
Sensor Networks (DSNs). Their aim was to balance between 
maximizing DSN lifetime and fault tolerance. They provide 
optimal solutions when using linear programming but with 
high cost. However, at a lower cost, with the use of heuristics, 
the solutions obtained were suboptimal. Authors in [13] 
proposed two methods to extend the lifetime of WSNs adopting 
the NDSC approach rather than DSC. First, they used the 
binary coverage relations matrix to sort the randomly deployed 
sensors nodes and to find the binary relations that link sensors 
and targets to construct a maximum number of non-disjoint set 
covers. These obtained covers are scheduled utilizing an exact 
method and a GA with a novel gene coding to get a near-
optimal solution in reasonable time. The exact method gives 
the optimal solution, but requires a lot of computational time. 
Also, the metaheuristic employed is not efficient in a network 
that has a large number of sensors. Authors in [14] suggested a 

column generation method that finds the maximum NDSC to 
extend the lifetime of WSN. It is an exact algorithm that seeks 
to discover valid covers by a new integer linear programming 
model. The process is repeated iteratively and stopped only if 
there is no column with a positive reduced cost. The 
computation cost is decreased through the use of a branch-and-
cut method. This reaches the best solution, but it is costly. 
Authors in [15] recommended a novel scheduling called 
Energy-Efficient Connected Coverage (EECC). EECC 
increased the level of coverage and connectivity of the sensors. 
It considers the remaining energy of each sensor and tries to 
avoid redundant coverage of critical points in the monitoring 
area. Unluckily, EECC was only effective with homogeneous 
WSNs containing sensors with the same initial energy. Authors 
in [16] proposed a novel local wake-up scheduling based on ant 
colony optimization. They constructed a first layer which 
contains a set of active sensors that completely cover the 
targets. Then, they manufactured multiple successor sets to 
mitigate the problem that some sensors in the first layer set run 
out of energy. This approach is effective, but it is suitable only 
for small and medium-scale networks. 

Complexity theory classifies most scheduling problems as 
NP-hard [5]. This justifies the use of meta-heuristics 
(approximate methods), which provide acceptable (not 
necessarily optimal) solutions in a reasonable time. In this 
paper, PSO is used to solve the problem of randomly deployed 
sensors network lifespan maximization formulated as a 
scheduling problem. PSO has been proved to be an effective 
method for many optimization problems, and in some cases, it 
does not suffer from the difficulties experienced by other 
metaheuristics.  

III. PROBLEM FORMULATION 

The issue of WSN lifetime optimization based on the 
maximum number of NDSCs and their optimal scheduling 
belongs to the NP-hard family [5]. It presents two difficulties. 
The first one is the assignment of each sensor to a cover set, 
and the second one is the scheduling of these cover sets to 
optimize the network lifetime. Data, constraints, and objectives 
of WSN scheduling problem are defined below. 

A. Data 

 �  represents a set of  � sensor nodes. A sensor node is 
labeled as ��  (� = 1, … , �). 

   represents a set of  � targets. A target is labeled as 
��  (� = 1, … , �). 

 ��   can monitor a subset of targets (��) ∈  located in its 
coverage range �. 

 Each target �� could be monitored by a subset of sensors 

����� ∈ �. 

 A collection of elements of  � denoted ��  is a cover for the 
subset of targets denoted (��) if it can sense all the targets 
of (��) ∈ . 

 ��  is considered as a cover if  (��) = . 

 Each sensor node �� has an initial energy ��. 
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 ��(�) is the total energy consumed by ��  during a period of 
time �. 

B. Constraints 

 Each target ��  is covered by at least one sensor of �. 

 A sensor can be included into at most one set cover in the 
case of Disjoint Set Cover (DSC). 

 A sensor can be included into more than one cover in the 
case of Non-Disjoint Set Covers (NDSC). 

C. Criteria 

 We have to maximize the lifespan, which is the time 
elapsed until all the available sensor nodes do not succeed 
to satisfy the targeted requirements. It can be expressed as 
[17]: 

� = � � ∑ ��
�
��     (1) 

D. Example 

To illustrate the benefit of using NDSC instead of DSC, let 
us assume that the three targets (Target1, Target2, and Target3) 
in Figure 1 can be monitored by three sensor nodes (Sensor1, 
Sensor2, and Sensor3).  

 

 

Fig. 1.  Example of topology of  three targets monitored by three sensors. 

Sensor1 covers Target1 and Target2. Sensor2 covers Target1 
and Target3, and Sensor3 covers Target2 and Target3. If all the 
sensor nodes were to be activated simultaneously, then the 
network lifetime would be equal to the standard lifetime ℎ of a 
single sensor. By dividing the sensors into disjoint sets, the 
resulting network lifetime would still be ℎ , since for this 
topology a disjoint algorithm can only produce one cover set 
(e.g. �"#$� = %�$��"� , �$��"�&'  or �"#$�& =
%�$��"� , �$��"�(' , or �"#$�( = %�$��"�&, �$��"�(' ). 
However, if a sensor node in Figure 1 can be part of two cover 
sets, then the network lifetime can be extended. By creating 
three non-disjoint cover sets (see Figure 2), each one activated 
for 0.5 × h hours, the total network lifetime can be extended to 
1.5 × h (see Figure 3), assuming that the energy consumption 
during the sleep mode is negligible.  

 

 

Fig. 2.  Three obtained non-disjoint cover sets. 

From the above observation, a sensor node can spend part 
of its energy within one cover and another part within another. 
So, finding the optimal lifespan requires solving two sub-
problems: (1) finding the optimal number of NDSC and (2) 
maximizing lifespan by scheduling. This problem belongs to 
the NP-hard family and that is why metaheuristics are 
considered in solving it. This paper aims to develop a new 
PSO-based method that can efficiently find the maximum 
number of NDSC for a set of sensors that can be effectively 
scheduled to prolong the WSN lifespan.  
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Fig. 3.  GANTT in case of DSC and NDSC. 

IV. PROPOSED APPROACH 

Given that metaheuristic algorithms are competent in 
finding the best solution in an acceptable amount of time for 
especially hard problems, the following NDSC-based PSO is 
proposed to figure out the optimal number of non-disjoint 
cover sets and then to schedule them in order to maximize the 
lifespan of the network. 

A. Particle Swarm Optimization 

PSO was inspired by the social behavior of fish and birds. 
Each particle of the swarm (individual solution in a 
population), which is a candidate solution for the optimization 
problem, performs an individual search (cognitive search) and 
a global search to minimize an error function. PSO is built on 
the concept of progressively evolving a swarm of possible 
solutions to an optimization problem. Each particle has a 

position denoted by )� ∈ *+ , � = 1, … , � , where �  is the 
number of particles (swarm size), and a velocity to determine 

and move to the next particle denoted by  ,� ∈ *+ . Every 
particle has also a fitness value to evaluate its quality. During 
the search process and over each iteration �, the particles  move 
and update their velocities and positions according to (2) and 
(3) [18]: 

,-. 
� = /,-

� + � � �1-
� − )-

�� + �&�&�3-
� − )-

��  (2) 

)-. 
� = )-

� + ,-. 
�          (3) 

where /  is the inertia weight, �  and �& are the cognition 
learning and the social learning rates, respectively, �  and �& are 

uniformly random numbers in the range of 40,16, 1-
�   and 3-

�  are 

the best personal and global solutions, equivalently, )-. 
�  is the 

modified position of the �78 particle, and �  is the current 
iteration. 

PSO can be used to solve problems with continuous and 
discrete variables. It is also applicable to multi-objective and 
constraint satisfaction problems. More details on PSO, its 
variants and applications, are referred to [16-26]. 

1) Coding 

The first step in using PSO to solve any optimization 
problem is to map between the particle position of the swarm 
evolution concept and the special case of the investigated 
problem. For a set �  of sensors used to monitor a set   of 
targets, the input of the PSO algorithm is the coverage relation 

matrix, which explains the targets (�) from  that are covered 
by each sensor �� from �. The sum of the monitoring periods 
will be equal to the network lifespan. Figure 4 represents the 
structure of a given particle. 

 

 

Fig. 4.  A particle coding. 

2) Initialization 

The particle swarm (or population) can be either generated 
using a random initialization or can be issued from an output of 
any other heuristic method. 

3) Position and Velocity Update 

At each iteration � , the position and velocity of every 
particle (i.e. a potential solution of the considered optimization 
problem) are updated according to (2) and (3). 

4) Fitness Evaluation  

For each particle, the fitness value is the sum of the whole 
scheduled period ��  multiplied by the period k. It can be 
mathematically formulated as in (1). 

5) Termination  

The simplest condition of termination is to let the PSO 
simulation stop once it reaches a maximum number of 
iterations, which is predefined before starting the optimization 
process. 

V. NUMERICAL RESULTS 

The algorithms were coded implementing python 
programming language on Widows10 and with i5 8th gen 
processor.  

A. PSO-based Method for finding the NDSC 

This study simulated a set of randomly deployed sensors 
� =  10, 20, 30, …., 500, which have a constant sensing range 
equal to 3 and are used to monitor 5 targets in a 10 × 10 area. 
The hyperparameters of PSO are � = �& =2 and   / =0.75. A 
different number of iterations and population sizes were 
investigated to find the NDSCs. Table I presents the number of 
NDSCs found engaging different small numbers of sensors 
utilized to monitor 5 targets, with number of iterations = 20 and 
population size = 500. It can be clearly noticed that the number 
of non-disjoint cover sets increases when the number of 
deployed sensors increases. 

TABLE I.  NDSCS FOR A SMALL NUMBER OF SENSOR 
NODES 

Sensors 10 20 30 40 50 

NDSCs 1397 2965 5556 5985 8224 
 

Table II depicts the number of NDSCs for a large number 
of sensors used to monitor 5 targets, number of iterations = 20, 
and population size =500. Through the previous table it can be 
observed that the number of non-disjoint cover sets increases 
when the number of deployed sensors raises and especially 
when this number exceeds the range of hundreds (100, 200, 
300,…500). 
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TABLE II.  NDSCS FOR A LARGE NUMBER OF SENSOR 
NODES 

Sensors 100 200 300 400 500 

NDSCs 9778 9999 10000 10000 10000 

 

Table III presents the effect of the population size on the 
results (using the same number of iterations = 20). It can be 
detected that the number of non-disjoint cover sets increases 
when the number of particles used in the swarm raises. This 
can lead to the conclusion that the number of the non-disjoint 
cover sets can be maximized, but this can influence the 
execution time of PSO. 

TABLE III.  NDSCS WITH DIFFERENT POPULATION SIZE 

Population size 100 200 300 400 500 600 

NDSCs 275 600 817 1101 1379 1613 
 

Table IV provides the running time (ms) for different 
numbers of sensors with a different number of iterations. It can 
be spotted that for a fixed size of population, runtime raises 
when the number of deployed sensors increases. In the same 
direction, when the number of sensors were fixed and the size 
of the swarm was varied, the runtime increases. 

TABLE IV.  INSTANCES RUNTIME 

Population 100 

sensors 

200 

sensors 

300 

sensors 

400 

sensors Iterations 

500 10 13 17.51 20.613 

1000 19.84 25 34.25 41.185 

1500 29.67 41.4 50.54 61.01 

2000 40.5 53.6 69.09 78.92 
 

B. PSO-based Method for finding the Optimal Scheduling 

Table V compares the results obtained by the proposed 
NDSC-PSO approach and those provided by NDSC-GA and 
the exact method (ILP) on the same eight instances [13].  

TABLE V.  COMPARISON OF ILP, NDSC-GA, AND NDSC-PSO 
ALGORITHMS 

Instances 

9, :, ;, <=, <=(>) 

Lifetime 

ILP GA PSO 

5,5,3,160,16 20 20 20 

5,5,3,160,8 40 40 40 

5,5,3,160,4 80 80 80 

5,5,3,160,2 160 160 160 

10,5,3,160,8 30 30 30 

10,5,3,160,4 60 59 60 

10,5,3,160,4 120 117 120 

10,5,3,160,2 240 238 240 
 

In Table V, it can be observed that the results obtained by 
the proposed NDSC-PSO approach are better than those 
acquired with the NDSC-GA method. Indeed, the findings of 
NDSC-PSO reached the optimal solution for all the considered 
instances.   

VI. DISCUSSION 

After the conduction of many experiments, some 
conclusions can be drawn: 

 To improve the acquired results, the swarm size could be 
enlarged, at the cost of execution speed. 

 The second finding concerns the effect of the number of 
sensors deployed on the complexity of the problem being 
addressed. 

 NDSC-PSO outperforms other effective approaches known 
in the literature. 

The first and second observations can be considered 
obvious. The third one is the main contribution and the most 
important finding of the current study. In fact, in all instances 
tested in this work, the NDSC-PSO reaches the maximum 
lifetime. This result can be further generalized by testing other 
new instances that address the same kind of problem (WSN), 
but with different constraints and objectives (e.g. sensor type: 
fixed, mobile, random, homogeneous, heterogeneous, 
fully/partially connected, mono/multi  criteria problem, etc.).  

VII. CONCLUSION 

In this paper, a NDSC-based PSO was investigated and 
integrated into a scheduling approach to maximize the lifespan 
of WSNs. The experimental results were implemented in the 
case of random deployment of sensor nodes. The obtained 
outcomes were compared with those derived through an exact 
method, namely the ILP model, and those acquired via a 
metaheuristic, namely NDSC-GA, known in the literature. For 
all the cases considered, the NDSC-PSO approach 
outperformed NDSC-GA and provided results close to those of 
ILP. The experimental findings are very encouraging as the 
proposed method is able to discover the best network lifetime 
for the studied instances. A more comprehensive study should 
be conducted on a larger number of cases. Further research 
could focus on additional constraints of the sensor network, 
such as the mobility and heterogeneity of nodes. Another future 
aim would be to test the usage of a fully adaptive PSO 
algorithm called TRIBES or the hybridization of PSO and other 
heuristics. 
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