
Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 13967-13973 13967  
 

www.etasr.com Abdel Maksoud & Shaaban: Parameter Estimation of Photovoltaic Cells using Transit Search Optimizer 

 

Parameter Estimation of Photovoltaic Cells 

using Transit Search Optimizer  
 

Hady El Said Abdel Maksoud 

Department of Electrical Engineering, College of Engineering, Northern Border University, Saudi Arabia 

| Electrical Engineering Department, Faculty of Engineering, Menoufia University, Egypt  

hady.elgendy@nbu.edu.sa  

 

Shaaban M. Shaaban 

Department of Electrical Engineering, College of Engineering, Northern Border University, Saudi Arabia 

| Department of Engineering Basic Science, Faculty of Engineering, Menoufia University, Egypt  

shabaan27@gmail.com 

Received: 23 January 2024 | Revised: 17 February 2024, 7 March 2024, and 17 March 2024 | Accepted: 24 March 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.6956 

ABSTRACT 

In the evaluation of a Photovoltaic (PV) system's performance, precise calculation of the system's 
parameters is essential, as these parameters significantly influence its efficiency across various sunlight 

intensities, temperature ranges, and distinct load conditions. Addressing the intricate non-linear 

optimization problem of pinpointing these PV system parameters, the current research adopts a novel 

metaheuristic optimization approach, called Transit Search (TS). The proposed technique was rigorously 

tested on a monocrystalline solar panel, which included both single and double-diode model structures. 

The design of the objective function within this framework aims to diminish the square root of the average 

squared discrepancies between theoretical and measured current outputs, while remaining within the 
established parameter bounds. The proficiency of the TS algorithm was highlighted by employing a variety 

of statistical error indicators, underlining the latter’s effectiveness. When pitted against other established 

optimization algorithms through comparative analysis, TS demonstrated outstanding capabilities, 
evidently outperforming its contemporaries in the accurate determination of PV system parameters. 

Keywords-parameter extraction; PV cells; modeling; TS algorithm; optimization 

I. INTRODUCTION  

Accurate determination of the parameters of solar 
photovoltaic (PV) models is a linchpin for the precise 
projection of the panels' performance and efficiency [1]. It 
enables the fine-tuning of the solar panels' architecture, their 
functioning, and their seamless incorporation into broader 
energy systems to ensure optimal energy harvest and efficiency 
[2]. Moreover, meticulous parameter estimation is instrumental 
in the health assessment and prognostics of these systems, 
paving the way for preventative maintenance, prolonged 
service life, and steady energy output. This, in turn, fortifies the 
economic and operational viability of solar power installations 
[3]. Technical specifications of PV modules conventionally 
underscore three salient points delineating the current/voltage 
(I/V) characteristics under Standardized Test Conditions 
(STC), i.e. ambient temperature T of 25°C, solar irradiance G 
of 1 kW/m2, and air mass coefficient of 1.5. These benchmarks 
include the open-circuit voltage (Voc), the short-circuit current 
(Isc), and the maximum power point's voltage (Vmp) and current 
(Imp) [4]. Yet, such data points, while indicative, are not 
comprehensive enough for extensive PV systems analysis, 
given the dynamic nature of environmental conditions. An 

exhaustive and precise I/V curve, relevant across the entire 
spectrum of operational conditions, is vital for an in-depth 
assessment of PV systems' performance. 

The electrical behavior of PV cells is commonly depicted 
using two models: the One-Diode Model (ODM) and the Dual-
Diode Model (DDM). The DDM, although more resource-
intensive than the ODM, offers only a slight edge in efficiency 
[5]. The ODM requires the identification of five key 
parameters, whereas the DDM necessitates seven. Additionally, 
the Triple Diode Model (TDM) further refines this by more 
accurately representing recombination losses across a wider 
range of conditions, albeit with increased complexity and 
computational demands. This study concentrates primarily on 
the ODM and DDM [6]. 

The study of solar cell dynamics frequently employs the 
ODM and the DDM [7]. For the enhancement of PV system 
efficiency via simulation analysis, precise estimation and 
delineation of model parameters are crucial. There is a 
significant research thrust aimed at honing PV model 
parameters through various engineering methods [8]. These 
methods fall into two primary classifications from an 
algorithmic perspective: deterministic and heuristic. Both 
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methodologies are oriented towards converting the task of 
parameter determination into an optimization problem, utilizing 
certain benchmarks derived from the I/V characteristic curve 
[8, 9]. 

Deterministic strategies often implement techniques like the 
Newton method-based least squares and Lambert W-functions, 
which impose requirements on objective functions related to 
continuity, convexity, and the presence of derivatives [10]. 
However, these approaches can be affected by initial conditions 
and details regarding the gradient, leaving them vulnerable to 
entrapment in local optima during complex optimization 
problems. This can be a significant limitation in non-linear and 
multimodal tasks of parameter extraction. Conversely, heuristic 
methods boast adaptability, not being restricted by the stringent 
specifications of the optimization problem's framework. This 
adaptability grants them an advantage in overcoming the 
challenges posed by initial conditions and gradient 
specifications. Due to their robustness, heuristic methods have 
gained traction. Techniques like Genetic Algorithms (GAs) 
[11], Particle Swarm Optimization (PSO) [12], differential 
evolution [13], Artificial Bee Colony (ABC), and harmony 
search [15] are just a few of the heuristic approaches that have 
been successfully applied to PV model parameter optimization. 
Additional methods include teaching–learning-based 
optimization [16], the chaotic whale optimization algorithm 
[17], Lévy flight trajectory-based whale optimization [18], and 
hybrid algorithms that combine features of different 
optimization methods. 

This research paper introduces substantial advancements in 
solar energy, particularly through the innovation of parameter 
identification processes for solar PV models via a novel 
optimization algorithm. It heralds the inaugural application of 
the Transit Search (TS) algorithm, meticulously adapted for the 
precise optimization of PV cell parameters. This pioneering 
effort not only enriches the existing body of knowledge but 
also sets a new benchmark for future research in solar energy 
optimization techniques. The TS algorithm is utilized for 
extracting parameters of PV cells [19]. This algorithm is an 
innovative optimization method influenced by astrophysics. It 
is a meta-heuristic algorithm, rooted in the transit method, 
which has proven effective in the discovery of exoplanets 
through space telescopes. At its core, the TS algorithm 
emulates the technique of detecting planets by observing 
fluctuations in starlight. We have conducted a comprehensive 
comparative study for PV cell parameters. This study 
considered both ODM and DDM (Tables I, III), utilizing six 
advanced optimization algorithms: Nelder-Mead and modified 
PSO (NM-MPSO) [20], ABC optimization [21], improved 
adaptive differential evolution (Rcr-IJADE) [22], Artificial Bee 
Swarm Optimization (ABSO) algorithm [23], Levenberg-
Marquardt algorithm combined with Simulated Annealing 
(LMSA) [24], and Chaotic Asexual Reproduction Optimization 
(CARO) [25]. These methodologies were meticulously chosen 
for their relevance and potential to provide insightful 
comparisons. 

II. MODELING OF PV CELLS 

A. One-Diode Model 

ODM, often referred to as the single diode model or the 
diode model, is a prevalent mathematical framework for 
capturing the electrical characteristics of a PV cell. 

 

 
Fig. 1.  The one-diode model. 
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formula describes the variation of the output current I in a PV 
cell relative to the applied voltage V considering several key 
factors. These include the photocurrent (Iph), the diode current 
(Id), the shunt current (Ish), representing the current that flows 
through the shunt resistor in parallel with the diode, and the 
reverse saturation current (Isd), along with the diode ideality 
factor (α). It also factors in the temperature T of the cell, the 
Boltzmann constant K, the charge of an electron q, and the 
impacts of both series (Rs) and shunt resistance (Rsh). 

B. Dual-Diode Model 

DDM, is an advanced mathematical representation used to 
describe the electrical behavior of PV cells. 

 

 
Fig. 2.  The dual-diode model. 
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. 

The characteristics of the second diode are:  the diode current 
(Id2), the reverse saturation current (Isd2) and the diode ideality 
factor (α2). 
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C. Objective Function 

In the process of deriving parameters for PV cells, the 
objective functions act as crucial mathematical benchmarks 
that steer the optimization procedures. This entails aligning the 
theoretically calculated current values with those obtained from 
real-world experiments. Central to accomplishing this 
alignment is the employment of an objective function, 
specifically designed to reduce the Root Mean Square Error 
(RMSE) over a range of gathered data points [26]. The primary 
equation used to compute the RMSE, which measures the 
discrepancy between observed and predicted current values, is: 

 
2

1

1
RMSE

N

m e

i

I I
N 

 
  

 
 
                   (3) 

where N is the number of samples, Im denotes the measured 
current, and Ie represents the estimated current. 

The purpose of using the objective function is 
predominantly to minimize the RMSE over various collected 
data points. Essentially, this involves reducing the difference 
between the model's predicted values and the actual 
experimental observations. For the ODM, the objective 
function is structured as: 
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Conversely, when considering the DDM, (5) represents the 
error function: 
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III. TRANSIT SEARCH ALGORITHM  

TS is a meta-heuristic algorithm that draws its principles 
from the transit method, a successful approach in detecting 
exoplanets via space telescopes. In essence, the TS algorithm 
mimics the process of identifying planets through the 
observation of changes in stellar luminosity. In astrophysics, 
this method involves studying the light from stars at regular 
intervals to detect any reduction in brightness, which could 
indicate a planet passing in front of the star. Similarly, the TS 
algorithm applies this concept to optimization problems. It 
systematically explores potential solutions by monitoring 
changes in some "luminosity" equivalent, which represents the 
quality or fitness of the solution. When a decrease in this value 
is observed, it suggests a potential "transit" or optimal solution 
crossing the problem space, akin to a planet transiting a star. 
The implementation of the TS algorithm comprises five distinct 

phases: galaxy, star, transit, planet, neighbor, and exploitation 
[19]. 

A. Galaxy Phase 

The algorithm initiates by selecting a galaxy through the 
choice of a random point in the search space, designated as the 
center of the galaxy. Following this, it is crucial to pinpoint the 
habitable zones within this galaxy, often referred to as the life 
belt. This is achieved by evaluating ��*SN random regions. The 
number of host stars (��) and the signal-to-noise ratio (SN), 
denoted as ��, using (6)-(8): 

,R l GalaxsyL L D Noise    with 1,..., ( )sl n SN   (6) 
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In the previously referenced equations, ������	 signifies the 
central position of the galaxy. Additionally, �
 denotes a 
randomly selected point within the search space. The equations 
also incorporate two coefficients, both ranging from 0 to 1: one 
is a random scalar (�1) and the other is a random vector (�2), the 
dimensions of which correspond to the number of variables in 
the optimization problem. Following this, the next step 
involves selecting a star from each of the chosen regions, 
representing a stellar system, as per (9)-(11). Consequently, at 
this stage's conclusion, the algorithm possesses �� stars for 

exploration. The position of these stars is denoted by �� in (9). 
The coefficients �3 and �4 in these equations are random values 

ranging between 0 and 1, while coefficient �5 is a random 
vector also confined between 0 and 1. 
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In the algorithm outlined, the galaxy phase is conducted a 
single time, preceding the commencement of iterative 
processes. This phase is crucial for selecting suitable scenarios 
in which the core steps of the algorithm (phases 2 through 5) 
can be effectively executed.  

B. Transit Phase 

In the TS algorithm, determining the class of each star is 
based on its brightness, according to the definition provided in 
�2. For instance, [19] showcases a search space example 
featuring eight stars, each ranked for a minimization goal. In 
this scenario, the closer the star is to the observer, the more 
photons are received. This principle is encapsulated in (12) of 
the proposed algorithm, which approximates the star's 
luminosity.  
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�
 and �
 represent the luminosity and rank of a given star, 
denoted as star i. Additionally, �
, pertains to the distance from 
the telescope to star i. The initial position of the telescope, 
indicated by ��, is determined randomly at the beginning of the 
algorithm and remains constant throughout the optimization 
process. To update the amount of light received from the star, a 
new signal is generated by modifying ��, in accordance with 

the principles defined in �2. This adjustment utilizes (14), (15). 
Within this framework, the coefficients �6 and �7 are assigned 

values randomly, �6 is chosen from a range of -1 to 1, while �7 
is selected as a random vector within the range of 0 to 1. 
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The star's brightness level is computed (utilizing the newly 
acquired �� from the updated ��,n��), leading to the 
determination of the new luminosity value, �
,���, as specified 
in (16): 

,
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The new parameter �
,n�� is calculated using the updated �� 
and the telescope's position. By comparing �
 and �
,n��, the 
potential for a transit event can be assessed. This likelihood, 
represented by ��, is expressed as either 1 (indicating a 
probability of transit) or 0 (signifying no transit), as defined in 
(17). If �� equals 1, the algorithm employs the planet phase; if 
not, the neighbor phase is applied in the current iteration. 

,
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C. Planet Phase 

When the value of ��, as established in the preceding 
phase, indicates a transit (�� = 1), the planet phase is activated 
within the TS algorithm. This phenomenon aids in ascertaining 
the initial location of the detected planet (��). The TS algorithm 
calculates this position following the methodology outlined in 
(18): 
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where 
, , , /L S new i S iR L L . The parameter �� signifies the 

luminance ratio. The coefficient �8 assumes a random value 
within the range of 0 to 1. Equation (18) establishes the 
position of a planet situated between a star and a telescope by 
averaging the two relative locations. 

The SN plays a pivotal role in transit confirmation and 
noise reduction. To determine the planet's approximate 
location, the algorithm evaluates the number of received 
signals within its stellar system. Equation (19) considers a set 
of SN signals for this purpose, with the coefficient �9 being a 
random number ranging from -1 to 1. Furthermore, �10 is a 
random vector with values spanning from -1 to 1. Following 
the determination of signals (��), (20) is employed to refine the 
final location of the detected planet ( ) by taking the average of 
the SN signals. 
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D. Neighbor Phase 

In cases where there is no transit observed for a star during 
the current observation, the TS algorithm proceeds to 
investigate neighboring planets of the previously detected star. 
This substitution occurs during the neighbor phase, utilizing 
(21)-(23). To begin, the initial location of the neighbor (�z) is 
estimated by (21), taking into account its host star (��,n��) and a 
random location (��). The final location of the neighbor planet 
(��) is determined using (22) and (23). The coefficients �11 and 
�12 in (21) correspond to random numbers falling within the 
range of 0 to 1. Additionally, the coefficients �13 and �14 in (22) 
represent a random number and a vector ranging from -1 to 1: 
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E. Exploitation Phase                                              

In the preceding phases, the optimal planet is selected for 
each star. However, the mere discovery of a planet is not 
sufficient. It is essential to thoroughly examine the planet's 
characteristics and its potential to support life. The TS 
algorithm addresses this in the exploitation phase, where a 
fresh definition of �� is introduced. Here, �� in the current 
phase (��) represents the attributes of the planet, encompassing 
factors like density, composition, atmosphere, and more. 
Subsequently, by incorporating new knowledge (K), the 
planet's characteristics are adjusted SN times (� = 1,. . . , SN) 
using (24) and (25). In (25), �15 is a random number ranging 
from 0 to 2, while �16 falls within the range of 0 to 1. 
Additionally, �17 is a random vector with values between 0 and 
1. The parameter P in (25) denotes a random exponent ranging 
from 1 to (�� * SN). �� represents a random number (1, 2, 3, or 
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4) indicating the knowledge index. Four states are considered 
for �� in the TS algorithm. 

16 15

16 15

,

15

15

             c 1   (state 1)

             c 2   (state 2)

                 c 3   (state 3)

                 c 4   (state 4)

P k

P k

E j

p k

p k

c L c K if

c L c K if
L

L c K if

L c K if

 
  

   
  

    (24) 

17( )P

rK c L                        (25) 

The stages of the TS algorithm, including their definitions 
and specifics, accompanied by pertinent equations and 
pseudocodes can be found in [19].  

To optimize PV cell parameters using the TS algorithm, the 
key parameters that need tuning include: 

 Vmin and Vmax: These vectors set the lower and upper bounds 
for the variables, ensuring the search is within realistic 
limits. 

 nV: The number of variables (PV parameters) to optimize, 
set to 5 for OMD and to 7 for DDM. 

 ns (number of stars): Influences the algorithm's exploratory 
scope, set here as 10 to balance exploration and 
computational efficiency. 

 SN: Determines the granularity of the search, with a value 
of 10 providing a detailed yet manageable exploration. 

 maxcycle: The maximum number of iterations the algorithm 
will perform, set to 1500, allowing sufficient convergence 
time for the optimization process. 

These parameters directly correlate with the optimization 
process's efficiency and accuracy in extracting PV cell 
parameters. Tuning them involves adjusting the search space's 
bounds, the granularity of the search, and the algorithm's 
runtime to effectively navigate the complex landscape of PV 
parameter optimization. 

IV. RESULTS AND DISCUSSION 

The extraction of various simulation results was facilitated 
using specific software and hardware. The setup included an 
Intel (R) Core (TM) i7 – 7500U CPU operating at 2.9 GHz, 12 
GB RAM, Matlab R2022b for simulation, and Windows 11 as 
the operating system. Simulations were performed under 
uniform environmental conditions, with a solar irradiance of 
1000 W/m2 and a cell temperature of 33 °C. These were 
applied to the RTC France Company's monocrystalline PV 
panel [27], utilizing both single and double diode cell models 
to ensure comprehensive analysis. The statistical metrics used 
to demonstrate the performance of the proposed algorithm are 
Individual Absolute Error (IAE), Median Absolute Error 
(MAE), and Residual Sum of Squares (SSE): 

IAE measured estimatedI I   

1

MAE
m

measured estimated

i

I I
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
  

 2

1

SSE
m

measured estimated

i

I I


   

Table I displays the performance metrics for the TS 
algorithm applied to ODM parameter extraction, benchmarked 
against other techniques. 

TABLE I.  PARAMETER EXTRACTION FOR ODM  

Algorithm Iph (A) I0 (μΑ) α Rs (Ω) Rsh (Ω) 

TS 0.76078 0.293558 1.4716 0.0368 51.6718 

BBO-M 0.760781 0.318743 1.479842 0.036422 53.36226 

RADE 0.760775 0.323022 1.481183 0.036376 53.71853 

LMSA 0.760781 0.318492 1.479764 0.036433 53.32644 

CARO 0.760792 0.317243 1.481681 0.036443 53.0893 

ABC 0.76082 0.325155 1.481731 0.036443 53.64332 

NM-MPSO 0.760781 0.323065 1.481202 0.036384 53.72221 
 

Figures 3 and 4 demonstrate that the TS algorithm generally 
exhibits superior performance in parameter extraction for the 
ODM, with the lowest SSE and RMSE. These results suggest 
that TS is highly accurate and consistent in its predictions 
compared to the other evaluated algorithms. Figure 5 shows a 
comparison of the estimated and the actual results of the TS 
algorithm for the DDM case. 

 

 

Fig. 3.  Statistical results for the ODM. 

 
Fig. 4.  Individual-Absolute Error (IAE) obtained for the ODM. 

 

Fig. 5.  Experimental and estimated results obtained by the TS algorithm 
for DDM. 
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SSE 2.51E-05 2.84E-05 2.53E-05 2.53E-05 2.528E-05 2.528E-05 2.20E-05

MAE 6.81E-04 7.88E-04 8.27E-04 6.98E-04 8.19E-04 6.81E-04 6.65E-04
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Table II presents a comparative analysis of the performance 
indicators for DDM parameter extraction. 

TABLE II.  PARAMETER EXTRACTION FOR DDM 

Algorithm Iph (A) I01 (μΑ) I02 (μΑ) α1 α2 Rs (Ω) Rsh (Ω) 

TS 0.760723 0.22766 0.63012 1.427 1.806 0.0472 54.7972 

RADE 0.760781 0.22597 0.749347 1.45101 2 0.03674 55.4854 

CARO 0.760752 0.29315 0.090982 1.47338 1.77322 0.03641 54.3967 

ABSO 0.76078 0.26713 0.38191 .146512 1.98152 0.03657 54.6219 

ABC 0.760825 0.04071 0.287433 1.44954 1.48852 0.03645 54.7805 

NM-MPSO 0.76078 0.22476 0.75524 1.45054 1.99998 0.03675 55.5296 

 
Figures 6 and 7 provide statistical results and a graphical 

representation of the IAE for various optimization algorithms 
applied to the DDM. The following conclusions can be drawn: 

 The TS algorithm has the lowest total IAE, indicating it has 
the smallest overall prediction error compared to the other 
algorithms. 

 The TS algorithm consistently maintains lower error values 
across most data points (Figure 7), reinforcing the data from 
Figure 6 about its accuracy and reliability. 

 There is a notable spike in errors for all algorithms at data 
point 22 (Figure 7), suggesting a particularly challenging 
case for parameter estimation. However, TS still has one of 
the lowest errors at this point. 

 

 
Fig. 6.  Statistical results for the DDM. 

 
Fig. 7.  IAE obtained for DDM. 

According to the presented results in Figures 5 and 8, it can 
be noticed that the estimated current coincides with the 
measured current, indicating the accuracy of the proposed 
optimization algorithm for parameters extraction. Figure 9 
shows the DDM converging more rapidly and stabilizing at a 
lower error compared to the ODM. Both models eventually 
reach a plateau, indicating that optimal parameters have likely 
been achieved. 

 

 
Fig. 8.  Experimental and estimated results obtained by the TS algorithm 

for ODM. 

 
Fig. 9.  Average fitness functions. 

V. CONCLUSION 

The findings of our research firmly establish the Transit 
Search (TS) algorithm as a powerful metaheuristic for 
parameter optimization in photovoltaic (PV) systems, 
characterized by its precision and reliability. The TS algorithm 
outperforms in estimating parameters for both the One-Diode 
and Dual-Diode Models and excels when assessed through 
various error metrics such as Root Mean Square Error (RMSE) 
and Sum of Squares Error (SSE). Comparative statistical 
analysis indicates that TS algorithm secures the most favorable 
error metrics in contrast to other established optimization 
algorithms, including NM-MPSO, ABC, ABSO, and CARO. 
However, while the TS algorithm's advantages in parameter 
estimation and error minimization are clear, potential 
limitations such as computational complexity and scalability in 
larger systems should be acknowledged. 
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