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ABSTRACT 

Image quality assessment is very important for accurate analysis and better interpretation. In reality, 

environmental effects and device limitations may degrade image quality. Recently, many image quality 

assessment algorithms have been proposed. However, these algorithms require high computation 

overhead, making them unsuitable for mobile devices, such as smartphones and smart cameras. This paper 

presents a hardware implementation of an image quality assessment algorithm based on a Lightweight 

Convolutional Neural Network (LCNN) model. Many advances have been made in the construction of 

high-accuracy LCNN models. The current study used EfficientNet V2. The model achieved state-of-the-art 
image classification performance on many famous benchmark datasets while having a smaller size than 

other models with the same performance. The model was utilized to learn human visual behavior through 

understanding dataset information without prior knowledge of target visual behavior. The proposed model 

was implemented employing a Field Programmable Gate Array (FPGA) for possible integration into 

mobile devices. The Xilinx ZCU 102 board was implemented to evaluate the proposed model. The results 
confirmed the latter’s efficiency in image quality assessment compared to existing models. 

Keywords-deep learning; artificial intelligence; embedded systems; FPGA; efficientNet v2; image quality 

assessment 

I. INTRODUCTION  

The need for a reliable and effective Image Quality 
Assessment (IQA) has increased significantly in recent years 
[1]. IQA has become a progressively attractive subject, with a 
huge number of new algorithms being developed each year. 
Based on the visual cues offered by the original reference 
image, IQA may be split into three categories: Full Reference-
IQA (FR-IQA), Reduced Reference-IQA (RR-IQA), and No 
Reference-IQA (NR-IQA). FR-IQA denotes the availability of 
a deformed image and the original one, NR-IQA uses only 
distorted images, and RR-IQA utilizes a portion of the original 
picture's visual clues or certain attributes on the reference 
image. In most cases, the availability of the reference image is 
limited in practical situations. Due to the constantly changing 
picture content, in addition to the absence of a visual reference, 
NR-IQA is considered a highly demanding study case. NR-
IQA may be classified into two main categories: distortion-
based and general-purpose methods. A distortion-based method 
is adopted to assess the quality associated with a specific type 
of distortion, such as blocking or blurring. As it is not always 
possible to define the type of distortion, distortion-based 
techniques have a limited use in real-world circumstances. 

Despite several efforts to build a viable NR-IQA algorithm 
for real-world applications, the performances achieved are 
below the expected. Many IQA techniques employ deep 
learning to build a correlation between the extracted quality 
attributes of the picture and the objective IQA score. These 
algorithms typically depend on features that are designed 
manually to be sensitive to image quality. Deep learning 
performs well in a wide variety of applications, including 
computer vision. Deep learning techniques require extensive 
computational resources to accomplish high performance. 
However, many models have been proposed to reduce 
computation complexity without degrading accuracy. The ever-
increasing desire for solutions that are both effective and 
scalable in a variety of applications is the driving force behind 
the usage of lightweight deep learning models for IQA. 

Traditional deep learning models, particularly those 
deployed for image processing tasks, frequently require a 
substantial amount of computing resources and memory. As a 
result, these models are not ideal for settings with limited 
resources, such as mobile devices or embedded systems. 
Lightweight models provide a compromise by delivering 
satisfactory performance while also reducing the amount of 
computing complexity required, making them suitable for low-
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power devices. Lightweight models offer faster inference 
times, enabling quick decision-making and reaction in 
applications where image quality evaluation has to be 
performed in real-time. Some examples of these applications 
entail video streaming, surveillance systems, and augmented 
reality applications. Lightweight models are easier to 
implement and deploy across a wide variety of platforms and 
devices. It is possible to incorporate them into cloud-based 
systems, Internet of Things (IoT) devices, or edge computing 
devices without large infrastructure modifications. Lightweight 
models have fewer memory footprints and reduced energy use 
than their heavier counterparts. This is of utmost importance in 
mobile devices powered by batteries. It is common for 
lightweight models to generalize well across a variety of 
datasets and circumstances, which enables them to be 
acceptable for a wide range of quality assurance activities 
without compromising performance. Lightweight models can 
be trained and fine-tuned employing fewer datasets, making 
them accessible to a wider audience of researchers and 
developers who may not have access to large-scale datasets or 
high-performance computer resources. Therefore, lightweight 
deep learning models for IQA can achieve a balance between 
computational efficiency, performance, and scalability, making 
them applicable for a wide variety of real-world applications. 

This study used the EfficientNet v2 model [2] to extract 
features from the proposed IQA algorithm. The proposed 
approach utilized three neural networks, following the human 
visual perception system that operates on a hierarchical basis. 
Extracting edge local information and substrate texture data 
was performed employing EfficientNet v2-S. Meanwhile, 
global semantic high-level features were extracted putting into 
service EfficientNet v2-M. The proposed model incorporates 
several novelties compared to other approaches currently used 
in the field of IQA. The proposed model is trained to learn 
human visual behavior by evaluating information from datasets 
without depending on prior knowledge of the target visual 
behavior. Due to its capacity for self-learning, the model can 
adapt and generalize effectively across a wide variety of IQA 
tasks and hypothetical situations. This study focused on the 
implementation of the IQA algorithm directly on hardware, 
deploying a Field-Programmable Gate Array (FPGA). This in 
contradicts with the usual software-based approaches, which 
sometimes include a significant amount of processing 
overhead. The particular approach provides benefits in terms of 
speed, energy efficiency, and the ability to perform real-time 
processing. This model engaged LCNNs, which are meant to 
have high accuracy while preserving minimal computational 
complexity and memory footprint. The EfficientNet v2 model, 
which is well-known for its exceptional performance in picture 
classification tasks while having a smaller model size, can 
guarantee the effective usage of computing resources without 
sacrificing accuracy. Therefore, this method is advisable for 
mobile devices, such as smartphones and smart cameras. The 
implementation of the IQA algorithm on FPGA hardware can 
facilitate the deployment of the model in real-world mobile 
applications that often have limited processing resources. The 
main contributions of this work are the following: 

 Develop a deep CNN structure that can extract natural 
scene statistical data that are incredibly suggestive of 

human visual perception and cognition to perform an NR-
IQA task which is straightforward but effective. As a result, 
both the spatial and spectral domains of image 
representation are improved. 

 Present a distinctive IQA FPGA implementation. The 
hardware has been optimized for the pipeline throughout. 
Simultaneously, a small quantity of hardware is introduced 
in place of the usual large-capacity storage. In addition to 
improving the working rate and reducing the circuit scale, 
this arrangement can save space. 

II. RELATED WORKS 

Several important algorithms have been proposed for FR-
IQA. PSNR [3] is often used to measure the quality of 
compressed pictures and is regarded as an IQA criterion in 
signal processing-related research disciplines. PSNR has low 
computing complexity and can be implemented quickly but 
cannot encode several critical features of the Human Vision 
System (HVS) [4]. A novel IQA technique called SSIM [5] has 
been proposed to improve HVS, while MS-SSIM [6] and IW-
SSIM [7] have been recommended as IQA measures. The 
information from photos acquired under various situations and 
resolutions is combined and seamlessly integrated into the IQA 
procedure. The VIF approach [8] utilizes a source model, a 
distortion model, and an HVS model to leverage GSMs to 
describe realistic images in the wavelet domain. 

Mechanisms for analyzing image distortion, such as MAD 
[10], were developed with the assumption that the HVS 
employs a variety of mechanisms to assess picture quality. 
Analyzing local brightness, contrast masking, and changes in 
the local statistical properties of the spatial frequency 
components are among these strategies [9]. According to the 
FSIM method [11], the visual system is highly dependent on 
gradient and phase consistency to determine image quality. 
These two elements are believed to be the fundamental ways in 
which HVS interprets images [17]. The FSIMc technique was 
established by adjusting the average depending on phase 
consistency data, including color attributes. In contrast, VSI 
[12] deploys a saliency map in place of FSIMc's phase 
consistency feature to enhance the results while retaining the 
color information and its gradient from FSIMc. GMSD [13] 
puts into service gradient as the key feature for assessing image 
quality and uses standard deviation pooling instead of the 
classic mean pooling. However, in real-world circumstances, 
the reference image may not be available and only parts of the 
visual cues or implicit visual aspects may be accessible. In such 
instances, the RR-IQA algorithm can provide a feasible 
solution. In [14], an NR-IQA method was presented utilizing 
grouped transformations.  

III. PROPOSED ARCHITECTURE  

A hybrid approach enables the extraction of both local and 
non-local characteristics from the image. Figure 1 depicts the 
main architecture of the proposed model. At first, a hierarchical 
feature extraction module is used to extract features from the 
input images. The three different feature extraction modules 
extract multilevel features at different stages. A texture 
extraction module, based on EfficientNet v2-S, extracts 
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ground-level texture features. Low-level edge features are 
extracted applying an edge extraction module based on 
EfficientNet v2-S. EfficientNet v2-M can extract sophisticated 
semantic features. Subsequently, an attention mechanism fuses 
the retrieved features. 

 

 
Fig. 1.  Proposed model for NR-IQA. 

The texture module provides low-level features, the edge 
extraction module captures local features, and the semantic 
features extraction module acquires high-level global semantic 
information. The dimensions of the feature maps, using the 
EfficientNet v2-S architecture in the attentional module, are 
256×56×56. After undergoing the Conv 2d (512, 512, 1) and 
Conv 2d (256, 512, 1) operations, the dimensions of the texture 
feature map are altered to 512×7×7. The edge extraction 
network provides 1×224×224 feature maps. The proposed 
modification results in feature maps appear with a size of 
640×7×7. Then, an additional convolution layer Conv 2d 
(2048, 512, 1,) is applied to generate 512×7×7 feature maps.  

The EfficientNet v2-S presents seven stages after removing 
the classification head composed of convolution, pooling, and 
fully connected layers. The first stage is a 3×3 convolution 
layer, the second, third, and fourth stages are fused MBConv 
layers with a 3×3 kernel, and the last three stages are based on 
MBConv layers with a 3×3 kernel. To fix the number of 
channels feature maps size, a convolution layer followed by a 
deconvolution layer were applied to the last five stages from 
the top of the network. Figure 2 illustrates the proposed edge 
extraction network. To extract the global semantic information, 
the classification head of the EfficientNet v2-M was replaced 
with a convolution layer Conv 2d (2048, 512, 1) which 
generates feature maps with 512 channels. 

 

 
Fig. 2.  Architecture of the proposed edge features extraction network. 

Since the proposed three networks provide features with 
complex correlation, the fusion technique is very important for 
achieving good results. Applying a simple fusion technique, 
such as concatenation or addition, will certainly degrade the 
ability to consider multilevel features for image contain 

expression. To take advantage of the extracted features, an 
attention mechanism was adopted as a fusion technique. Three 
identical attention blocks make up the suggested fusion 
method. The architecture of the fusion approach, which is 
based on the attention mechanism, is shown in Figure 3. 

 

 
Fig. 3.  Proposed fusion module. 

Considering two sets of features with a size � � � and � 
channels �, � ∈ ℝ
���� , the fusion result   based on the 
proposed attention mechanism is given by:  

� �  ����⨁��⨂� � �1 � ����⨁��⨂��  

� �  �����⨂� � �1 � �����⨂��  

 �  �����⨂� � �1 � �����⨂�  (1) 

where  represents fusion output, � is the result of the first 
attention block, � is the fusion result of the second attention 
block, ⨂ is element-wise multiplication, and ⨁ is broadcasting 
addition. ��, �� , and �� are the corresponding weight matrices 
for each attention block, which can be computed by:  

���� � ��������⨁�����   (2) 

where ����. �is the sigmoid function, � ∈ ℝ
���� is the sum 
of ! and �, ���� is the context of the global feature, and ���� 
is the context of the local feature, which are computed as:  

���� � "�#�$%&'2)*�"�#�$%&'1�����+� (3) 

���� � "�,- .* /" 0,1)����+234�  (4) 

where #�$%&' are pointwise convolution layers with kernel 
sizes of �/6 �  � �  1 � 1  for #�$%&'1  and � �  �/6 � 1 �  1 for #�$%&'2, 6 is the reduction rate of the channel, * 
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refers to the Rectified Linear Unit (ReLU) function, " refers to 
the batch normalization, ,-  is channel increasing layer, ,1  is 
the channel reduction layer, and ���� is the global average 
pooling layer. To create the best match between the distorted 
picture and the score, it is necessary to minimize the difference 
between the anticipated score determined by objective criteria 
and the value given based on subjective judgment. The Huber 
loss was adopted to increase the network's robustness. The 
proposed loss function for NR-IQA can be calculated by: 

7��� �  8�  .91 � 0:;<
= 2� � 14  (5) 

where > is the target score, � is the predicted score, and 8 is a 
hyperparameter. The extracted features are considered in loss 
optimization by measuring the difference between the score of 
each feature and the mean score. Three scores (��, ��, 8&? ��) 
are associated with the hierarchical features and the final score 

is �@. The main loss function is given by:  

7 � 7: � 7@ �  ∑ "-7� �-� ��-B�  7) �@+  (6) 

where 7@  represents the loss function that measures the 

discrepancy between the predicted and the target score, 7:  is 
the aggregation of different scores among the extracted 
features, and "- is a relative weight of the score associated with 
each feature which is calculated by: 

"- � ������-� � 1/2�²    (7) 

where �����-�is the sigmoid function given by: 

�����-� � �
�DEFG�;�:H;<��   (8) 

Considering the propriety of the sigmoid function, if there 
is a small variation between �- and >, then the corresponding 
value of "- is small. The relative weights are presented as: 

�"�, "�, "��∗ � arg min�7 ��; "�, "�, "���  (9) 

Optimizing the main loss function results in finding the 
optimal parameters for the proposed model. Algorithm 1 
presents the main flow of the proposed model.  

 
Algorithm 1 

Input: 

  Images = {�� , �� , … , �R} 
  Labels = {>�, >�, … , >R} 
Output: 

  Score � 
N: Number of train iterations  

For & =1 to S do 
  !RT � �SST�!R;�T �;  
  R � �!R� , !R�, !R��; 
  �R � U� �R�; 
  Loss = 7 ��, �� , ��, ���; 
End 

!T � �SST  ��>8�V�;  � �!� , !� , !� �; � � U���; 
 

In the training at iteration & , each network generates a 

result !R-  which is used as input to the fusion module to 
generate R . The output of the fusion module is then passed 

through the fully connected layers to predict the final score �R. 
At each iteration, the parameters are optimized continuously by 
jointly considering the scores of each network of the model and 
the final score. In the testing process, the input image is passed 
through the model using the optimized parameters to predict 
the quality score. 

IV. EXPERIMENTS AND RESULTS 

A. Data and Evaluation Metrics 

The proposed model was evaluated on seven different 
public datasets to prove its efficiency: LIVE [15], CSIQ, 
TID2013 [16], KADID-10K [18], CLIVE [19], KonIQ-10k, 
and LIVE-FB [20]. The first four databases' image distortion is 
artificial synthesis, whereas the latter three databases' image 
distortion is natural scene distortion. Table I contains 
information on the seven datasets. The LIVE dataset includes 
799 distorted images affected by 5 different distortion types. 
Distorted images have many resolutions such as 640×512, 
768×512, and 480×720. The KADID dataset has a total of 
10125 distorted images, generated by applying 25 distortion 
types, each one with five levels. The generated images have a 
resolution of 500×500. The TID2013 dataset contains 3,000 
images, obtained by applying 24 different distortion types, each 
with 5 levels, on 25 original images. The CSIQ dataset 
provides a total of 866 distorted images based on the influence 
of 6 types of distortion on 30 original images. The CLIVE 
dataset contains 1,162 naturally distorted images with a 
resolution of 500×500. The KonIQ dataset was naturally 
collected and has 10,073 images with a resolution of 512×384. 
The LIVEFB is the largest NR-IQA dataset with 39,810 images 
collected from natural scenes with real distortion. 

TABLE I.  STATISTICS ON THE DATASETS USED 

Dataset Distorted images Number of Distortion Distortion 

LIVE 799 5 Synthetic 

CSIQ 866 6 Synthetic 

TID2013 3000 24/ 5 levels Synthetic 

KADID 10125 24/ 5 levels Synthetic 

CLIVE 1162 - Authentic 

KonIQ 10073 - Authentic 

LIVEFB 39810 - Authentic 

 
For comparison purposes, two standard evaluation metrics 

were used. The first is the Pearson Linear Correlation 
Coefficient (PLCC), which computes the correlation between 
two scores. A high PLCC value indicates a good correlation 
between the subjective and objective scores. PLCC is given by: 

W7�� �  ∑ �<H;<X��:H;:̅�ZH[\
9∑ �<H;<X�²ZH[\ 9∑ �:H;:̅�²ZH[\

  (10) 

where >-  is the mean opinion score, �-  is the objective score 
for an input image �, �̅ is the objective score, and >X  represents 
the mean value of the subjective score. The second is the 
Spearman Rank Order Correlation Coefficient (SROCC), 
which calculates the correlation between the objective and 
subjective scores. A high SROCC value indicates a good 
correlation between subjective and objective scores. SROCC 
can be calculated by: 
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]^_�� � 1 � ` ∑ aHZH[\ ²
b�bc;��    (11) 

where ?-  represents the discrepancy between the ranking of 
image � based on objective and subjective quality scores. 

B. Implementation Details  

The proposed model was developed based on the Vitis AI 
framework with the support of the TensorFlow deep learning 
library. The model was trained on a Nvidia GTX 960 GPU and 
tested on the Xilinx ZCU 102 FPGA. The Adam optimizer was 
used as a training algorithm with a weight decay of 3 10-4 and 
a batch size of 16. The initial learning rate was set to 2 10-5 
and then minimized each epoch by the optimizer. A data 
augmentation technique was applied. Random patches from the 
input images were cropped and augmented horizontally and 
vertically. The size of the patches was fixed to 224×224 pixels. 
The feature extraction models were initialized with ImageNet 
pre-trained weights. Based on common practice in existing 

works, the dataset was divided based on the protocol 80% for 
training and 20% for testing randomly. For synthetically 
distorted datasets, the data were divided, referring to the 
original images to avoid overlapping. For all experiments, the 
10-fold cross-validation was applied and the mean values of 
SROCC and PLCC were reported. 

C. Evaluation and Discussion 

Table II displays the results obtained in comparison to other 
existing works. The proposed model proved its superiority, 
especially on the LIVEFB and the KADID datasets, which are 
the largest datasets for synthetically and authentically distorted 
images, respectively. For small datasets, the proposed model 
presents similar or lower performances compared to existing 
works. Overall, the suggested model achieved competitive 
results. Considering the weighted average performance across 
all datasets, the recommended model achieved state-of-the-art 
performance for NR-IQA. 

TABLE II.  ACHIEVED PLCC AND SROCC IN COMPARISON TO EXISTING MODELS 

Model LIVE CSIQ TID2013 KADID CLIVE KonIQ LIVEFB 

 PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC 

P2P-BM [20] 0.958 0.959 0.902 0.899 0.856 0.862 0.849 0.840 0.842 0.885 0.872 0.598 0.526  

NSSADNN [21] 0.984 0.986 0.927 0.893 0.910 0.844 - - 0.813 0.745 - - - - 

MetaIQA [22] 0.959 0.960 0.908 0.899 0.868 0.856 0.775 0.762 0.802 0.835 0.856 0.887 0.507 0540 

TReS [23] 0.968 0.969 0.942 0.922 0.883 0.863 0.858 0.859 0.877 0.846 0.928 0.915 0.625 0.554 

Proposed 0.972 0.983 0.945 0.918 0.886 0.867 0.856 0.861 0.873 0.877 0.934 0.921 0.628 0.557 

 
A cross-dataset evaluation was conducted to further prove 

the performance of the model introduced. The training was 
performed on a dataset and the testing on another dataset 
without adaptation and finetuning. For the synthetic dataset, 
four common distortion types, including blur, JPEG2K, WN, 
and JPEG, were selected. Table III presents the achieved 
SROCC for the cross-dataset evaluation. The obtained results 
reveal that the proposed method outperformed the existing ones 
on five datasets while performing slightly lower on two other 
datasets. The proposed method proved its generalization power 
compared to other methods through this cross-dataset 
evaluation. 

TABLE III.  SROCC FOR CROSS-DATASET EVALUATION 

Train 

dataset 
LIVEFB CLIVE KonIQ LIVE CSIQ KADID TID2013 

Test dataset CLIVE KonIQ KADID CSIQ TID2013 LIVE CLIVE 

P2P-BM 

[20] 
0.755 0.740 0.770 0.712 0.488 0.682 0.854 

NSSADNN 

[21] 
0.724 0.699 0.682 0.704 0.462 0.603 0.812 

MetaIQA 

[22] 
0.735 0.772 0.785 0.744 0.551 0.642 0.847 

TReS [23] 0.713 0.733 0.786 0.761 0.562 0.681 0.835 

Proposed 0.758 0.769 0.791 0.764 0.570 0.678 0.862 

 
The proposed model demonstrates many advantages that 

ensure its efficiency for IQA. The hardware implementation of 
the lightweight CNN model on FPGA offers significant gains 
in terms of computational efficiency. FPGAs can run 
operations in parallel, resulting in faster processing times 
compared to traditional CPU-based implementations. Using 
FPGA-based hardware acceleration, the proposed approach 

enables real-time processing of IQA tasks. This is particularly 
advantageous in applications that require timely decisions or 
responses, such as surveillance systems or autonomous 
vehicles. FPGA-based implementations typically consume less 
power compared to CPU- or GPU-based systems, making them 
well-suited for mobile devices with limited battery capacity. 
This energy efficiency is crucial to extend the battery life of 
devices and reduce overall energy consumption. FPGAs offer a 
compact form factor that allows integration into mobile devices 
without significantly increasing their size or weight. This 
permits on-device image quality assessment capabilities 
without relying on cloud-based processing, thereby enhancing 
privacy and reducing latency. The proposed lightweight CNN 
model is designed to learn human visual behavior without prior 
knowledge of specific target visual behaviors. This self-
learning ability allows the model to adapt and generalize well 
across diverse image quality assessment tasks and datasets.  

However, the suggested method has a few disadvantages. 
Designing and implementing hardware-accelerated solutions on 
FPGAs can be complex and requires specialized knowledge in 
FPGA programming and hardware design. This complexity 
may pose challenges for developers without prior experience in 
FPGA development. Although FPGAs offer advantages in 
terms of parallel processing and energy efficiency, they have 
limited resources, such as logic cells, memory, and DSP 
blocks. Optimizing the lightweight CNN model to fit within 
these resource constraints without sacrificing performance can 
be a challenging task. Once programmed, FPGAs are not as 
flexible as software-based solutions and may require 
reprogramming or hardware modifications to accommodate 
changes or updates to the IQA algorithm. Ensuring the 
correctness and reliability of FPGA-based implementations 



Engineering, Technology & Applied Science Research Vol. 14, No. 3, 2024, 13815-13821 13820  
 

www.etasr.com Said & Alsariera: Hardware Implementation of a Deep Learning-based Model for Image Quality … 

 

requires thorough verification and testing processes, which can 
be time-consuming and labor-intensive. 

D. Ablation Study 

An ablation study was carried out to investigate the impact 
of the proposed model. The proposed extraction backbones 
used for edge, texture, and semantic features extraction were 
explored to measure the influence of each of them. Table IV 
depicts the results achieved for each extraction backbone on the 
authentic datasets. Based on the results, it can be concluded 
that the performance of the suggested model, which 
incorporates multiple feature extraction backbones, exceeds 
that of a single feature extraction approach. The proposed 
method verified the idea of IQA by learning hierarchical 
features using different feature extraction backbones. 

TABLE IV.  ABLATION STUDY ON THE FEATURE 
EXTRACTION BACKBONES 

 CLIVE KonIQ LIVEFB 

 SROCC PLCC SROCC PLCC SROCC PLCC 

Texture 0.831 0.842 0.857 0.868 0.545 0.521 

Edge 0.859 0.851 0.821 0.828 0.601 0.503 

Semantic 0.835 0.846 0.883 0.893 0.612 0.532 

Proposed 0.873 0.877 0.934 0.921 0.628 0.557 

 
Another ablation study was conducted to measure the 

impact of the proposed attention module on performance. For 
this, a performance comparison against simple fusion 
techniques was performed. Table V displays the results of the 
proposed fusion based on the attention module compared to 
other fusion techniques. The fusion technique based on the 
attention mechanism outperforms normal fusion techniques, 
such as addition and concatenation. This finding demonstrates 
the influence of the suggested contribution on the overall 
performance. 

TABLE V.  ABLATION STUDY OF THE FUSION TECHNIQUE 

 CLIVE KonIQ LIVEFB 

 SROCC PLCC SROCC PLCC SROCC PLCC 

Concatenation 0.869 0.843 0.901 0.876 0.621 0.533 

Addition 0.839 0.827 0.893 0.891 0.610 0.515 

Proposed 0.873 0.877 0.934 0.921 0.628 0.557 

 
In summary, the ablation study demonstrates the influence 

of the proposed contributions on performance. The multi-
backbone structure improved the feature extraction process, 
and the fusion mechanism collected the required features 
responsible for assessing image quality. 

V. CONCLUSION 

The hierarchy of visual quality degradation shifts with 
increasing distortion. It is challenging to find perfect images in 
reality when evaluating the quality of multi-distortion images. 
However, using deep learning, NR-IQA can not only identify 
additional forms of distortion, but can also be used in a wider 
range of contexts. The suggested method can detect deeper 
distortion types by separating interpretable hierarchical 
characteristics, including global semantics, edge, and texture. 
For this purpose, three backbones were deployed. To mitigate 
the impact of intricate correlations among hierarchical features 

on prediction results, the global and local contexts of 
intermediate features are computed using an attention-based 
feature fusion method. By reducing the disparity in fusion 
feature weights, it is possible to improve the understanding of 
the range of picture quality fluctuation. The experimental 
findings on seven major datasets disclose how accurate the 
model is at making predictions. The amount of data in the 
dataset has a significant impact on the accuracy of deep 
learning-based algorithms. Model training will not be sufficient 
if the dataset is small, and, as a result, the prediction outcomes 
will suffer. FPGAs tend to be more expensive than traditional 
CPUs or GPUs, both in terms of hardware cost and 
development time. This may limit the accessibility of the 
proposed approach to developers or organizations with budget 
constraints. Future research will concentrate on how to 
effectively extract characteristics from distorted images based 
on small datasets. 
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