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ABSTRACT 

This study investigates the dynamics of a novel planar six-bar mechanism with one Degree of Freedom 

(DoF), incorporating both four-bar and five-bar linkages. Kinematic analysis is performed by setting up 

closed-loop equations, and the results are validated against SOLIDWORKS software simulations. 

Additionally, a static stress analysis assesses the structural integrity of the mechanism under operational 

loads, identifying potential failure points and ensuring design adequacy. Dynamic force analysis is then 

performed to determine the driving torque of the actuator for the designed amphibious mechanism. These 

findings highlight the mechanism's potential for precise motion control in compact applications, providing 

valuable insights into its practical utility in various industrial applications. 

Keywords-six-bar linkage; static analysis; robotics; planar mechanism 

I. INTRODUCTION  

Recently, with the rapid development of parallel robotics 
and controllable mechanisms, planar mechanisms have become 
increasingly used in mechanical design [1-4]. Among these, the 
six-bar one Degree of Freedom (DoF) mechanisms are 
particularly notable. These mechanisms are fundamental 
components of many mechanical systems that require complex 
motion paths or force outputs. Typically comprising six 
moving links, including the input and ground links, these 
mechanisms provide a single controlled movement, while the 
rest of the system follows a predetermined path or sequence. In 
general, six-bar mechanisms possessing a single DoF can be 
categorized into two distinct types: Watt's six-bar linkage [5, 
6], which is used to transform rotary motion into an 
approximately straight line, and Stephenson's six-bar linkage 
[6, 7], often utilized in foldable machinery and multi-link 
suspension systems in vehicles. These mechanisms are highly 
valued for their ability to deliver precise motion control in 
compact spaces, making them indispensable in both industrial 
and consumer applications.  

Watt's mechanism, also known as Watt's linkage, is a type 
of mechanical linkage in which the central moving point is 
constrained to travel a nearly straight path. It was used in the 
Watt steam engine, in automobile suspensions as a lateral 
guiding mechanism, and in various applications in robotics [8]. 
There are two primary types of Watt mechanisms. The first, 
Watt's Straight-Line Mechanism, also called Watt's linkage, is 
used to guide the piston of steam engines through a straight-
line path. It is one of the simplest mechanisms to generate 
close-to-straight-line motion for a considerable distance. The 
second type is the Watt-I mechanism, which can operate in 
eight different combinations of assembly modes and output 
links [9]. The Stephenson mechanism is another type of six-bar 
linkage that is used in various engineering applications. It 
consists of one four-bar loop and one five-bar loop, with two 
ternary links that are separated by a binary link. This means 
that the two ternary links are not connected by a joint, unlike in 
the Watt topology [8]. Stephenson I is characterized by two 
ternary links and four binary links. It is often utilized in 
applications where a specific motion path is required. 
Stephenson II has one ternary link, one quaternary link, and 
four binary links and is commonly used in applications where 
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straight-line motion is required. Stephenson III is characterized 
by two quaternary links and four binary links, while the end of 
the second ternary link can be implemented as an end effector 
[9]. It is often employed in applications where complex motion 
paths are required and is extremely beneficial for creating 
versatile mechanical devices, including robotic joints and 
surgical tools [10-14]. 

The Stephenson III mechanism can be deployed in various 
industrial applications where precise controlled movement 
within a limited workspace is crucial. For instance, it can be 
used in the assembly of Printed Circuit Boards (PCBs), where 
components must be accurately placed at high speeds. This 
mechanism can also find application as micromanipulators 
mounted on the end-effectors of larger slower serial 
manipulators, facilitating delicate operations that require finer 
control. Furthermore, it can enhance efficiency and accuracy in 
high-speed, high-precision milling machines and automated 
drilling machines. In addition to these applications, its precise 
control [10, 11] makes it ideal for use in precision surface 
finish measuring machines and as a path tracker in automated 
welding machines. Its adaptability can also be demonstrated in 
commercial pick-and-place robots that demand rapid and 
accurate handling of various objects. In robotics, it can be 
employed to generate walking gaits in biped robots and 
swimming gaits in swimming robots, showcasing its utility in 
mimicking complex locomotive patterns. This mechanism can 
also find application in automatic planar measuring devices, 
where precise and reliable movement is essential. 

Despite numerous existing studies on the inversions of 
Stephenson mechanisms, a significant gap remains in 
understanding the specific inversion of the Stephenson III 
mechanism for repetitive tasks. The present study addresses 
this gap by conducting an in-depth exploration of the kinematic 
and dynamic attributes of the mechanism. This study not only 
provides detailed theoretical insights, but also validates these 
findings through CAD software simulations. Another novel 
aspect is the integration of dynamic analysis to determine the 
required driving torque, a feature often overlooked in previous 
studies. Overall, the current study aims to provide valuable 
insights to facilitate the practical application of this mechanism 
by combining kinematic analysis with static and dynamic force 
analyses, offering a comprehensive understanding of its 
performance. 

Initially, a comprehensive kinematic analysis is performed 
using the closed-loop method. This analysis includes detailed 
examinations of the position, velocity, and acceleration of all 
components of the mechanism through an algebraic approach, 
resulting in the derivation of equations governing the end 
effector's position, velocity, and acceleration. The equations 
developed from the closed-loop equations are subsequently 
compared with the results obtained from simulations conducted 
using the SOLIDWORKS software. This simulation is 
instrumental in visualizing the mechanism's dynamics, and the 
comparative analysis helps validate the analytical models. The 
results of this simulation, along with a detailed discussion of 
the findings, elucidate the mechanism's kinematic behavior and 
its implications for practical applications.                                                    

After establishing the kinematic feasibility of the selected 
six-bar mechanism, it is crucial to analyze its structural load. 
This involves performing a static stress analysis to evaluate the 
mechanism's structural integrity under various operating 
conditions. Static stress analysis was carried out at two critical 
crank positions using SOLIDWORKS. By examining the stress 
distributions, potential points of failure are identified and 
design strength criteria are assessed. Such an analysis is 
indispensable for reliability and safety considerations. 
Following static stress analysis, a dynamic force analysis is 
performed to understand the forces and torques that act on the 
mechanism during its operation, which can significantly 
influence its performance and longevity. 

II. DESCRIPTION OF THE PROPOSED MECHANISM  

Figure 1 illustrates the selected planar single DoF six-bar 
mechanism, incorporating both a four-bar (������)  and a 
five-bar ( ����	�
 ) linkages, with the ternary link (ABC) 
being common to both. To optimize the mechanism, the genetic 
algorithm was used to determine the optimal dimensions of the 
various links. Additionally, through the appropriate rotation of 
the actuating crank (���), the characteristic point G of the 
mechanism was enabled to follow a desired planar trajectory. 

 

 

Fig. 1.  Scheme of the proposed mechanism. 

III. KINEMATIC ANALYSIS  

The kinematic analysis is carried out assuming a constant 
crank rotation ( �� = 0.5 ���/�, �� = 0 ���/�� ). An X-Y 
reference coordinate system is set up with its origin at point �� 
(Figure 2), and the orientation of the links is defined by an 
angle measured in the counterclockwise direction with respect 
to the horizontal X-axis. 

 

 
Fig. 2.  Vector loops of the mechanism considered for synthesis. 
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A. Position Analysis 

The vector loop equation of the four-bar ������  can be 
written as:  

������⃗ + ������⃗ − ������⃗ − ������⃗ = 0�⃗    (1) 

To simplify the notation and minimize the use of subscripts, 
the scalar lengths are denoted a, b, c, and d. The equation then 
becomes: 

�� !" + #� !$ − #� !% − �� !& = 0  (2) 

'� = 2 tan,� -,.±0.",�12
�1 3   (3) 

'� = 2 tan,� -,4±04",�56
�5 3   (4) 

where: 

� = −7� + cos '� − 7� cos '� + 7�  (5) 

� = −2 sin '�    (6) 

� = 7� − (7� + 1) cos '� + 7�   (7) 

	 = −7� + (7� + 1) cos '� + 7=  (8) 

> = −2 sin '�    (9) 

? = 7� + (7� − 1) cos '� + 7=   (10) 

7� = @
A ;     7� = @

C ;     7� = A",D"EC"E@"
�AC   (11) 

7� = @
D ;     7= = C",A",D",@"

�AD    (12) 

The second loop (����	�
) equation can be written as:  

������⃗ + �′������⃗ + �=����⃗ − �
����⃗ − �′������⃗ = 0�⃗    (13) 

To simplify the notation and minimize the use of subscripts, 
the scalar lengths are denoted as a, b, f, g, and h. This equation 
then becomes: 

�� !" + #� !G$ + H� !I − J� !K − ℎ� !G& = 0 (14) 

where: 

'′� = '� − M  and  '′� = N   (15) 

Similar to (2), this equation leads to two scalar equations 
that can be solved simultaneously for '=  and '
: 

'= = 2 O�P,� -,2G±02",�.G1G
�.G 3   (16) 

'
 = 2 O�P,� -,Q±0Q",�RS
�S 3     (17) 

where: 

>G = �G − �G     ?′ = 2�′   and    	′ = �′ + �′ (18) 

T = U − V      W = 2X   and   Y = U + V  (19) 

�′ = 2Hℎ + 2�H Z[� '� + 2# Z[� '�′  (20) 

�′ = 2�H �\P '� + 2#H �\P '�′   (21) 

�G = �� + #� + H� + ℎ� − J� + 2�# Z[�('� − '�G ) +
                2�# Z[�'� + 2�#ℎ Z[�'�G    (22) 

V = −]2Jℎ + 2�JZ[�'� + 2#JZ[�('�G )^ (23) 

X = −]2�J �\P'� + 2#J �\P('�G )^  (24) 

U = �� + #� + J� + ℎ� − H� + 2�# Z[�('� − '�G ) +
              2�ℎ Z[�'� + 2#ℎ Z[�'�G    (25) 

The vector position equation of the end effector point G can 
be written in the following form: 

�_����⃗ = ����������⃗ + �V�����⃗     (26) 

By expanding this expression and separating the real and 
imaginary parts, the coordinates of the end effector point V` 
and Va are obtained: 

V` = � cos '� + � cos('� − b)   (27) 

Va = � sin '� + � sin('� − b)   (28) 

B. Velocity Analysis 

To get an expression for the angular velocities of links 3 
and 4, (2) is differentiated with respect to time, becoming: 

c���� !" + c#��� !$ − cZ��� !% = 0  (29) 

This equation leads to two scalar equations, which can be 
solved simultaneously for �� and ��: 

�� = Ad"
D

efg(!%,!")
efg(!$,!%)    (30) 

�� = Ad"
C

efg(!",!$)
efg(!%,!$)    (31) 

To get an expression for the angular velocities of links 5 
and 6, (14) is differentiated with respect to time, becoming: 

c���� !" + c#��� !h$ −  

             cH�=� !I + cJ�
� !K = 0   (32) 

This equation leads to two scalar equations that can be 
solved simultaneously for �= and �
: 

�= = Ad"
i

efg(!K,!")
efg(!I,!K) + Dd$

i
efg(!K,!G$)
efg(!I,!K)   (33) 

�
 = Ad"
j

efg(!I,!")
efg(!I,!K) + Dd$

j
efg(!I,!G$)
efg(!I,!K)   (34) 

The velocity components of the end effector point G are 
calculated by numerical differentiation of the position equation 
(25): 

k_l = −� ��sin '� − � ��sin('� − b)  (35) 

k_m = � ��cos '� + � �� cos('� − b)  (36) 

C. Acceleration Analysis 

To get an expression for the angular accelerations of links 3 
and 4, (29) is differentiated with respect to time, becoming: 

]−����� !"^ + ]#��c� !$ − #���� !$^ −   

     ]Z��c� !% − Z���� !%^ = 0   (37) 
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This equation leads to two scalar equations that can be 
solved simultaneously for ��and ��:  

�� = no,pq
pr,so     (38) 

�� = nr,sq
pr,so     (39) 

where: 

t = Z �\P '�    
u = # �\P '�   
� = ��� �\P '� + ���� Z[� '� +  

#��� Z[� '� − Z��� Z[� '�   (40) 

v = Z Z[� '�  

w = # Z[� '�  

� = ��� Z[� '� − ���� �\P '� − #��� �\P '�  

+ Zx��� �\P '�  

To get an expression for the angular accelerations of links 5 
and 6, (32) is differentiated with respect to time and becomes: 

]���c� !" − ����� !"^ + ]#��c� !h$ − #���� !h$^
+     ]H�=c� !I − H�=�� !I^ 

−]J�
c� !K − J�
�� !K ^ = 0    (41) 

This equation leads to two scalar equations that can be 
solved simultaneously for �= and �
: 

�= = �
i efg(!K,!I) y��� sin('� − '
) + ���� cos('
 − '�) +

          #�� sin('′� − '
) + #��� cos('
 − '′�) + H�=� cos('
 −
          '=) − J�
�z     (42) 

�
 = �
j efg(!K,!I) y��� sin('� − '=) + ���� cos('= − '�) +

          #�� sin('′� − '=) + #��� cos('= − '′�) + H�=� −
         J�
� cos('
 − '=)z     (43) 

The acceleration components of the end effector point G are 
calculated by numerical differentiation: 

�_l = −� �� sin '� − � ��� cos '� − � �� sin('� − b) −
            � ��� cos('� − b)    (44) 

�_m = ��� cos '� − � ��� sin '� + � �� cos('� − b) −
            � ��� sin('� − b)    (45) 

IV. DYNAMIC FORCE ANALYSIS 

To determine the internal forces and torque in the system, 
dynamic force analysis is performed using Newton's laws as 
defined in (46) and (47): 

∑ ?⃗ =  |�_����⃗      (46) 

∑ }�⃗ = U_�     (47) 

These equations are projected in the rectangular coordinate 
system, leading to three scalar equations (48): 

∑ ?̀ =  |�_` ,      ∑ ?a =  |�_a ,      ∑ } =  U_� (48) 

where, for each link, m is the mass, �_` and �_a are the linear 

accelerations of the center of mass, U_ is the mass moment of 
inertia calculated at the center of mass, and � is the angular 
acceleration. These three equations are written for each moving 
body in the system, using the free-body diagrams in Figure 3. 
This results in a set of linear simultaneous equations, which are 
solved using a matrix method. 

 

 
Fig. 3.  Free body diagrams of each link. 

Fifteen equations have been developed to determine fifteen 
unknowns: the forces ?��` , ?��a , ?��` , ?��a , ?��` , ?��a , ?=�` , 

?=�a , ?��` , ?��a , ?�
` , ?�
a , ?
=` , ?
=a , and the input torque 

}�� . The dimensions of the link lengths and positions, the 
locations of the links' Centers of Gravity (CGs), the linear 
accelerations of those CGs, and the angular accelerations and 
velocities of the links are all determined through kinematic 
analysis. These equations can now be used to assemble the 
matrices and find the solutions, as in (49). 

V. DIMENSIONAL SYNTHESIS 

The dimensional synthesis of a linkage involves 
determining the lengths of the links necessary to accomplish 
the desired motions. This process can be a form of quantitative 
synthesis if an algorithm is defined for the particular problem, 
or it can be a form of qualitative synthesis if there are more 
variables than equations [15]. 

In this study, the dimensional synthesis was performed 
using the GIM software [16, 17], employing the desired path 
generation method, as evidenced in Figure 4. Path generation is 
defined as the control of the end effector point in the plane such 
that it follows a prescribed path. This is typically accomplished 
with a four-bar crank-rocker or a double-rocker mechanism, 
wherein a point on the coupler traces the desired output path 
[15]. 
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(49) 

 

 
Fig. 4.  Dimensional synthesis with desired path motion using GIM. 

Table I displays the optimized dimensions obtained from 
this process. 

TABLE I.  OPTIMIZED DIMENSIONS OF THE PROPOSED 
MECHANISM 

a 62.6 mm 

b 84.8 mm 

c 132 mm 

d 130 mm 

f 121mm 

g 136 mm 

h 170 mm 

e 45.7 mm 

 

VI. STATIC ANALYSIS 

The static stress analysis assesses the structural integrity of 
the mechanism under operational loads, identifying critical 
failure locations and confirming design suitability. 
SOLIDWORKS was employed to analyze the stress 
distribution, deformation, and factor of safety. The six-bar 
mechanism was designed using SOLIDWORKS, with 
rectangular bars connected by cylindrical pins, as observed in 
Figure 5. The dimensions of the bar profile were set at 20×10 
mm, while the cylindrical pins had dimensions of Ø10×10 mm. 
Aluminum 6061 alloy was used as the material for beams [18]. 
The mechanical properties were obtained from SOLIDWORKS 
default material properties, as shown in Table II. 

 
Fig. 5.  The six-bar mechanism created using SOLIDWORKS 

TABLE II.  MECHANICAL PROPERTIES OF ALUMINUM 6061 
ALLOY 

Elastic Modulus 69000 MPa 

Poisson's Ratio 0.33 

Shear Modulus 26000 MPa 

Mass Density 2700 Kg/m3 

Tensile Strength 124.084 MPa 

Yield Strength 55.1485 MPa 

 

 
Fig. 6.  Load and fixtures. The fixed hinges are represented in green and 
the load is represented in purple. 

The mechanism is set to be fixed at the three hinges ��, ��, 
and �
. The applied load is oriented vertically downwards, and 
the mechanism is designed to support a load capacity of 10 kg. 
Figure 6 depicts the fixed load and the fixtures. The contact 
between the different parts of the mechanism is set to be 
bonded. The static stress analysis is conducted on four different 
crank positions: (1) '� = 0⁰, (2) '�= 90⁰, (3) '�= 180⁰, and (4) 
'� = 270⁰. The mesh is automatically generated by 
SOLIDWORKS using the fine mesh density option as 
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portrayed in Figure 7. The total number of elements for 
positions (1), (2), (3), and (4) is determined as 294993, 289385, 
293934, and 286660, respectively. 

 

 
Fig. 7.  Mesh structure. 

VII. TORQUE ANALYSIS 

The driving torque is a crucial design parameter for 
appropriately sizing the driving motor to ensure reliable and 
safe operation. The SOLIDWORKS motion analysis package is 
employed to estimate the driving torque. The six-bar 
mechanism, created using SOLIDWORKS and exhibited in 
Figure 5, incorporates a motor at hinge �₂. The motor's motion 
is set to a constant speed of 10 RPM. The initial position 
corresponds to '₂ = 0°, while the duration of the analysis is 6 s 
during which the crank completes a full cycle. 

VIII. RESULTS AND DISCUSSION 

Figure 8 depicts a simulation of the six-bar planar 
mechanism in operation, highlighting the trajectories generated 
by the end effector (point G) and point D on the binary link. 
The traced paths, especially the circular paths by points like G 
and the linear movement of point D, illustrate the mechanism's 
capability for precise and variable motion control. This 
simulation visualizes the dynamic interactions between the 
links, which are crucial for understanding the mechanism's 
practical applications in engineering systems. 

 

 
Fig. 8.  Motion simulation of the optimized six-bar planar mechanism in 
operation. 

The path of motion of the characteristic point G for the 
optimized design is presented in Figure 9, showcasing a highly 
precise and symmetrical loop. The overlaid results from 
MATLAB and SOLIDWORKS simulations demonstrate 
exceptional alignment, indicating that the developed position 
analysis equations result in accurate calculations of the 
mechanism's motion. 

 
Fig. 9.  Path of motion of the characteristic point G. 

The velocity diagrams in Figures 10 and 11 can be used to 
analyze the velocity components of the characteristic point G in 
the optimized six-bar planar mechanism. The velocity in the X 
direction exhibits a sinusoidal pattern, showing periodic 
behavior with crank rotation. This pattern indicates continuous 
smooth changes in velocity, which are essential for applications 
requiring precise control over motion. Similarly, the velocity in 
the Y direction shows sinusoidal behavior. In both figures, the 
close overlap between MATLAB and SOLIDWORKS 
simulations confirms that the theoretical calculations and the 
software simulation outputs are well aligned. 

 

 
Fig. 10.  Velocity of point G for the optimized design in direction X. 

 
Fig. 11.  Velocity of point G for the optimized design in direction Y. 

Figures 12 and 13 represent the acceleration of the 
characteristic point G in the X and Y directions, respectively. 
Both figures display an excellent correlation between the 
MATLAB and SOLIDWORKS simulations, confirming their 
accuracy in predicting the mechanism's behavior. 
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Fig. 12.  Acceleration of point G for the optimized design in direction X. 

 
Fig. 13.  Acceleration of point G for the optimized design in direction Y. 

 
Fig. 14.  Stress distribution. 

 
Fig. 15.  Deformation distribution. 
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Fig. 16.  Factor of safety distribution. 

Figure 14 shows the stress distribution within the 
mechanism. The analysis employs the maximum distortion 
energy theory, also known as the von Mises-Hencky theory. 
The maximum stress values at positions (1), (2), (3), and (4) are 
estimated to be 8.188 MPa, 12.814 MPa, 8.285 MPa, and 
30.477 MPa, respectively. Additionally, Figure 15 portrays the 
deformation occurring in the mechanism elements. The 
deformation values at positions (1), (2), (3), and (4) are 
estimated to be 0.032 mm, 0.039 mm, 0.05 mm, and 0.209 mm, 
respectively. Figure 16 depicts the factor of safety. The factor 
of safety is defined as the ratio of the yield stress to the 
maximum stress experienced by the selected component. For 
positions (1), (2), (3), and (4), the predicted minimum factor of 
safety values are 5.57, 3.408, 5.294 and 1.81, respectively. 

Figure 17 demonstrates the driving torque of the six-bar 
mechanism, revealing maximum and minimum torque 
requirements for the drive cycle: 5.46 N·mm and -6.42 N·mm, 
respectively. 

 

 
Fig. 17.  Driving torque of the six-bar mechanism. 

IX. CONCLUSION  

This study presented a comprehensive analysis of the 
Stephenson III mechanism, a six-bar one-DoF mechanism for 
repetitive tasks with symmetrical end-effector motion. Link 
dimensions were optimized using the GIM software, and then, 
a detailed kinematic analysis was performed and validated by 
SOLIDWORKS software simulations. The results showed 
precise alignment between theoretical calculations and 
simulations, confirming the mechanism's capability for precise 
and variable motion control. The static stress analysis using 
SOLIDWORKS assessed the structural integrity of the 
mechanism under operational conditions, revealing stress 
distribution, deformation, and a satisfactory factor of safety. 
The findings exhibited that the six-bar mechanism studied has 
significant potential for various industrial applications. Static 
stress analysis and dynamic force analysis have further 
contributed to understanding the structural loads that act on the 
mechanism and their implications for its performance and 
longevity. The findings of this study are expected to 
substantially contribute to the ongoing development and 
optimization of six-bar one-DoF mechanisms, thereby paving 
the way for more efficient and reliable mechanical systems. 
Future work will focus on exploring other inversions of the 
Stephenson III mechanism and conducting similar analyses to 
further enhance people’s understanding of these mechanisms. 
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