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ABSTRACT 

In recent years, the field of Human Activity Recognition (HAR) has emerged as a prominent area of 

research. A plethora of methodologies have been documented in the literature, all with the objective of 

identifying and analyzing human activities. Among these, the use of a body-worn accelerometer to collect 

motion data and the subsequent application of a supervised machine learning approach represents a highly 

promising solution, offering numerous benefits. These include affordability, comfort, ease of use, and high 

accuracy in recognizing activities. However, a significant challenge associated with this approach is the 

necessity for performing activity recognition directly on a low-cost, low-performance microcontroller. This 

research presents the development of a real-time human activity recognition system. The system employs 

optimized time windows for each activity, a comprehensive set of differentiating features, and a 

straightforward machine learning model. The efficacy of the proposed system was evaluated using both 

publicly available datasets and data collected in experiments, achieving an exceptional activity recognition 

rate of over 95.06%. The system is capable of recognizing six fundamental daily human activities: 

standing, sitting, jogging, walking, going downstairs, and going upstairs. 

Keywords-accelerometer; classification; wearable computing; activity recognition  

I. INTRODUCTION  

The field of HAR is focused on the automatic detection of 
everyday activities performed by humans [1]. The method 
employs time series data recorded by sensors. Over the past 
decade, there have been notable developments in the field of 
interconnected sensing technologies, including sensors, the 
Internet of Things (IoT), cloud computing, and edge 
computing. Sensors are inexpensive and readily integrated into 
both portable and non-portable devices [2]. This is the reason 
why the majority of HAR research has been conducted using 
sensor technology. The latest research in the field of HAR can 
be broadly classified into two main categories: 

 Ambient sensor-based approaches, which employ fixed 
environmental sensors, including surveillance cameras, 
microphones, temperature sensors, and others, to capture 
contextual cues and recognize daily activities within a 
specific space. Examples of such applications entail smart 
homes [3], and rehabilitation centers [4]. Authors in [5], 
proposed the Residual Deep Convolutional-Gated 
Recurrent Unit (ResDC-GRU) model, which demonstrates 
superior performance in learning spatiotemporal features 
from video data, resulting in more accurate and efficient 
action recognition. However, the reliance of ambient 
sensor-based approaches on fixed environments constrains 
their utility for the analysis of activities beyond the confines 
of these controlled settings. 

 Wwearable sensor-based approaches, which employ the use 
of wearable devices, such as smartwatches or smartphones, 
equipped with various sensors, including accelerometers, 
magnetometers, and gyroscopes, to monitor and collect 
physiological signals that are generated by the body in a 
specific location [6]. For example, authors in [7] utilized 
inexpensive wearable devices equipped with accelerometers 
and gyroscopes to ascertain the user's location and identify 
activities, such as sitting, standing, and walking. Similarly, 
authors in [8] utilized Independent Component Analysis 
(ICA) and Principal Component Analysis (PCA) to 
ascertain a person's walking posture based on the 
accelerometer data. 

The machine learning models that can be deployed for the 
HAR problem include supervised learning, semi-supervised 

learning, unsupervised learning, and reinforcement learning 
[9], with the supervised and semi-supervised ones being the 
most commonly utilized. Semi-supervised learning makes use 
of the considerable quantity of unlabeled data in conjunction 
with the limited amount of labeled data, thereby addressing the 
issue of insufficient activity annotation. To address the 
challenges associated with web page classification, authors in 
[10] developed a co-training framework. The framework 
employs unlabeled data to augment the training set and 
enhance the efficacy of the recognition algorithm. Authors in 
[11] proposed a novel approach to semi-supervised learning 
based on the analysis of discrepancies. This approach entails 
training multiple classifiers on real-world tasks, with the 
discrepancies between these classifiers directing the learning 
process. In a recent study [12], a semi-supervised deep learning 
approach to HAR utilizing both labeled and unlabeled 
smartphone sensor data was presented. The method employs a 
temporal ensemble of deep Long Short-Term Memory (LSTM) 
networks and combines supervised and unsupervised loss 
functions to achieve accurate HAR. In conclusion, authors in 
[13] proposed an annotation strategy that uses sparsely labeled 
data along with readily available unlabeled data. This strategy 
allows for unobtrusive and context-aware activity recognition 
through the use of on-body wearable sensors. 

Supervised learning typically attains higher accuracy due to 
the fact that models are created using fully labeled data, which 
allows for the establishment of clear relationships between 
features and labels. Building upon these approaches, Authors in 
[14] proposed a method that demonstrated superior 
performance in human detection and activity classification. The 
method employs a deep Convolutional Neural Network (CNN) 
to directly extract features and classification boundaries from 
input videos, thereby achieving superior performance 
compared to previous techniques. Other authors in [15] 
addressed the challenges of hidden body parts and self-
occlusion by developing a method based on background 
subtraction and hybrid feature extraction. Meanwhile, the 
research carried out in [16] addressed issues of light variation, 
low video quality, diverse expressions, and poses using a 
hybrid approach. This approach combines cascade head-
shoulder features, Haar-like features, and Histogram of 
Oriented Gradients (HOG) features with an adaptive Gaussian 
Mixture Model (GMM) for the purpose of human recognition. 
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Authors in [17] concentrated their efforts on the detection and 
tracking of multiple humans, achieving an impressive 94.53% 
accuracy. The method employs rapid template matching and 
three-dimensional model fitting to enhance performance. 
Authors in [18] implemented a sparse representation method 
with a complete scale embedded dictionary, thereby achieving 
effective detection of humans at various scales, while in [19], 
authors investigated the potential of sensor fusion by 
combining RGB and depth images captured by Kinect. This 
approach resulted in an improvement in detection accuracy, 
reaching 93.1% at a frame rate of 20 fps. Finally, authors in 
[20] introduced a graph-based segmentation method using 
motion vector preprocessing. This method improves 
classification performance by incorporating Motion Self-
Difference (MSD) features. Evaluation and testing of models 
are easier with supervised learning due to the availability of 
labeled data for comparison. Supervised learning applications 
are straightforward and training times are shorter because it 
does not involve processing unlabeled data. Overall, supervised 
learning offers higher reliability and precision, which makes it 
ideal for certain classification and regression tasks. 

Some of the above studies used deep learning to solve the 
HAR problem. The results obtained with deep learning have 
very high accuracy. However, their inherent computational 
complexity leads to longer execution times and increased 
resource consumption [21]. This poses a significant challenge 
for their reliance on resource-constrained devices such as low-
cost, low-power microcontrollers.  In such scenarios, machine 
learning models offer a more practical alternative, enabling 
real-time activity classification with lower computational 
requirements and significantly faster execution times [22]. The 
objective of this study is to exploit the potential of body-worn 
sensors for HAR. The study uses a supervised machine 
learning method that combines features suitable for real-time 
HAR. It aims to develop a low-cost healthcare support device 
for patients recovering from injuries or for the elderly. Some of 
the main contributions are: 

 The issue of addressing HAR on low-performance devices, 
with computationally efficient algorithms. The K-Nearest 
Neighbors (KNN) algorithm is a robust option because it is 
capable of effectively uncovering patterns directly from 
sensor data, obviating the necessity for complex feature 
engineering. In addition, KNN is able to make predictions 
by utilizing information from the closest data points, and 
maintains the pace with evolving activity patterns over 
time. Feature selection plays a significant role in this 
process, and the proposed features are designed specifically 
for the system, enabling a real-time operation. 

 The objective of a real-time and affordable system for 
activity identification. The system comprises three principal 
components: hardware (electronic circuits) for data 
acquisition, signal processing techniques for feature 
extraction, and machine learning models for training and 
activity recognition. The system is configured on low-cost, 
low-performance microcontrollers. The process comprises a 
series of stages, such as data collection stage, which 
involves the gathering of data from the sensors,  data 
preprocessing, which  allows data cleaning and preparation 

for further analysis, feature extraction which identifies the 
principal characteristics presented in the preprocessed data, 
which are pertinent to the recognition of activities, 
classification based on microcontroller, and finally, real 
time communication, using efficient wireless transmission, 
which allows the transfer of data to a compact server for 
subsequent processing or visualization. 

The remaining sections of this paper review existing 
research that is pertinent to the proposed system while 
describing the system model, including its hardware and 
software components. The proposed method provides a 
detailed account of the selected classification method, KNN, 
and its appropriateness for addressing the activity recognition 
problem. Furthermore, the paper elucidates the rationale behind 
the selection of specific features, such as, Variance (Var), Sum 
of Absolute Values (SAV), Skewness (Skew), and Peak-to-
Peak (P2P). Furthermore, a comprehensive evaluation of the 
system's performance, including a detailed analysis of the 
simulation results and a rigorous theoretical analysis, is 
presented. The paper concludes with a summary of the main 
findings and suggestions for future research directions. 

II. MATERIALS AND METHODS 

A. Activities Recognition Model 

In this study, a supervised learning method will be 
employed with the objective of achieving greater accuracy. The 
comprehensive system methodology comprises three stages. 
The three stages of the comprehensive system methodology, as 
shown in Figure 1, are data gathering, model analysis, and 
activity identification, which involves both implementation and 
evaluation. The device under consideration is designed to 
commence data collection at the outset of the process. The 
objective is to capture acceleration data along three axes (x, y, 
and z) for the purpose of classifying activities. Subsequently, 
the data are subjected to segmentation, whereby they are 
partitioned into discrete units using a sliding window 
technique. As the timeline is traversed with precision, a 
multitude of activity-related data points are recorded within 
each segment. Subsequently, each vector derived from these 
segments is subjected to a process of feature extraction, 
resulting in the combination of numerous features. This initial 
processing stage prepares the data for the subsequent phase, 
which involves the meticulous selection of relevant features 
that will serve as inputs for the classifier. The final stage 
comprises both the implementation and evaluation of the 
process. In this phase, the selected features from the preceding 
step are incorporated into the training process, enabling the 
development of a robust classification model. The model 
employs its embedded knowledge to enhance the accuracy of 
activity recognition. 

B. Data Collection 

This study introduces a system comprising a simple 
accelerometer, a cost-effective Inertial Measurement Unit 
(IMU), and a wireless connector to enable bidirectional data 
transmission to a wearable device attached to a beverage can.  
The user-friendly design permits direct data transfer to a 
smartphone, specifically an Android smartphone, as the one 
utilized in this study.  A principal objective of the design was 
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to minimize user inconvenience during the data recording 
process. The complete system architecture is presented in 
Figure 2. 

 

 
Fig. 1.  Steps in activity recognition. 

(a) 

 

(b) 

 
Fig. 2.  (a) The proposed system and (b) the developed wearable device’s 
position on volunteer. 

The proposed system uses a 3-DOF ADXL345 [23] 
accelerometer to acquire motion data. To ensure 
comprehensive activity measurement, the sensor parameters 
were set to ±4 g full scale, 128 LSB/g sensitivity, and a noise 
level of 150 μg. This configuration allows for triaxial data 
acquisition in the x, y, and z axes. The ADXL345 sensor 
connects to the PIC18F4520 microcontroller via an Inter-
Integrated Circuit (I2C) interface. Data transfer is facilitated by 
the ESP8266, which is connected to the MCU via Universal 
Asynchronous Receiver Transmitter (UART) communication. 
The primary function of the ESP8266 is to collect real-time 
motion data from an accelerometer and transmit them 

wirelessly to a remote server or connected device for analysis. 
This enables continuous monitoring and detailed analysis of the 
user's physical activity patterns. The ESP8266's ability to 
handle complex calculations and its integrated Wi-Fi module 
facilitate seamless data transmission, ensuring that the device 
provides accurate and timely information. The device is 
powered by a rechargeable 3.7 V, 6,000 mAh battery. 

In the proposed device, the accelerometer is used to 
quantify the movements of volunteers as they perform a series 
of prescribed actions. In each second, the ADXL345 acquires 
samples for each axis and transmits them to the PIC18F4520. 
Consequently, acceleration samples are acquired at one-second 
intervals. Subsequently, the samples per axis are averaged to 
produce a single representative sample. Furthermore, a low-
pass filter is applied to the data in order to mitigate the effects 
of high-frequency noise and fluctuations, thereby ensuring a 
more pristine signal. In the event of the loss of some samples 
during the collection process, the averaging procedure 
nevertheless yields a result. This method serves to mitigate the 
impact of signal loss during the data collection process, 
therefore enhancing the accuracy and reliability of the captured 
data. The testing was conducted on a Dell XPS-9310 laptop, 
which is equipped with a high-performance 4.2 GHz processor 
and 8 GB of RAM.  The data were recorded from a group of 14 
students (7 male, 7 female) aged 18-22 years from Phenikaa 
University in Vietnam. The subjects' heights ranged from 1.7 
meters to 1.9 meters, and their weights from 42 to 67 
kilograms. To ensure a broader dataset, two additional 
participants, aged 65 and 72, were included. The subjects' 
heights were 1.5 meters and 1.6 meters, and their weights were 
42 kilograms and 46 kilograms, respectively. The device was 
positioned at the waist and collected data at a sampling 
frequency of 50 Hz. Six activities were recorded: standing (40 
minutes), sitting (30 minutes), jogging (10 minutes), walking 
(22 minutes), going downstairs (20 minutes), and going 
upstairs (20 minutes). 

The sampling frequency of 50 Hz is a standard practice in 
the field of HAR [24, 25]. Furthermore, the selection of 50 Hz 
is consistent with the Nyquist theorem, which states that the 
sampling frequency should be at least twice the highest 
frequency present in the signal to prevent aliasing. Given that 
the majority of human motion frequencies of interest are well 
below 25 Hz [26], a 50 Hz sampling rate is deemed 
appropriate. Prior to data collection, the tri-axial acceleration 
sensors will undergo calibration and be subjected to a Kalman 
filter to eliminate noise, superfluous components, and errors. 
Further details regarding the Kalman filter and calibration can 
be found in [27]. To evaluate the efficacy of the algorithm, a 
publicly accessible dataset was employed and a comprehensive 
account of the activities is presented in Table I. 

TABLE I.  ACTIVITIES DESCRIPTION 

Activity Explaination 

Standing Standing naturally, stable. 
Sitting Sitting on a chair. 

Jogging Running with an even pace and slowly. 
Walking Normal walking. 

Downstairs Walking down a staircase by taking individual steps. 
Upstairs Walking up a staircase by taking individual steps. 
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In accordance with the model development outlined in 
Figure 1 and the construction of hardware compliant with the 
specified requirements, as illustrated in Figure 2, the action 
classification algorithm is loaded onto the microcontroller 
within the wearable devices. The PIC18F4520 microcontroller 
serves as the central processing unit in the proposed device. 
Once the devices have been installed, they are securely 
fastened to the volunteers' belts. This research project is 
focused on the development of optimized algorithms for low-
performance, cost-efficient microcontrollers (commonly 
referred to as "Tiny Machine Learning"). The objective is to 
create algorithms that are suitable for use in embedded systems 
and IoT devices. The objective of this study was to embed the 
algorithm directly into the device in order to enable real-time 
activity recognition. Consequently, the capacity to program 
these wearable devices for real-time activity recognition 
constituted a pivotal element of this research. KNN is capable 
of adapting effectively to non-linear data and can be readily 
updated when new data become available. This contributes to 
an improvement in the accuracy and robustness of the model. 
Accordingly, the proposed activity classification algorithm for 
embedding wearable devices is the KNN algorithm. The 
implementation of the KNN algorithm on devices is 
accomplished beginning with the determination of the value of 
parameter k, which represents the number of neighbors n in the 
KNN model. The number of neighbors, represented by the 
parameter k, denotes the number of data points deemed most 
relevant for prediction. A suitable value for k is often identified 
through empirical testing with different parameter values. 
Furthermore, the weights parameter can be modified to 
delineate the manner in which the weights of neighboring 
points impact the prediction. Potential options include 
"uniform," which is the default setting and assigns equal weight 
to all points, and "distance," wherein points in closer proximity 
are given greater weight. In conclusion, the algorithm 
parameter defines the algorithm utilized to calculate the nearest 
neighbors. The optimization of these parameters improves the 
performance and accuracy of the KNN model. 

C. Feature Selection 

1) Sliding Window 

Subsequently, the data obtained from the accelerometer are 
divided into smaller segments, each of which encompasses 
information pertinent to specific activities. The necessity for 
segmentation arises from the inherent sequential nature of 
activities, which presents a challenge in defining activity start 
and end points. This study employs a sliding window technique 
for segmentation, as it is a simple and effective approach in the 
context of real-time activity recognition [26]. In this approach, 
the signal from the 3-DOF ADXL345 accelerometer is divided 
into fixed-size time windows. The selected window size has a 
considerable impact on the system's recognition accuracy. To 
identify the optimal window size, experiments were conducted 
with windows ranging from 1 second to 20 seconds, with 
varying overlap percentages between zero and 90%. The 
preliminary data analysis employed a publicly accessible 
dataset [28]. The dataset provides movement data for a range of 
everyday activities, collected from a single device, specifically, 
a smartphone's accelerometer. The volunteers carried the phone 

in their pockets while performing the designated actions. The 
dataset, which was collected from 36 participants, included 
data on six activities, such as standing, sitting, jogging, 
walking, going downstairs, and going upstairs. The testing 
phase involved 16 volunteers wearing the device on their 
waists, as shown in Figure 2, and performing the activities 
listed in Table I. Table II presents a comparison of the total 
number of activity observations obtained from the public data 
and the collected data. The public data set was extracted using 
a sliding window size of 15 seconds and a 40% window 
overlap ratio, resulting in a total of 10,476 observations. With 
regard to the data collected, the number of observations 
recorded with a window size of eight seconds and a 40% 
overlap is 9,745. 

TABLE II.  ACTIVITY DATA FROM THE PUBLIC DATASET 

Activity pattern Total public Total collected 

Standing 445 2,271 
Sitting 548 1,769 

Jogging 3,253 1,563 
Walking 4,067 2,209 

Downstairs 978 905 
Upstairs 1,185 1,028 

Total 10,476 9,745 

 

2) Feature Extraction 

In order to achieve optimal classification performance, it is 
of great importance to select features that contain information 
regarding their level of activity. Figure 3 displays the data 
distribution of the initial 400 data samples obtained from the x-
axis acceleration of each activity. The figure facilitates the 
identification and selection of suitable features for the purpose 
of activity classification. 

For each volunteer, data are collected separately, while the 
collection process takes great care to capture each movement in 
minute detail. Furthermore, participants were selected with 
great care to ensure a high degree of homogeneity in terms of 
age, height, and weight. This strategy serves to minimize 
potential discrepancies between data from male and female 
groups, as well as between younger and older participants. The 
values observed in the static states, such as standing and sitting, 
exhibit a tendency to cluster within a relatively confined range. 
For example, the data points for the "standing" state cluster 
around 300, with an approximate value of zero g on the x-axis 
(where 1 g = 9.8 m/s²). Similarly, the data points for the 
"downstairs" state are concentrated between -0.4 g and 0.3 g on 
the x-axis. This allows the selection of two features, Var and 
SAV, to measure data concentration. These features effectively 
differentiate between static and dynamic states, and they help 
to classify them further. 

In contrast, dynamic states, such as jogging and walking, as 
well as activities, such as going downstairs and upstairs, exhibit 
a more extensive range of values in comparison to their static 
counterparts. In order to capture this difference, the P2P feature 
was selected, with the objective of determining the maximum 
and minimum values within the aforementioned dynamic 
states. Moreover, Figure 3 exhibits the existence of variations 
within the context of dynamic states. The data set pertaining to 
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walking exhibits the most significant density of values, with a 
sparse distribution on both ends of the spectrum. In contrast, 
the distribution of values for jogging is more uniform than that 
of walking. The skew was selected as a feature for the analysis 
of the data distribution relative to the mean, thus enabling the 
differentiation between these activities. It is noteworthy that the 
activities of jogging, walking downstairs, and walking upstairs 
exhibit a higher concentration of values around zero g on the x-
axis relative to the activities of sitting and standing. This 
characteristic enables the Skew feature to be a valuable tool for 
characterizing these activities. In conclusion, based on the 
observations in Figure 3, four statistical features, Var, SAV, 
Skew, and P2P were selected for further analysis. These 
features are effective in capturing the distinctive characteristics 
of different activities.  

 

 
Fig. 3.  The histogram depicts a portion of data along the x-axis. 

Table III presents the formulas for the four features, which 
were calculated on the x-axis, y-axis, and z-axis using the same 
formulas. Tables IV, V, and VI present the results of the 
acceleration data calculated according to the Var, SAV, Skew, 
and P2P statistical features for operations in all three 
dimensions (x, y, and z). 

TABLE III.  FEATURE FORMULAS FOR ACCELERATION 
DATA IN THE X-AXIS 

Feature Formula 

Var �� = 1
� − 1�(	
 − 	

�


�
)� (1) 

SAV � = �|	
|
�


�
 (2) 

Skew 
�

(� − 1)(� − 2)��	
 − 	
� �

��


�
 (3) 

P2P 	������ (4) 

where, xi are data values; N is the number of data values, 	 is 
the average value of 	
 , 	���  is the largest value in the dataset, 
and 	�
� is the smallest value in the dataset. 

Table V reveals notable differences in the activities of 
standing, sitting, jogging, walking, going downstairs, and going 
upstairs. The highest Var is observed when the subject is 
standing (6.4), and the lowest when the subject is walking 
(0.0016), indicating that the data fluctuate more when the 
subject is standing in comparison to walking. The highest 
absolute value is observed in the case of jogging (286.15), 
while the lowest is seen in the case of standing (0.43). This 
indicates that fluctuations in jogging activity are larger in 
comparison to fluctuations in the activity of remaining 
stationary. The negative Skew observed for the activities of 
standing, sitting, walking, and going downstairs is indicative of 
a left-skewed distribution of the data for these activities. In 
contrast, the data for jogging and going upstairs exhibit a right-
skewed distribution. The greatest range in P2P is observed in 
jogging (3.99), with the lowest occurring in standing (0.02). 
This indicates that the amplitude of fluctuations in jogging 
activity is significantly larger than when standing. In general, 
the data obtained from the standing position exhibit a high 
variance and low absolute values. The sitting position 
demonstrates an average variance and a markedly negative 
skew. The data obtained from jogging display the most 
pronounced fluctuations, while the walking position exhibits 
minimal fluctuations and a very low variance. The data 
obtained from the downstairs and upstairs positions 
demonstrate moderate and stable fluctuations, respectively. 
Tables V and VI present the acceleration data in the y-axis and 
z-axis, respectively. 

TABLE IV.  ACCELERATION IN THE X-AXIS (G) 

Feature Standing Sitting Jogging Walking Downstairs Upstairs 

Var 6.4 3 2.12 0.0016 0.007 0.025 
SAV 0.43 4.38 286.15 7.41 14.3 8.7 
Skew -0.58 -9.67 0.45 -0.54 -0.46 0.19 
P2P 0.02 0.027 3.99 0.19 0.37 0.3 

TABLE V.  ACCELERATION IN THE Y-AXIS (G) 

Feature Standing Sitting Jogging Walking Downstairs Upstairs 

Var 2.29 4.22 0.003 0.0015 0.0002 0.0026 
SAV 20.4 2.43 369.16 41.2 13.21 46.4 
Skew -4.75 -10.1 -1.68 0.17 -1.24 -1.25 
P2P 0.01 0.074 3.07 0.17 0.08 0.232 

TABLE VI.  ACCELERATION IN THE Z-AXIS (G) 

Feature Standing Sitting Jogging Walking Downstairs Upstairs 

Var 5.24 0.0001 0.42 0.004 0.0016 0.006 
SAV 0.93 19.8 96.67 9.4 6.17 15.86 
Skew -0.15 13.75 -0.51 2.05 0.003 0.12 
P2P 0.02 0.2 3.07 0.42 0.32 0.41 

 
In consideration of the limitations concerning real-time 

activity classification on low-cost, low-performance 
microcontrollers, the selected features (Var, SAV, Skew, and 
P2P) are deemed to be particularly well-suited to the data set 
under examination. Subsequently, the dataset was divided into 
two distinct sets: a training set and a testing set. The two sets 
were created by randomly selecting observations from the 
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original dataset, maintaining a 60/40 split (60% for training and 
40% for testing). In order to gain deeper insights from the 
training data and prepare them for model building, this study 
employs the use of t-Distributed Stochastic Neighbor 
Embedding (t-SNE). This dimensionality reduction technique 
transforms the high-dimensional data points into a two- or 
three-dimensional space for visualization purposes. Figure 4(a) 
illustrates a notable degree of overlap between activities, which 
suggests a challenging classification task. In contrast, Figure 
4(b) shows a more distinct differentiation between activities 
following the incorporation of all four features (Var, SAV, 
Skew, and P2P). This underscores the benefit of utilizing 
multiple features for enhanced classification precision. In 
general, the use of all four features yielded superior results in 
activity recognition compared to the use of individual features. 
It is noteworthy that the classification of activities such as 
standing (orange area) and sitting (blue area) was relatively 
straightforward. Furthermore, both jogging (pink area) and 
walking (green area) demonstrated a certain degree of 
separability. However, the public dataset demonstrated some 
degree of overlap between the actions classified as 
"downstairs" (purple area) and "upstairs" (brown area). 

 

(a) 

 

(b) 

 
Fig. 4.  Public data (a) without features and (b) with features in 2D space. 

The same four features (Var, SAV, Skew, and P2P) were 
applied to the collected dataset in this study, in accordance with 
the methodology previously outlined. Figure 5 provides a 
visual representation of the data points' distribution, as 
generated by the t-SNE algorithm and depicted in a histogram. 
The figure illustrates a discernible differentiation between the 
majority of activities, although some degree of overlap persists 
between jogging (pink area), walking (green area), downstairs 
(purple area), and upstairs (brown area). 

 

(a) 

 

(b) 

 
Fig. 5.  Collected data without features (a) and with features (b) in 2D 
space. 

D. Recognition Activities 

The extracted features (Var, SAV, Skew, and P2P) were 
used for the training of the machine learning models. In 
addition to the KNN method, three other common classification 
algorithms were evaluated: the Decision Tree (DT), SVM, and 
Logistic Regression (LR). The DT algorithm constructs a 
model by recursively splitting the data based on feature values, 
resulting in a tree-like structure of decisions. SVM seeks to 
identify the optimal hyperplane that maximizes the margin 
between different classes, employing a range of kernel 
functions to address non-linear separations. LR is used for 
binary classification by modeling the probability of a class 
using a logistic function, resulting in a decision boundary 
through a linear combination of input features. These 
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algorithms were implemented using the scikit-learn library 
(often abbreviated as sklearn) in Python. 

In order to evaluate the efficacy of these models, a 
confusion matrix was employed. The matrix offers a 
transparent representation of the model's classification efficacy. 
The following section presents the formulas used for the 
assessment of the tests: 

���
 = �� !"��!
�� !"#� !"�� !"#� !   (5) 

�$�
 = �� !
�� !"#� !    (6) 

%%&
 = �� !
�� !"#� !    (7) 

�%&
 = �� !
�� !"#� !    (8) 

where � represents a class (Standing, Sitting, Jogging, Walking, 
Downstairs or Upstairs), True Positive (TP) indicates the 
number of times the model correctly predicted an activity, 
False Positive (FP) represents the number of times the model 
incorrectly predicted an activity, False Negative (FN) is the 
number of times the model missed an activity and True 
Negative (TN) is the number of times the model correctly 
predicted that an activity did not occur. 

III. RESULTS AND DISCUSSION 

Figures 6 and 7 show the overall accuracy and sensitivity of 
each DT, KNN, SVM, and LR, respectively, on the public 
dataset. The performance of each classifier varies with different 
window sizes (5 seconds, 10 seconds, 15 seconds, 20 seconds). 
Among these classifiers, the KNN stands out in terms of 
classification performance, achieving an accuracy of 96% with 
a window size of 15 seconds and a sensitivity of 87% with a 
window size of 5 seconds. 

As evidenced in Figure 8 and Figure 9, the collected dataset 
achieves better accuracy and sensitivity than the publicly 
available dataset. This improvement can be attributed to several 
factors, such as: 

 Data source: unlike the public dataset, which collected data 
from phones in pockets, this study’s data come from a 
device worn securely on a belt, minimizing motion artifacts. 

 Structured collection: this study’s data collection process 
involves controlled individual actions, resulting in less 
variation compared to everyday activity variations. 

 Homogeneous participants: the proposed system was tested 
on a group with similar ages and behaviors, further 
reducing data variability. 

Together, these factors contribute to the significantly higher 
accuracy (100% for the 15-second window KNN classifier) and 
sensitivity (96% for the 15-second window KNN classifier) 
observed in the proposed dataset. In simpler terms, the careful 
control and consistency within this study’s data collection 
process led to these exceptional results. 

 

 
Fig. 6.  Accuracy of DT, SVM, KNN, and LR on the public dataset. 

 
Fig. 7.  Sensitivity of DT, SVM, KNN, and LR on the public dataset. 

 
Fig. 8.  Accuracy of DT, SVM, KNN, and LR on the collected dataset. 

After evaluating the optimal computational objective and its 
suitability for users who are less prone to abrupt changes in 
behavior (such as older users or those in recovery), the KNN 
algorithm emerges as the preferred choice for classifying direct 
actions on microcontrollers in this study. Tables VII and VIII 
display detailed results of using the KNN algorithm for the 
classification of operations on both the public and the collected 
datasets. As presented in Table VII, the model demonstrates a 
high degree of accuracy in distinguishing between various 
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activities, particularly for "standing," "sitting," "jogging," and 
"walking." Specifically, 141 out of 149 samples for "standing" 
are correctly classified, 181 out of 184 samples for "sitting," 
1,014 out of 1,085 samples for "jogging," and 1,264 out of 
1,356 samples for "walking." However, the model 
demonstrates a greater degree of ambiguity when 
distinguishing between activities with similar characteristics, 
particularly between "downstairs" and "upstairs." With regard 
to the activity designated "downstairs," only 175 out of 327 
samples were correctly identified, while for the activity 
designated "upstairs," 236 out of 396 samples were correctly 
classified. The primary misclassifications occur between 
"downstairs," "walking," and "upstairs," indicating a need for 
improvement in distinguishing between these activities. 

 

 
Fig. 9.  Sensitivity of DT, SVM, KNN, and LR on the collected dataset. 

As with the public dataset, Table VIII demonstrates that the 
model is highly effective at differentiating between various 
activities, particularly "standing" and "sitting." The vast 
majority of samples were correctly classified, with 757 out of 
758 instances of "standing" and 589 out of 590 instances of 
"sitting" having been correctly identified. The model also 
demonstrates proficiency in differentiating between "jogging" 
and "walking" activities. It correctly classified 511 out of 522 
samples for "jogging" and 686 out of 737 samples for 
"walking." However, a notable degree of inaccuracy is 
observed in the differentiation between the terms "downstairs" 
and "upstairs." Regarding, the "downstairs" category, only 267 
out of 302 samples were correctly identified, whereas 314 out 
of 344 samples were correctly classified in the "upstairs" 
category. The majority of misclassifications occur between the 
"downstairs" and "walking" categories, as well as between the 
"upstairs" and "walking" categories. The accuracy of activity 
classification is presented in Tables IX and X, which pertain to 
the public and collected datasets, respectively. It is noteworthy 
that the KNN classifier demonstrated an accuracy exceeding 
90% for all activities in both the public and collected datasets. 
The results presented here are founded upon the mathematical 
formulas (5) to (8). 

The KNN classifier demonstrated remarkable accuracy and 
NPV rates exceeding 94% on the public dataset and surpassing 
97% on the collected dataset across all operations. The 

sensitivity and positive predictive value exhibited noteworthy 
values, exceeding 90% for all classes with the exception of 
"downstairs" and "upstairs." It is noteworthy that the 
"standing", "sitting", and "jogging" activities demonstrated 
near-absolute values on the collected dataset. As can be 
observed in Tables IX and X, the activities of "downstairs" and 
"upstairs" displayed markedly inferior classification accuracy 
in comparison to the remaining activities. This is due to the fact 
that the acceleration data for descending and ascending stairs 
are similar. The overall performance of the dataset was 
evaluated using both the macro-average and micro-average 
methods, as observed in Table XI.  

TABLE VII.  CONFUSION MATRIX OF KNN ALGORITHM ON 
THE PUBLIC DATASET 

Observed 

activity 

Predicted activity 
Total 

Standing Sitting Jogging Walking Downstairs Upstairs 
Standing 141 1 0 0 5 2 149 
Sitting 0 181 1 0 0 2 184 
Jogging 0 0 1,014 54 13 4 1,085 
Walking 1 0 37 1,264 22 32 1,356 

Down 
stairs 

5 0 35 71 175 41 327 

Upstairs 3 0 25 89 43 236 396 
Total 150 182 1112 1478 258 317 3,497 

TABLE VIII.  CONFUSION MATRIX OF KNN ALGORITHM ON 
THE COLLECTED DATASET 

Observed 

activity 

Predicted activity 
Total 

Standing Sitting Jogging Walking Downstairs Upstairs 
Standing 757 0 0 0 0 1 758 
Sitting 0 589 0 1 0 0 590 
Jogging 0 9 511 2 0 0 522 
Walking 0 0 0 686 19 32 737 
Down 
stairs 

3 0 1 30 267 1 302 

Upstairs 0 0 0 17 13 314 344 
Total 760 598 512 736 299 348 3,253 

TABLE IX.  MODEL PERFORMANCE ON THE PUBLIC 
DATASET 

Activity pattern 

Algorithm performance 

Accuracy 
(%) 

Sensitivity 
(%) 

PPV 
(%) 

NPV 
(%) 

Standing 99.51 94.63 94.00 99.76 
Sitting 99.89 98.37 99.45 99.91 

Jogging 95.17 93.46 91.19 97.02 
Walking 91.25 93.22 85.52 95.44 

Downstairs 93.28 53.52 67.83 95.31 
Upstairs 93.11 59.60 74.45 94.97 

TABLE X.  MODEL PERFORMANCE ON THE COLLECTED 
DATASET 

Activity pattern 

Algorithm performance 

Accuracy 
(%) 

Sensitivity 
(%) 

PPV 
(%) 

NPV 
(%) 

Standing 99.88 99.87 99.61 99.96 
Sitting 99.69 99.83 98.49 99.96 
Jogging 99.63 97.89 99.80 99.96 
Walking 96.90 93.08 93.21 97.97 

Downstairs 97.94 88.41 89.30 98.82 
Upstairs 98.03 91.28 90.23 98.97 
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TABLE XI.  ASSESSMENT OF THE KNN CLASSIFICATION 
MODEL 

Evaluation 

Metrics 

Micro-average (%) Macro-average (%) 

Public 
dataset 

Collected 
dataset 

Public 
dataset 

Collected 
dataset 

Accuracy 86.1 96.03 85.4 95.1 
Sensitivity 82.1 95.06 82.1 95.06 

PPV 85.4 95.1 85.4 95.1 
NPV 85.4 95.1 82.1 95 

 
This analysis revealed that the KNN classifier showcased 

the highest performance. In particular, the micro-average 
method demonstrates remarkable efficacy, exceeding 85% on 
the public dataset and surpassing 96% on the collected dataset. 
A detailed examination of the data reveals that the micro-
average accuracy is 86.1% for the public dataset and 96.03% 
for the collected dataset. Similarly, the sensitivity is 82.1% for 
the public dataset and 95.06% for the collected dataset. The 
PPV is 85.4% for the public dataset and 95.1% for the collected 
dataset. Finally, the NPV is 85.4% for the public dataset and 
95.1% for the collected dataset. The macro-average accuracy is 
85.4% (public) and 95.1% (collected), while the sensitivity is 
82.1% (public) and 95.06% (collected). The PPV is 85.4% 
(public) and 95.1% (collected), and the NPV is 82.1% (public) 
and 95% (collected). These findings illustrate the KNN 
classifier's resilience and efficacy in diverse datasets. 

In machine learning, the process of extracting features from 
raw data represents a pivotal stage in the analytical pipeline. 
The efficacy of this process is contingent upon the model 
designer's comprehension of the dataset.  While the inclusion 
of carefully selected features can enhance the accuracy of a 
model, the incorporation of irrelevant or superfluous features 
can impose an unnecessary computational burden, potentially 
impeding performance. This underscores the significance of 
these fundamental features in attaining optimal performance. 
Moreover, this study explored the incorporation of 
supplementary time-domain features into the original feature 
set. While this resulted in a decline in classification accuracy 
for the public dataset, the impact on the collected dataset was 
inconsequential. This indicates that for the particular objective 
of behavioral classification in the present study, the proposed 
feature set provides a well-balanced trade-off between 
classification performance and computational efficiency. 

IV. DISCUSSION 

A considerable number of studies have broadened the scope 
of feature selection in order to more accurately identify human 
activities. Some studies have combined up to 43 features, as 
demonstrated by authors in [29], and even 64 features, as 
examined by authors in [30]. While the aforementioned studies 
also yielded noteworthy classification outcomes, with all of 
them exceeding 95%, the current study employed a more 
parsimonious set of features and yielded results that were 
commensurate with the data file utilized (e.g., 95.06% on the 
collected dataset). Moreover, the classification process will be 
conducted in real time on the microcontroller. The selection of 
appropriate features for the data is a crucial aspect of the 
recognition process, as evidenced by previous research [30-33]. 
Therefore, the preceding four basic features (Var, SAV, Skew, 
and P2P) are entirely aligned with the objectives of the 

research. Some researchers employed the use of accelerometer 
data and deep learning techniques for the purpose of classifying 
human activities. In [34], authors constructed a Convolutional 
Neural Network (CNN) model and modified the convolution 
kernel to adjust the characteristics of the three-axis acceleration 
signal. The experimental results demonstrated that the CNN is 
an effective approach, having achieved an average accuracy of 
93.8%. A method based on One-Dimensional Convolutional 
Neural Networks (1D CNNs), which achieved an accuracy of 
92.71%, was proposed in [35]. However, this study employed a 
limited range of human activity data, comprising only walking, 
running, and stationary poses, collected via smartphone 
accelerometers. The efficacy of LSTM in classifying six 
actions: standing, sitting, jogging, walking, going downstairs, 
and going upstairs, was evaluated. This was conducted on both 
a public dataset and a dataset collected from the present study’s 
experiments. The test results demonstrate that LSTM achieves 
an accuracy of greater than 98% and a sensitivity of greater 
than 96%. These findings substantiate the assertion that LSTM 
(or deep learning) is a valuable approach for addressing the 
HAR problem. However, it should be noted that deep learning 
requires a significant investment of time for both training and 
testing. Therefore, the deployment of deep learning may not be 
a cost-effective solution for microcontrollers such as the 
PIC18F4520. 

Some researchers explored the use of built-in 
accelerometers for activity classification using smartphones 
and designed a recognition system for activities, such as 
walking, jogging, jumping, climbing stairs, descending stairs, 
sitting, standing, and cycling [36]. The system was evaluated 
using two feature selection methods (OneRAttributeEval and 
ReliefF AttributeEval) and six classification algorithms (J48, 
K-Star, Bayes Net, Naïve Bayes, Random Forest, and k-NN). 
A recognition rate of 94% was achieved by the combination of 
15 features and the k-NN algorithm. Authors in [6] deployed 
the KU-HAR dataset with 18 activities of 90 individuals. They 
used 66 features and 7 machine learning classifiers: Gradient 
Boosting (GB), KNN, DT, Random Forest (RF), XGBoost, 
LightGBM, and Catboost. The study achieved an accuracy and 
sensitivity of 95.8% with LightGBM. In another study [28], 
authors collected data from twenty-nine users who carried an 
Android phone in their pocket while performing six activities, 
walking, jogging, climbing stairs, descending stairs, sitting, and 
standing. They evaluated three learning algorithms (logistic 
regression, J48, and multilayer perceptron), and their results 
showed an overall accuracy of above 90%, except for the 
stairs-up vs. stairs-down case, which was more difficult. 
However, the method using smartphones still suffers from 
reduced accuracy due to interference from daily activities such 
as phone calls, web browsing, and texting [23]. With the same 
operations, the proposed dataset gives better results and fewer 
features are also utilized. The current research has healthcare 
applications for the elderly, people recovering from surgery, or 
people involved in accidents. Therefore, the data are 
personalized and focused on activity analysis, and the scope is 
narrowed to these six specific behaviors for greater accuracy. 
These six behaviors were deemed sufficient for the application 
while ensuring real-time sorting and cost optimization. 
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There is a notable discrepancy in the overall accuracy of the 
public and collected datasets, with the former exhibiting a 
lower accuracy rate of 82.1% compared to the latter's 
considerably higher rate of 95.06%. This difference can be 
attributed to a number of factors. Firstly, the public dataset is 
derived from a larger pool of data collectors. The public dataset 
involved a total of 36 participants, whereas this study included 
only 16. This larger number of participants yields a more 
diverse data set in the public sample compared to the collected 
data. Secondly, the data collection process itself differed 
between the two datasets. In the public dataset, participants 
were instructed to place their phones in their pockets and rely 
on the built-in accelerometer. In contrast, the volunteers 
participating in this study were instructed to securely fasten the 
device to their belts. The discrepancy in device placement is 
likely responsible for the enhanced data quality observed in the 
collected dataset, which in turn contributed to the improved 
classification performance achieved when utilizing the identical 
proposed model. It should be noted, however, that the present 
study is not without limitations. That is, it is limited to a single 
age group with similar physical characteristics. It is our 
contention that if the subjects were children or individuals aged 
30–50 or older, the activity thresholds would differ. Two 
activities, "downstairs" and "upstairs," exhibited the lowest 
accuracy rates in the study's activity classification results, with 
88.41% and 91.28%, respectively, using the collected dataset. 
The specific result is consistent with the findings of previous 
studies. This can be attributed to the fact that the acceleration 
data of these two activities are quite similar. In daily activities, 
ascending and descending stairs typically require an equivalent 
amount of time. Moreover, the objective of this research is to 
facilitate cost-effective healthcare for patients recuperating 
from injuries or for the elderly. It is essential to consider the 
frequency of activities over an extended period. In the future, 
there is an intention to combine the two activities of 
"downstairs" and "upstairs" into a single activity. 

V. CONCLUSIONS 

This research has successfully developed a cost-effective, 
real-time Human Activity Recognition (HAR) system. The 
incorporation of an effective, low-complexity algorithm into a 
low-performance microcontroller for the classification of 
fundamental human activities paves the way for promising new 
avenues of research in this field. The experimental results 
demonstrate the efficacy of Decision Tree (DT), K-Nearest 
Neighbors (KNN), Support Vector Machine (SVM), and 
Logistic Regression (LR) when utilizing disparate window 
sizes. The KNN algorithm is particularly well-suited to real-
time implementation using digital data, such as those obtained 
from accelerometers, due to their high computational 
efficiency.  The KNN algorithm exhibits the highest 
classification performance when the window size is set to 15 
seconds. By leveraging four principal features, Variance (Var), 
Sum of Absolute Values (SAV), Skewness (Skew), and Peak-
to-Peak (P2P), the system is capable of accurate classification 
of fundamental daily activities. The proposed system has the 
potential to be extended to recognize a wider range of 
activities, including more complex movements. Furthermore, 
while this study concentrated on time-domain features derived 
from the accelerometer data, future iterations could investigate 

features in the frequency domain. The combination of both 
time and frequency domain features may result in enhanced 
performance. The system will be tested in actual healthcare 
environments to gather practical insights and validate its 
effectiveness. Collaborations with healthcare providers and 
institutions could facilitate the integration of this technology 
into patient monitoring systems, thereby providing valuable 
support for tailored rehabilitation programs and enhancing the 
quality of life for the elderly. The objective of this research is 
to make incremental improvements to the system's capabilities 
with the aim of contributing to the advancement of activity 
recognition and its applications in healthcare and other fields. 
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