
Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16772

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

Α PRESENT Lightweight Algorithm High-
Level SystemC Modeling using AOP Approach
Hassen Mestiri

Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia | Higher Institute of Applied Sciences and
Technology of Sousse, University of Sousse, Tunisia | Electronics and Micro-Electronics Laboratory,
Faculty of Sciences of Monastir, University of Monastir, Tunisia
h.mestiri@psau.edu.sa (corresponding author)

Imen Barraj

Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin
Abdulaziz University, Al-Kharj 11942, Saudi Arabia | Systems Integration & Emerging Energies (SI2E),
Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Tunisia |
Higher Institute of Computer Science and Multimedia of Gabes (ISIMG), University of Gabes, Tunisia
i.barraj@psau.edu.sa

Taoufik Saidani

Department of Computer Sciences, Faculty of Computing and Information Technology, Northern Border
University, Rafha 91911, Saudi Arabia
taoufik.Saidan@nbu.edu.sa

Mohsen Machhout

Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir,
Tunisia
mohsen.machhout@fsm.rnu.tn

Received: 17 July 2024 | Revised: 31 July 2024 | Accepted: 11 August 2024

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8417

ABSTRACT

The increasing complexity of the PRESENT algorithm necessitates a fast modeling and simulation security

environment, which is achieved using the SystemC language at the Electronic System Level (ESL),

enhancing the speed of cryptographic models. This allows efficient verification of the security properties

and performance of the PRESENT algorithm, ensuring robustness against potential attacks. Additionally,

the use of SystemC in ESL facilitates easier integration with other hardware components for a more

comprehensive security analysis. However, including SystemC in security simulations necessitates

modifying the existing code, hence increasing the complexity of the modeling process. Without requiring

any code modifications, Aspect Oriented Programming (AOP) can be used for security simulation and

cryptographic modeling. This study presents a novel PRESENT SystemC model that incorporates the AOP

approach. The model is evaluated in a functional verification environment. The model is constructed using

AspectC++ as an AOP language. The simulation results indicate that the effectiveness of the model and the

incorporation of the AOP method have negligible effects on the simulation duration or the size of the

executable file. The model architecture is based on interlacing all the components.

Keywords-PRESENT block cipher; AOP; SystemC; high-level modeling; cryptography

I. INTRODUCTION

Electronic cryptography devices play a vital role in
embedded systems by ensuring the security of confidential
information and safeguarding sensitive data. Devices encrypt
and decrypt data using sophisticated algorithms and protocols
to ensure that only users with permission can access it [1]. The

implementation of cryptographic devices in embedded systems
serves to fortify security measures against data corruption.
However, they are susceptible to physical attacks on hardware
infrastructures, which could grant access to malicious actors on
confidential data or secret keys [2-4]. Fault injection attacks,
which are a type of physical attack, are a very effective

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16773

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

technique to acquire these keys and undermine the security of
cryptographic equipment [5-7].

Currently, the ability of developers to create and confirm
cryptographic embedded systems is insufficient to meet their
increasing complexity. Specifically, the need to protect
sensitive data in applications, such as IoT, mobile devices, and
cloud computing, is driving the increasing demand for secure
cryptographic algorithms [8-9]. Software engineers face
difficulties in their quest to ensure the accurate implementation
and integration of cryptographic algorithms within these
systems, all while preserving performance and power
constraints. SystemC is a standard language for modeling and
verifying complex systems. It can accurately represent and
mimic the behavior of cryptographic algorithms, making it a
good choice to simulate fault injection in System-on-Chip
(SoC) and hardware designs [10-12]. SystemC allows
developers to assess the security and resilience of their
cryptographic implementations by deliberately introducing
faults and studying the reaction of the system. This enables
comprehensive testing and validation, eventually resulting in
more reliable and secure cryptographic systems. However,
most methods require developers to modify the SystemC code
to create and detect faults. Aspect Oriented Programming
(AOP) is a method that avoids the need to alter the source code
of the cryptographic algorithms being tested, enabling efficient
separation of distinct issues through clear modularization. AOP
does this by segregating cross-cutting problems, such as the
introduction and identification of faults, from the fundamental
operation of cryptographic methods [13]. This not only
streamlines the testing process but also improves the capacity
to reuse and maintain code, facilitating developers in analyzing
and enhancing the strength and security of their cryptographic
solutions. The issue in cryptography lies in the differentiation
of the cryptographic algorithm model, fault detection systems,
and fault attack procedures. The modules are integrated by
interlacing during the compilation process, rather than during
coding, to form a robust cryptographic system that is resilient
to fault attacks. Through the process of splitting these
components, engineers can focus on enhancing each module
separately, ensuring that the cryptographic system is both
effective and protected [14-16].

This study introduces a novel cryptographic PRESENT
SystemC model using the AOP technique. The efficacy of the
PRESENT SystemC AOP model, as well as the effects of AOP
on simulation time and executable file size, were evaluated
using a functional verification environment. This process used
AspectC++ [13] for application-level programming and
SystemC for hardware design.

II. BACKGROUND

A. Aspect Oriented Programming (AOP)

AOP is a programming style that adheres to the concept of
dividing various concerns [10, 13]. Under the AOP paradigm,
an application is composed of classes and aspects. Non-
functional concerns are wrapped as aspects inside modules in
the cross-cutting code. The components are included in the
operational code to develop a full application.

Aspects are used to execute technical features in the code of
an application, comprising two components: Pointcut and Code
Advice:

 Pointcut is a technique that allows for the application of
transverse functionality code in an aspect by defining the
location of one or more Join Points, which represent the
points where the transverse functionality code will be
inserted. By separating these concerns, developers can
make changes to specific aspects of the code more easily,
without affecting the overall structure. This can lead to
cleaner, more organized code that is easier to understand
and maintain over time.

 A Code Advice is a part of the code that is inserted at the
Join Points, indicating the weaving of cross-functionality.
By utilizing Code Advice, developers can effectively
manage and apply cross-cutting concerns, such as logging,
security, and error handling, without cluttering the main
application logic. This approach improves the scalability
and reusability of the codebase, ultimately leading to a
more robust and efficient software development process.

An aspect can include several advice codes at the same
time, where each advice is associated with a cut. There are
three types of Code Advice: before, after, and around. These
different types of code advice allow developers to control the
execution flow before, after, or around a specific Join Point,
providing flexibility in managing cross-cutting concerns. By
strategically applying these advices, developers can improve
the maintainability and modularity of their codebase, making it
easier to adapt to changing requirements or add new features in
the future.

To include a new feature, such as an aspect, in the code of
an application, the main code has to establish specific areas
where the aspect should operate. Figure 1 demonstrates the
integration of the aspect code into the application code. By
integrating aspects into the codebase, developers can enhance
the overall functionality and maintainability of the application.
This approach allows for a more efficient way to address cross-
cutting concerns without cluttering the main codebase.

Fig. 1. Weaving aspect code into original code.

The AOP approach is often used for testing embedded
applications in C++ and Java. This study presents a novel
PRESENT model using the AOP approach to prevent any
changes to the source code and the need to analyze the

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16774

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

cryptographic system. This solution separates issues that affect
more than one area, creating a new way to distribute the
cryptographic model with classes and aspects that protect the
code for added modules. This segregation enhances the security
and maintainability of the application by reducing code
complexity and improving code reusability. Additionally, it
allows easier debugging and updating of the cryptographic
system without affecting the main codebase.

B. PRESENT Algorithm

PRESENT is a lightweight block cipher consisting of 31
cycles that is based on an SP network. Encrypting 64-bit blocks
requires an 80- or 128-bit key [17]. An 80-bit key
implementation is adequate for tag-based deployments that
typically necessitate low-security applications. In the following
order, three distinct functions are executed during each round:
addRoundKey(), sBoxLayer(), and pLayer(). The
addRoundKey() function involves bitwise XOR of the round
key with the state. The sBoxLayer() function applies a
substitution box to each byte of the state, whereas the pLayer()
function permutes the bytes within each column.

III. RELATED WORKS

AOP is progressively emerging as a crucial framework for
evaluating system applications [13]. Java programs have been
equipped with AspectJ weavers [18]. AspectC++ [10], an AOP
weaver based on C++, is increasingly being used for software
validation [19]. In [20], a new method was presented to identify
faults caused by memory leakage, improper algorithm
implementation, or thread interference using C++ aspects.
Aspects are automatically generated and integrated into C++
programs to dynamically disclose software defects. In [21],
analogous research on embedded Operating System (OS)
testing was presented. Manual aspects were employed to test
embedded C++ programs within the OS. This study
emphasized four key aspects of functional testing, namely, C++
program coverage, memory, performance, and robustness.

In [10], software security hardening based on AOP was
investigated. Secure applications have incorporated secure
patterns devised in AOP through the utilization of memory
code encryption. An analogous method was elaborated in [13].
AOP is a technique for integrating fault tolerance into
distributed embedded system-based applications. Many fault-
tolerant methods and redundant hardware/software
configurations have been examined. AOP is utilized to provide
application thread-level defect tolerance in the system. This
AOP-based strategy increases modularity, reduces the effort
required to modernize legacy systems, and enhances the
configuration for testing and product line development.

AOP specialization is also applied to the investigation of
SoC designs for hybrid hardware/software systems. AspectC++
[22] is a method to generate an all-encompassing depiction of
software and hardware components. Aspect programs
incorporate both hardware and software characteristics, which
are then linked to the comprehensive description of SoCs. The
intended design is a hybrid hardware/software solution based
on a combined Field Programmable Gate Array (FPGA). In
[23], a SoC investigation was presented. Functional verification
focuses primarily on AOP through the use of pure hardware

implementations. AOP has been employed in a restricted
number of methods to design or model hardware components
[13, 24]. By employing explicit architectural concepts, such as
concurrency and time, these studies present synthesizable
descriptions of SoCs. AOP methods allow the derivation of
SoC components through SystemC modeling [10], including
communication, cache rules, and performance measures. The
generated SystemC models present difficulties in terms of
synthesis. Consequently, as shown in [25], these methods are
more advantageous in the domain of simulation and
verification.

Previous studies were limited because security verification
modules were only added at module interconnections, lacked
an analysis of where internal security verification took place,
and the original SystemC code had to be changed a lot. By
incorporating security verification processes into modules and
interconnections without modifying functional blocks, the
proposed method enables seamless integration that does not
cause any disruption to the original code. By addressing
potential vulnerabilities at internal security verification
locations within modules, this method improves system
security without requiring code modifications, simplifying the
process.

IV. SYSTEMC PRESENT MODELING

The objective was to create a PRESENT model in the
SystemC language using the AOP method. To achieve this
objective, the cryptographic processes executed by the
PRESENT cryptosystem were partitioned into many modules.
Figure 2 illustrates the proposed PRESENT paradigm. The
PRESENT SystemC model diagram illustrates their module
interconnections using AspectC++ and AOP. The PRESENT
SystemC AOP model is composed of 6 parts.

Fig. 2. PRESENT diagram SystemC AOP.

A. PRESENT module

This module carries out the PRESENT encryption and
decryption processes. As shown in Algorithm 1, this module
performs the following tasks: declares the PRESENT class,
declares the PRESENT operations, and finally carries out the
encryption and decryption of the input message.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16775

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

Algorithm 1: The PRESENT module

SC_MODULE (PRESENT) {

 SC_CTOR (PRESENT)

 void PRESENT::addRoundKey(…)

 void PRESENT::sBoxLayer(…)

 void PRESENT::pLayer(…)

 void PRESENT::KeyUpdate(…)

}

B. Controller Unit

This component enables the synchronization of the entire
PRESENT cryptographic model. The process performs the
following tasks: declares the Controller_Unit class, and
declares the PRESENT_Controller(…) function, which
includes a finite-state machine to ensure synchronization
between all modules.

Algorithm 2: The Controller Unit

SC_MODULE(Controller_Unit) {

 SC_CTOR(Controller_Unit)

 VoidController_Unit::PRESENT_Controller(…)

}

C. Input Interface

This component rearranges the data stream following the
specifications laid out by the communication protocol. As
shown in Algorithm 3, the Input_Interface module declares two
functions where the process performs the following tasks:
declares the functions Input_Plaintext(...) and Input_Key(...),
and divides the input messages into the required size (64 bits
for plaintext - 80 or 128 bits for the key).

Algorithm 3: The Input Interface

SC_MODULE(Input_Interface) {

 SC_CTOR(Input_Interface)

 voidInput_Interface::Input_Plaintext(…)

 void Input_Interface::Intput_Key(…)

}

D. Output Interface

This module restores the encrypted stream to the
communications protocol's format and declares the function
Output_Ciphertext (…).

Algorithm 4: The Output Interface

SC_MODULE(Output_Interface) {

 SC_CTOR(Output_Interface)

 VoidOutput_Interface::Output_Ciphertext(…)

}

E. Fault Detection Scheme (FDS)

The purpose of developing the FDS module is to safeguard
the PRESENT module from fault attacks. As shown in
Algorithm 5, the FDS module declares two functions:
Fault_PRESENT_Detection (...) and Fault__PRESENT_
Analysis (...). The FDS module performs the following tasks:
detects all the faults during the authenticated encryption
process and analyzes the fault detection results.

Algorithm 5: The Fault Detection Scheme (FDS)

SC_MODULE(FDS) {

 SC_CTOR(FDS)

 void FDS::Fault_PRESENT_Detection(…)

 void FDS::Fault_PRESENT_Analysis(…)

}

F. Database

This module holds all the variables and constants that are
used in the process of authenticated encryption. The code
includes the definition of two functions: Variables(…) and
Constants (…).

Algorithm 6: The Database

SC_MODULE(Database) {

 SC_CTOR(Database)

 void Database::Variables (…)

 void Database::Constantes(…)

}

V. FUNCTIONAL VERIFICATION ENVIRONMENT

The functional verification environment proposed for the
PRESENT model utilizes the transaction-based verification
environment in SystemC. The system incorporates a reference
model that offers a comprehensive design description and runs
concurrently with the PRESENT model to evaluate the
simulation output results. Instead of simulating signals, the
reference model handles module interactions at the
transactional level. Figure 3 shows the testbench SCV, a
module that produces the encryption keys and texts for the
reference and proposed models at random. The testbench SCV
sends signals to the transactor, which then applies those signals
to the model inputs. A comparator module compares the
outputs after each transaction and generates the results.

Fig. 3. PRESENT functional verification environment.

 (1)+(2): The testbench SCV generates stimuli randomly for
the two cryptographic models, namely the proposed and the
reference models.

 (3): The transactor module converts transactions into
signals, which are then adapted to the inputs of the
proposed non-TLM model.

 (4)+(5): Both models use the databases.

 (6)+(8): The comparator module's input consists of
PRESENT SystemC-based AOP and transactor outputs.

 (7): The reference model's TLM output.

 (8): The transactor converts transactions into signals that
can be adjusted to match the outputs of the non-TLM
model.

 (9): The results of the comparison report are produced.

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16776

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

VI. RESULTS AND DISCUSSION

This section focuses on evaluating the proposed SystemC-
AOP paradigm and analyzing the effects of employing
SystemC and AspectC++ in ESL on the cryptography
architecture. The simulation time and the size of the executable
file of the cryptographic model were evaluated to determine the
impact of the AOP approach on both of these factors. The
modeling process was performed using AspectC++ 2.3 and
SystemC 2.3.4, and the PRESENT SystemC AOP model was
validated using an Intel Core I5-3470 3.2 GHz CPU, 8 GB
RAM, and the gcc 10.3 compiler.

A. Fault Analysis AOP Impact

Fault attacks were executed using the proposed
environment to test the detection capabilities of the PRESENT
SystemC-AOP environment. Fault detection capabilities were
assessed using two scenarios: pure SystemC and SystemC-
AOP. In addition, a fault detection scheme was used for this
evaluation [6]. To do this, the AspectC++ and SystemC
simulation kernels were used to assess and compare the results
of the PRESENT SystemC-AOP environment.

The simulation results, shown in Table I, demonstrate that
both the SystemC-AOP and the SystemC PRESENT models
had comparable fault detection capabilities in terms of
identified faults, thus affirming the effectiveness of the
proposed SystemC-AOP technique. The findings indicate that
incorporating AOP into the SystemC framework does not
undermine the detection capabilities of the design models.

TABLE I. DETECTION CAPABILITY: SYSTEMC-
AOP/SYSTEMC

PRESENT block cipher
Random fault detection capability

SystemC SystemC_AOP

PRESENT block cipher model
protected by FDS [6] a

99.997% 99.997%

PRESENT block cipher model
protected by FDS [6] b

99.999% 99.999%

a. PRESENT standard architecture, b. PRESENT architecture presented in [17]

B. Impact of AOP on Simulation

To ascertain the impact that AOP has on the duration of the
simulation, some simulations were performed with the
developed environment. Two defect detection schemes were
utilized to determine the kernel time (kTime) and user time
(uTime) during this procedure. It should be noted that kTime
and uTime are contingent upon both the amount of Join Points
and the amount of modules to be inserted using the AOP
technique. Table II displays the results of the simulations used
to determine kTime and uTime in two different scenarios:
SystemC and SystemC_AOP.

TABLE II. SYSTEMC/AOP SIMULATION TIME

PRESENT block

cipher

kTime (s) uTime (s)

SystemC SystemC_AOP SystemC SystemC_AOP

PRESENT
protected by FDS

[6] a
0.026 0.025 1.432 1.433

PRESENT
protected by FDS

[6] b
0.023 0.024 1.123 1.126

a. PRESENT standard architecture, b. PRESENT architecture presented in [17].

The margin of error associated with the measurement
procedure employed (Linux commands) is undeniably
negligible, and, as such, does not affect the accuracy of the
simulation results.

The results indicate that the utilization of the AOP approach
to integrate the Input_Interface, Database, Controller_Unit,
FDS, and Output_Interface modules into the SystemC model
does not result in any discernible effect on simulation
execution times. This suggests that the additional complexity
introduced by the AOP approach does not significantly affect
simulation performance. Therefore, it can be concluded that the
integration of AOP in SystemC does not have a noticeable
effect on kTime and uTime in this particular study. An
additional pivotal aspect to consider when evaluating the
impact of AOP is the size of the resulting executable file. Table
III shows the executable file sizes produced by AspectC++ and
the SystemC kernel in the two scenario situations.

TABLE III. EXECUTABLE FILE SIZE IMPACT:
SYSTEMC/AOP

PRESENT block cipher SystemC SystemC_AOP

PRESENT block cipher model
protected by FDS [6] a

0.465 MB 0.463 MB

PRESENT block cipher model
protected by FDS [6] b

0.468 MB 0.467 MB

a. PRESENT standard architecture, b. PRESENT architecture presented in [17].

The simulation results demonstrate that despite the

utilization of two programming languages (SystemC and
AspectC++) to model the proposed model and employing the
AOP technique to weave together all modules, the executable
file sizes remain almost unaltered. This indicates that adjusting
the AOP does not substantially affect the file size of the
executable. Additionally, the results suggest that the AOP
technique effectively manages cross-cutting concerns without
significantly affecting the overall performance of the system.
This highlights the potential benefits of using AOP in software
development for modularization and improved code
maintenance. Furthermore, the results show that AOP can
enhance code reusability and readability by separating concerns
more efficiently. In general, the findings support the integration
of AOP techniques in software development to streamline the
design process and enhance overall system performance.

VII. CONCLUSION

This study presents a SystemC model for the Electronic
System Level that is based on Aspect-Oriented Programming
(AOP). A functional verification environment is recommended
to validate model functionality, simulation time, and executable
file sizes. The verification environment comprises testbenches,
stimuli generators, and coverage monitors to ensure the
precision and comprehensiveness of the model. Furthermore,
the verification environment facilitates the detection of possible
design defects and assists in troubleshooting the model. In
addition, it offers a comprehensive framework for assessing the
performance and dependability of the PRESENT SystemC
model in various circumstances. The simulation results indicate
that the efficiency of the AspectC++ model and the weaving of
the PRESENT module have minimal impact on both the
simulation time and the size of the executable file. In addition,

Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16777

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach …

the proposed PRESENT SystemC AOP model exhibits
enhanced modularity and maintainability compared to
conventional methods. Moreover, the proposed techniques for
injecting and detecting faults have been proven to be viable and
efficient in assessing the resilience of cryptographic schemes
against fault attacks. The simulation time is minimally affected
by the AOP, which proves its usefulness in evaluating security
domains by minimizing both efforts and errors. Furthermore,
the AOP approach facilitates convenient customization and
modification of the fault injection/detection mechanism to
adapt to unique cryptographic systems. The flexibility of this
method allows it to be used in various security circumstances,
thus increasing its effectiveness in assessing the strength of
cryptographic schemes. In summary, the use of AOP in
SystemC modeling has the potential to improve design
adaptability and productivity in electronic system-level
development.

ACKNOWLEDGMENT

This study is supported via funding from Prince Sattam bin
Abdulaziz University project number (PSAU/2024/R/1445).

REFERENCES

[1] H. Mestiri and I. Barraj, "High-Speed Hardware Architecture Based on
Error Detection for KECCAK," Micromachines, vol. 14, no. 6, Jun.
2023, Art. no. 1129, https://doi.org/10.3390/mi14061129.

[2] X. Yang, L. Shu, Y. Liu, G. P. Hancke, M. A. Ferrag, and K. Huang,
"Physical Security and Safety of IoT Equipment: A Survey of Recent
Advances and Opportunities," IEEE Transactions on Industrial
Informatics, vol. 18, no. 7, pp. 4319–4330, Jul. 2022,
https://doi.org/10.1109/TII.2022.3141408.

[3] H. Mestiri, I. Barraj, A. Alsir Mohamed, and M. Machhout, "An
Efficient AES 32-Bit Architecture Resistant to Fault Attacks,"
Computers, Materials & Continua, vol. 70, no. 2, pp. 3667–3683, 2022,
https://doi.org/10.32604/cmc.2022.020716.

[4] F. Thabit, O. Can, A. O. Aljahdali, G. H. Al-Gaphari, and H. A.
Alkhzaimi, "Cryptography Algorithms for Enhancing IoT Security,"
Internet of Things, vol. 22, Jul. 2023, Art. no. 100759, https://doi.org/
10.1016/j.iot.2023.100759.

[5] I. Salam, T. H. Ooi, L. Xue, W. C. Yau, J. Pieprzyk, and R. C. W. Phan,
"Random Differential Fault Attacks on the Lightweight Authenticated
Encryption Stream Cipher Grain-128AEAD," IEEE Access, vol. 9, pp.
72568–72586, 2021, https://doi.org/10.1109/ACCESS.2021.3078845.

[6] T. De Cnudde and S. Nikova, "Securing the PRESENT Block Cipher
Against Combined Side-Channel Analysis and Fault Attacks," IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 12, pp. 3291–3301, Sep. 2017, https://doi.org/10.1109/TVLSI.2017.
2713483.

[7] H. Mestiri, N. Benhadjyoussef, and M. Machhout, "Fault Attacks
Resistant AES Hardware Implementation," in 2019 IEEE International
Conference on Design & Test of Integrated Micro & Nano-Systems
(DTS), Gammarth, Tunisia, Apr. 2019, pp. 1–6, https://doi.org/10.1109/
DTSS.2019.8914979.

[8] V. A. Thakor, M. A. Razzaque, and M. R. A. Khandaker, "Lightweight
Cryptography Algorithms for Resource-Constrained IoT Devices: A
Review, Comparison and Research Opportunities," IEEE Access, vol. 9,
pp. 28177–28193, 2021, https://doi.org/10.1109/ACCESS.2021.
3052867.

[9] T. K. Goyal, V. Sahula, and D. Kumawat, "Energy Efficient Lightweight
Cryptography Algorithms for IoT Devices," IETE Journal of Research,
vol. 68, no. 3, pp. 1722–1735, May 2022, https://doi.org/10.1080/
03772063.2019.1670103.

[10] H. Mestiri, I. Barraj, and M. Machhout, "An AOP-Based Security
Verification Environment for KECCAK Hash Algorithm," Computers,

Materials & Continua, vol. 73, no. 2, pp. 4051–4066, 2022,
https://doi.org/10.32604/cmc.2022.029794.

[11] X. Zheng, J. Wu, X. Lin, H. Gao, S. Cai, and X. Xiong,
"Hardware/Software Co-Design of Cryptographic SoC Based on RISC-
V Virtual Prototype," IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 70, no. 9, pp. 3624–3628, Sep. 2023,
https://doi.org/10.1109/TCSII.2023.3267186.

[12] N. Veeranna and B. C. Schafer, "S3CBench: Synthesizable Security
SystemC Benchmarks for High-Level Synthesis," Journal of Hardware
and Systems Security, vol. 1, no. 2, pp. 103–113, Jun. 2017,
https://doi.org/10.1007/s41635-017-0014-1.

[13] H. Mestiri, I. Barraj, M. Bedoui, and M. Machhout, "An ASCON AOP-
SystemC Environment for Security Fault Analysis," Symmetry, vol. 16,
no. 3, Mar. 2024, Art. no. 348, https://doi.org/10.3390/sym16030348.

[14] A. Baksi, S. Bhasin, J. Breier, D. Jap, and D. Saha, "A Survey on Fault
Attacks on Symmetric Key Cryptosystems," ACM Computing Surveys,
vol. 55, no. 4, Aug. 2022, Art. no. 86, https://doi.org/10.1145/3530054.

[15] A. Chattopadhyay and U. Mitra, "Security Against False Data-Injection
Attack in Cyber-Physical Systems," IEEE Transactions on Control of
Network Systems, vol. 7, no. 2, pp. 1015–1027, Jun. 2020,
https://doi.org/10.1109/TCNS.2019.2927594.

[16] M. M. N. Aboelwafa, K. G. Seddik, M. H. Eldefrawy, Y. Gadallah, and
M. Gidlund, "A Machine-Learning-Based Technique for False Data
Injection Attacks Detection in Industrial IoT," IEEE Internet of Things
Journal, vol. 7, no. 9, pp. 8462–8471, Sep. 2020, https://doi.org/
10.1109/JIOT.2020.2991693.

[17] R. Chatterjee and R. Chakraborty, "A Modified Lightweight PRESENT
Cipher For IoT Security," in 2020 International Conference on
Computer Science, Engineering and Applications (ICCSEA), Gunupur,
India, Mar. 2020, pp. 1–6, https://doi.org/10.1109/ICCSEA49143.
2020.9132950.

[18] S. Mohite, A. Sarda, and S. D. Joshi, "Analysis of System Requirements
by Aspects-J Methodology," in 2021 International Conference on
Computing, Communication and Green Engineering (CCGE), Pune,
India, Sep. 2021, pp. 1–6, https://doi.org/10.1109/CCGE50943.
2021.9776384.

[19] M. Ramalingam, D. Saranya, R. ShankarRam, P. Chinnasamy, K.
Ramprathap, and A. Kalaiarasi, "An Automated Framework For
Dynamic Web Information Retrieval Using Deep Learning," in 2022
International Conference on Computer Communication and Informatics
(ICCCI), Coimbatore, India, Jan. 2022, pp. 1–6, https://doi.org/
10.1109/ICCCI54379.2022.9741044.

[20] R. Jain, R. Agrawal, R. Gupta, R. K. Jain, N. Kapil, and A. Saxena,
"Detection of Memory Leaks in C/C++," in 2020 IEEE International
Students’ Conference on Electrical,Electronics and Computer Science
(SCEECS), Bhopal, India, Feb. 2020, pp. 1–6,
https://doi.org/10.1109/SCEECS48394.2020.32.

[21] E. Yoshiya, T. Nakanishi, and T. Isshiki, "RTL Design Framework for
Embedded Processor by using C++ Description," in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
Grenoble, France, Feb. 2021, pp. 1208–1211, https://doi.org/
10.23919/DATE51398.2021.9473942.

[22] H. Mestiri, I. Barraj, and M. Machhout, "AES High-Level SystemC
Modeling using Aspect Oriented Programming Approach," Engineering,
Technology & Applied Science Research, vol. 11, no. 1, pp. 6719–6723,
Feb. 2021, https://doi.org/10.48084/etasr.3971.

[23] G. Biagetti, L. Falaschetti, P. Crippa, M. Alessandrini, and C. Turchetti,
"Open-Source HW/SW Co-Simulation Using QEMU and GHDL for
VHDL-Based SoC Design," Electronics, vol. 12, no. 18, Jan. 2023, Art.
no. 3986, https://doi.org/10.3390/electronics12183986.

[24] P. Pieper, V. Herdt, and R. Drechsler, "Advanced Embedded System
Modeling and Simulation in an Open Source RISC-V Virtual
Prototype," Journal of Low Power Electronics and Applications, vol. 12,
no. 4, Dec. 2022, Art. no. 52, https://doi.org/10.3390/jlpea12040052.

[25] K. Bjerge, J. H. Schougaard, and D. E. Larsen, "A scalable and efficient
convolutional neural network accelerator using HLS for a system-on-
chip design," Microprocessors and Microsystems, vol. 87, Nov. 2021,
Art. no. 104363, https://doi.org/10.1016/j.micpro.2021.104363.

