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ABSTRACT 

The increasing complexity of the PRESENT algorithm necessitates a fast modeling and simulation security 

environment, which is achieved using the SystemC language at the Electronic System Level (ESL), 

enhancing the speed of cryptographic models. This allows efficient verification of the security properties 

and performance of the PRESENT algorithm, ensuring robustness against potential attacks. Additionally, 

the use of SystemC in ESL facilitates easier integration with other hardware components for a more 

comprehensive security analysis. However, including SystemC in security simulations necessitates 

modifying the existing code, hence increasing the complexity of the modeling process. Without requiring 

any code modifications, Aspect Oriented Programming (AOP) can be used for security simulation and 

cryptographic modeling. This study presents a novel PRESENT SystemC model that incorporates the AOP 

approach. The model is evaluated in a functional verification environment. The model is constructed using 

AspectC++ as an AOP language. The simulation results indicate that the effectiveness of the model and the 

incorporation of the AOP method have negligible effects on the simulation duration or the size of the 

executable file. The model architecture is based on interlacing all the components. 

Keywords-PRESENT block cipher; AOP; SystemC; high-level modeling; cryptography 

I. INTRODUCTION  

Electronic cryptography devices play a vital role in 
embedded systems by ensuring the security of confidential 
information and safeguarding sensitive data. Devices encrypt 
and decrypt data using sophisticated algorithms and protocols 
to ensure that only users with permission can access it [1]. The 

implementation of cryptographic devices in embedded systems 
serves to fortify security measures against data corruption. 
However, they are susceptible to physical attacks on hardware 
infrastructures, which could grant access to malicious actors on 
confidential data or secret keys [2-4]. Fault injection attacks, 
which are a type of physical attack, are a very effective 
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technique to acquire these keys and undermine the security of 
cryptographic equipment [5-7]. 

Currently, the ability of developers to create and confirm 
cryptographic embedded systems is insufficient to meet their 
increasing complexity. Specifically, the need to protect 
sensitive data in applications, such as IoT, mobile devices, and 
cloud computing, is driving the increasing demand for secure 
cryptographic algorithms [8-9]. Software engineers face 
difficulties in their quest to ensure the accurate implementation 
and integration of cryptographic algorithms within these 
systems, all while preserving performance and power 
constraints. SystemC is a standard language for modeling and 
verifying complex systems. It can accurately represent and 
mimic the behavior of cryptographic algorithms, making it a 
good choice to simulate fault injection in System-on-Chip 
(SoC) and hardware designs [10-12]. SystemC allows 
developers to assess the security and resilience of their 
cryptographic implementations by deliberately introducing 
faults and studying the reaction of the system. This enables 
comprehensive testing and validation, eventually resulting in 
more reliable and secure cryptographic systems. However, 
most methods require developers to modify the SystemC code 
to create and detect faults. Aspect Oriented Programming 
(AOP) is a method that avoids the need to alter the source code 
of the cryptographic algorithms being tested, enabling efficient 
separation of distinct issues through clear modularization. AOP 
does this by segregating cross-cutting problems, such as the 
introduction and identification of faults, from the fundamental 
operation of cryptographic methods [13]. This not only 
streamlines the testing process but also improves the capacity 
to reuse and maintain code, facilitating developers in analyzing 
and enhancing the strength and security of their cryptographic 
solutions. The issue in cryptography lies in the differentiation 
of the cryptographic algorithm model, fault detection systems, 
and fault attack procedures. The modules are integrated by 
interlacing during the compilation process, rather than during 
coding, to form a robust cryptographic system that is resilient 
to fault attacks. Through the process of splitting these 
components, engineers can focus on enhancing each module 
separately, ensuring that the cryptographic system is both 
effective and protected [14-16]. 

This study introduces a novel cryptographic PRESENT 
SystemC model using the AOP technique. The efficacy of the 
PRESENT SystemC AOP model, as well as the effects of AOP 
on simulation time and executable file size, were evaluated 
using a functional verification environment. This process used 
AspectC++ [13] for application-level programming and 
SystemC for hardware design. 

II. BACKGROUND 

A. Aspect Oriented Programming (AOP) 

AOP is a programming style that adheres to the concept of 
dividing various concerns [10, 13]. Under the AOP paradigm, 
an application is composed of classes and aspects. Non-
functional concerns are wrapped as aspects inside modules in 
the cross-cutting code. The components are included in the 
operational code to develop a full application. 

Aspects are used to execute technical features in the code of 
an application, comprising two components: Pointcut and Code 
Advice:  

 Pointcut is a technique that allows for the application of 
transverse functionality code in an aspect by defining the 
location of one or more Join Points, which represent the 
points where the transverse functionality code will be 
inserted. By separating these concerns, developers can 
make changes to specific aspects of the code more easily, 
without affecting the overall structure. This can lead to 
cleaner, more organized code that is easier to understand 
and maintain over time. 

 A Code Advice is a part of the code that is inserted at the 
Join Points, indicating the weaving of cross-functionality. 
By utilizing Code Advice, developers can effectively 
manage and apply cross-cutting concerns, such as logging, 
security, and error handling, without cluttering the main 
application logic. This approach improves the scalability 
and reusability of the codebase, ultimately leading to a 
more robust and efficient software development process.  

An aspect can include several advice codes at the same 
time, where each advice is associated with a cut. There are 
three types of Code Advice: before, after, and around. These 
different types of code advice allow developers to control the 
execution flow before, after, or around a specific Join Point, 
providing flexibility in managing cross-cutting concerns. By 
strategically applying these advices, developers can improve 
the maintainability and modularity of their codebase, making it 
easier to adapt to changing requirements or add new features in 
the future.  

To include a new feature, such as an aspect, in the code of 
an application, the main code has to establish specific areas 
where the aspect should operate. Figure 1 demonstrates the 
integration of the aspect code into the application code. By 
integrating aspects into the codebase, developers can enhance 
the overall functionality and maintainability of the application. 
This approach allows for a more efficient way to address cross-
cutting concerns without cluttering the main codebase. 

 

 
Fig. 1.  Weaving aspect code into original code. 

The AOP approach is often used for testing embedded 
applications in C++ and Java. This study presents a novel 
PRESENT model using the AOP approach to prevent any 
changes to the source code and the need to analyze the 
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cryptographic system. This solution separates issues that affect 
more than one area, creating a new way to distribute the 
cryptographic model with classes and aspects that protect the 
code for added modules. This segregation enhances the security 
and maintainability of the application by reducing code 
complexity and improving code reusability. Additionally, it 
allows easier debugging and updating of the cryptographic 
system without affecting the main codebase. 

B. PRESENT Algorithm 

PRESENT is a lightweight block cipher consisting of 31 
cycles that is based on an SP network. Encrypting 64-bit blocks 
requires an 80- or 128-bit key [17]. An 80-bit key 
implementation is adequate for tag-based deployments that 
typically necessitate low-security applications. In the following 
order, three distinct functions are executed during each round: 
addRoundKey(), sBoxLayer(), and pLayer(). The 
addRoundKey() function involves bitwise XOR of the round 
key with the state. The sBoxLayer() function applies a 
substitution box to each byte of the state, whereas the pLayer() 
function permutes the bytes within each column. 

III. RELATED WORKS 

AOP is progressively emerging as a crucial framework for 
evaluating system applications [13]. Java programs have been 
equipped with AspectJ weavers [18]. AspectC++ [10], an AOP 
weaver based on C++, is increasingly being used for software 
validation [19]. In [20], a new method was presented to identify 
faults caused by memory leakage, improper algorithm 
implementation, or thread interference using C++ aspects. 
Aspects are automatically generated and integrated into C++ 
programs to dynamically disclose software defects. In [21], 
analogous research on embedded Operating System (OS) 
testing was presented. Manual aspects were employed to test 
embedded C++ programs within the OS. This study 
emphasized four key aspects of functional testing, namely, C++ 
program coverage, memory, performance, and robustness.  

In [10], software security hardening based on AOP was 
investigated. Secure applications have incorporated secure 
patterns devised in AOP through the utilization of memory 
code encryption. An analogous method was elaborated in [13]. 
AOP is a technique for integrating fault tolerance into 
distributed embedded system-based applications. Many fault-
tolerant methods and redundant hardware/software 
configurations have been examined. AOP is utilized to provide 
application thread-level defect tolerance in the system. This 
AOP-based strategy increases modularity, reduces the effort 
required to modernize legacy systems, and enhances the 
configuration for testing and product line development. 

AOP specialization is also applied to the investigation of 
SoC designs for hybrid hardware/software systems. AspectC++ 
[22] is a method to generate an all-encompassing depiction of 
software and hardware components. Aspect programs 
incorporate both hardware and software characteristics, which 
are then linked to the comprehensive description of SoCs. The 
intended design is a hybrid hardware/software solution based 
on a combined Field Programmable Gate Array (FPGA). In 
[23], a SoC investigation was presented. Functional verification 
focuses primarily on AOP through the use of pure hardware 

implementations. AOP has been employed in a restricted 
number of methods to design or model hardware components 
[13, 24]. By employing explicit architectural concepts, such as 
concurrency and time, these studies present synthesizable 
descriptions of SoCs. AOP methods allow the derivation of 
SoC components through SystemC modeling [10], including 
communication, cache rules, and performance measures. The 
generated SystemC models present difficulties in terms of 
synthesis. Consequently, as shown in [25], these methods are 
more advantageous in the domain of simulation and 
verification. 

Previous studies were limited because security verification 
modules were only added at module interconnections, lacked 
an analysis of where internal security verification took place, 
and the original SystemC code had to be changed a lot. By 
incorporating security verification processes into modules and 
interconnections without modifying functional blocks, the 
proposed method enables seamless integration that does not 
cause any disruption to the original code. By addressing 
potential vulnerabilities at internal security verification 
locations within modules, this method improves system 
security without requiring code modifications, simplifying the 
process. 

IV. SYSTEMC PRESENT MODELING 

The objective was to create a PRESENT model in the 
SystemC language using the AOP method. To achieve this 
objective, the cryptographic processes executed by the 
PRESENT cryptosystem were partitioned into many modules. 
Figure 2 illustrates the proposed PRESENT paradigm. The 
PRESENT SystemC model diagram illustrates their module 
interconnections using AspectC++ and AOP. The PRESENT 
SystemC AOP model is composed of 6 parts. 

 

 
Fig. 2.  PRESENT diagram SystemC AOP. 

A. PRESENT module 

This module carries out the PRESENT encryption and 
decryption processes. As shown in Algorithm 1, this module 
performs the following tasks: declares the PRESENT class, 
declares the PRESENT operations, and finally carries out the 
encryption and decryption of the input message. 
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Algorithm 1: The PRESENT module 

SC_MODULE (PRESENT) { 

  SC_CTOR (PRESENT) 

  void PRESENT::addRoundKey(…) 

  void PRESENT::sBoxLayer(…) 

  void PRESENT::pLayer(…) 

  void PRESENT::KeyUpdate(…) 

} 

B. Controller Unit 

This component enables the synchronization of the entire 
PRESENT cryptographic model. The process performs the 
following tasks: declares the Controller_Unit class, and 
declares the PRESENT_Controller(…) function, which 
includes a finite-state machine to ensure synchronization 
between all modules. 

Algorithm 2: The Controller Unit 

SC_MODULE(Controller_Unit) { 

  SC_CTOR(Controller_Unit) 

  VoidController_Unit::PRESENT_Controller(…) 

} 

C. Input Interface 

This component rearranges the data stream following the 
specifications laid out by the communication protocol. As 
shown in Algorithm 3, the Input_Interface module declares two 
functions where the process performs the following tasks: 
declares the functions Input_Plaintext(...) and Input_Key(...), 
and divides the input messages into the required size (64 bits 
for plaintext - 80 or 128 bits for the key). 

Algorithm 3: The Input Interface 

SC_MODULE(Input_Interface) { 

  SC_CTOR(Input_Interface) 

  voidInput_Interface::Input_Plaintext(…) 

  void Input_Interface::Intput_Key(…) 

} 

D. Output Interface 

This module restores the encrypted stream to the 
communications protocol's format and declares the function 
Output_Ciphertext (…). 

Algorithm 4: The Output Interface 

SC_MODULE(Output_Interface) { 

  SC_CTOR(Output_Interface) 

  VoidOutput_Interface::Output_Ciphertext(…) 

} 

E. Fault Detection Scheme (FDS) 

The purpose of developing the FDS module is to safeguard 
the PRESENT module from fault attacks. As shown in 
Algorithm 5, the FDS module declares two functions: 
Fault_PRESENT_Detection (...) and Fault__PRESENT_ 
Analysis (...). The FDS module performs the following tasks: 
detects all the faults during the authenticated encryption 
process and analyzes the fault detection results. 

Algorithm 5: The Fault Detection Scheme (FDS) 

SC_MODULE(FDS) { 

  SC_CTOR(FDS) 

  void FDS::Fault_PRESENT_Detection(…) 

  void FDS::Fault_PRESENT_Analysis(…) 

} 

F. Database 

This module holds all the variables and constants that are 
used in the process of authenticated encryption. The code 
includes the definition of two functions: Variables(…) and 
Constants (…). 

Algorithm 6: The Database 

SC_MODULE(Database) { 

  SC_CTOR(Database) 

  void Database::Variables (…) 

  void Database::Constantes(…) 

} 

V. FUNCTIONAL VERIFICATION ENVIRONMENT 

The functional verification environment proposed for the 
PRESENT model utilizes the transaction-based verification 
environment in SystemC. The system incorporates a reference 
model that offers a comprehensive design description and runs 
concurrently with the PRESENT model to evaluate the 
simulation output results. Instead of simulating signals, the 
reference model handles module interactions at the 
transactional level. Figure 3 shows the testbench SCV, a 
module that produces the encryption keys and texts for the 
reference and proposed models at random. The testbench SCV 
sends signals to the transactor, which then applies those signals 
to the model inputs. A comparator module compares the 
outputs after each transaction and generates the results. 

 

 
Fig. 3.  PRESENT functional verification environment. 

 (1)+(2): The testbench SCV generates stimuli randomly for 
the two cryptographic models, namely the proposed and the 
reference models. 

 (3): The transactor module converts transactions into 
signals, which are then adapted to the inputs of the 
proposed non-TLM model. 

 (4)+(5): Both models use the databases. 

 (6)+(8): The comparator module's input consists of 
PRESENT SystemC-based AOP and transactor outputs. 

 (7): The reference model's TLM output. 

 (8): The transactor converts transactions into signals that 
can be adjusted to match the outputs of the non-TLM 
model. 

 (9): The results of the comparison report are produced. 
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VI. RESULTS AND DISCUSSION 

This section focuses on evaluating the proposed SystemC-
AOP paradigm and analyzing the effects of employing 
SystemC and AspectC++ in ESL on the cryptography 
architecture. The simulation time and the size of the executable 
file of the cryptographic model were evaluated to determine the 
impact of the AOP approach on both of these factors. The 
modeling process was performed using AspectC++ 2.3 and 
SystemC 2.3.4, and the PRESENT SystemC AOP model was 
validated using an Intel Core I5-3470 3.2 GHz CPU, 8 GB 
RAM, and the gcc 10.3 compiler. 

A. Fault Analysis AOP Impact 

Fault attacks were executed using the proposed 
environment to test the detection capabilities of the PRESENT 
SystemC-AOP environment. Fault detection capabilities were 
assessed using two scenarios: pure SystemC and SystemC-
AOP. In addition, a fault detection scheme was used for this 
evaluation [6]. To do this, the AspectC++ and SystemC 
simulation kernels were used to assess and compare the results 
of the PRESENT SystemC-AOP environment.  

The simulation results, shown in Table I, demonstrate that 
both the SystemC-AOP and the SystemC PRESENT models 
had comparable fault detection capabilities in terms of 
identified faults, thus affirming the effectiveness of the 
proposed SystemC-AOP technique. The findings indicate that 
incorporating AOP into the SystemC framework does not 
undermine the detection capabilities of the design models. 

TABLE I.  DETECTION CAPABILITY: SYSTEMC-
AOP/SYSTEMC 

PRESENT block cipher 
Random fault detection capability 

SystemC SystemC_AOP 

PRESENT block cipher model 
protected by FDS [6] a 

99.997% 99.997% 

PRESENT block cipher model 
protected by FDS [6] b 

99.999% 99.999% 

a. PRESENT standard architecture, b. PRESENT architecture presented in [17] 

B. Impact of AOP on Simulation 

To ascertain the impact that AOP has on the duration of the 
simulation, some simulations were performed with the 
developed environment. Two defect detection schemes were 
utilized to determine the kernel time (kTime) and user time 
(uTime) during this procedure. It should be noted that kTime 
and uTime are contingent upon both the amount of Join Points 
and the amount of modules to be inserted using the AOP 
technique. Table II displays the results of the simulations used 
to determine kTime and uTime in two different scenarios: 
SystemC and SystemC_AOP.  

TABLE II.  SYSTEMC/AOP SIMULATION TIME 

PRESENT block 

cipher 

kTime (s) uTime (s) 

SystemC SystemC_AOP SystemC SystemC_AOP 

PRESENT 
protected by FDS 

[6] a 
0.026 0.025 1.432 1.433 

PRESENT 
protected by FDS 

[6] b 
0.023 0.024 1.123 1.126 

a. PRESENT standard architecture, b. PRESENT architecture presented in [17]. 

The margin of error associated with the measurement 
procedure employed (Linux commands) is undeniably 
negligible, and, as such, does not affect the accuracy of the 
simulation results. 

The results indicate that the utilization of the AOP approach 
to integrate the Input_Interface, Database, Controller_Unit, 
FDS, and Output_Interface modules into the SystemC model 
does not result in any discernible effect on simulation 
execution times. This suggests that the additional complexity 
introduced by the AOP approach does not significantly affect 
simulation performance. Therefore, it can be concluded that the 
integration of AOP in SystemC does not have a noticeable 
effect on kTime and uTime in this particular study. An 
additional pivotal aspect to consider when evaluating the 
impact of AOP is the size of the resulting executable file. Table 
III shows the executable file sizes produced by AspectC++ and 
the SystemC kernel in the two scenario situations. 

TABLE III.  EXECUTABLE FILE SIZE IMPACT: 
SYSTEMC/AOP 

PRESENT block cipher SystemC SystemC_AOP 

PRESENT block cipher model 
protected by FDS [6] a 

0.465 MB 0.463 MB 

PRESENT block cipher model 
protected by FDS [6] b 

0.468 MB 0.467 MB 

a. PRESENT standard architecture, b. PRESENT architecture presented in [17]. 

 
The simulation results demonstrate that despite the 

utilization of two programming languages (SystemC and 
AspectC++) to model the proposed model and employing the 
AOP technique to weave together all modules, the executable 
file sizes remain almost unaltered. This indicates that adjusting 
the AOP does not substantially affect the file size of the 
executable. Additionally, the results suggest that the AOP 
technique effectively manages cross-cutting concerns without 
significantly affecting the overall performance of the system. 
This highlights the potential benefits of using AOP in software 
development for modularization and improved code 
maintenance. Furthermore, the results show that AOP can 
enhance code reusability and readability by separating concerns 
more efficiently. In general, the findings support the integration 
of AOP techniques in software development to streamline the 
design process and enhance overall system performance. 

VII. CONCLUSION 

This study presents a SystemC model for the Electronic 
System Level that is based on Aspect-Oriented Programming 
(AOP). A functional verification environment is recommended 
to validate model functionality, simulation time, and executable 
file sizes. The verification environment comprises testbenches, 
stimuli generators, and coverage monitors to ensure the 
precision and comprehensiveness of the model. Furthermore, 
the verification environment facilitates the detection of possible 
design defects and assists in troubleshooting the model. In 
addition, it offers a comprehensive framework for assessing the 
performance and dependability of the PRESENT SystemC 
model in various circumstances. The simulation results indicate 
that the efficiency of the AspectC++ model and the weaving of 
the PRESENT module have minimal impact on both the 
simulation time and the size of the executable file. In addition, 



Engineering, Technology & Applied Science Research Vol. 14, No. 5, 2024, 16772-16777 16777  
 

www.etasr.com Mestiri et al.: Α PRESENT Lightweight Algorithm High-Level SystemC Modeling using AOP Approach … 

 

the proposed PRESENT SystemC AOP model exhibits 
enhanced modularity and maintainability compared to 
conventional methods. Moreover, the proposed techniques for 
injecting and detecting faults have been proven to be viable and 
efficient in assessing the resilience of cryptographic schemes 
against fault attacks. The simulation time is minimally affected 
by the AOP, which proves its usefulness in evaluating security 
domains by minimizing both efforts and errors. Furthermore, 
the AOP approach facilitates convenient customization and 
modification of the fault injection/detection mechanism to 
adapt to unique cryptographic systems. The flexibility of this 
method allows it to be used in various security circumstances, 
thus increasing its effectiveness in assessing the strength of 
cryptographic schemes. In summary, the use of AOP in 
SystemC modeling has the potential to improve design 
adaptability and productivity in electronic system-level 
development. 
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