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ABSTRACT 

This paper examines the formulation and implementation of a neuro-controller for the excitation system of 

synchronous generators in a Single-Machine Infinite Bus (SMIB) power system. The SMIB model is 

employed as a fundamental model of a power system, thereby facilitating the assessment and comparison 

of disparate control strategies with the objective of enhancing system stability. The goal of this study is to 

enhance the stability of the SMIB power system through the implementation of an Artificial Neural 

Network (ANN) neuro-controller, providing a comparison of its performance to that of a Power System 

Stabilizer (PSS) and a Proportional-Integral-Derivative (PID) controller. The proposed neuro-controller 

will be integrated into the generator's excitation system and will be designed to regulate the excitation 

voltage in response to fluctuations in the system's operational parameters. To this end, an ANN is 

calibrated to account for the singularity of the generator's excitation level and terminal voltage. The 

Levenberg-Marquardt algorithm is employed to ascertain the optimal weight coefficients for the ANN. To 

assess the performance of the neuro-controller, simulations were conducted using MATLAB/Simulink. The 

simulations encompass a comprehensive range of operational scenarios, including diverse disturbances and 

alterations in the reference voltage level. Subsequently, the neuro-controller's outputs are evaluated in 

comparison to the PSS and PID controllers, as these are the prevailing controllers used to enhance voltage 

regulation and transient stability in power systems. This paper presents the results of an analysis of the 

neuro-controller's impact on the system's robustness, voltage variation amplitude, and generator dynamic 

performance during faults. Simulation results demonstrate that the application of an ANN-based neuro-

controller yields superior outcomes in voltage regulation and transient stability compared to the 

conventional controllers PSS and PID. Furthermore, the neuro-controller is distinguished by accelerated 

response times and enhanced precision in voltage level regulation. The neuro-controller represents a 

superior approach to the control of a power system, particularly in the context of SMIB, which would 

ultimately result in enhanced performance and stability. 

Keywords-neural controller; Single-Machine Infinite Bus (SMIB); power system stability; Power System 

Stabilizer (PSS); Proportional-Integral-Derivative (PID) controller; Artificial Neural Networks (ANNs); 

Levenberg-Marquardt-algorithm  
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I. INTRODUCTION  

The stability of the power system is of great importance 
when considering the credibility of active operation, 
particularly in the context of SMIB systems. They serve as 
foundational models for investigating power system stability, 
encompassing pivotal components, such as synchronous 
generators, excitation systems, turbine and governor systems, 
load dynamics, and PSS [1, 2]. The synchronous generator 
represents the core of the SMIB system, responsible for the 
conversion of mechanical energy into electrical energy. 
Nevertheless, the participation in a settled operation 
necessitates the precise regulation of numerous parameters, 
including voltage terminal, output reactive power, and rotor 
speed (3). The process is facilitated by the system excitation, 
which regulates the generator's excitation level to ensure 
optimal reactive power control and voltage regulation [4, 5]. 
Furthermore, the governor systems and turbine play a 
significant role in maintaining rotor speed within the desired 
limits, which contributes to the overall stability of the system. 
Furthermore, fluctuations in connected loads can impact the 
system's power output and stability, introducing additional 
complexities to the system dynamics [6-8]. In recent years, 
there has been a growing interest in the use of previous control 
techniques, such as neural network-based controllers, to 
enhance the stability of power systems. Neuro-controllers offer 
the advantage of modification and robustness, making them a 
potentially suitable means of regulating system parameters in 
SMIB systems [9, 10]. There has been a growing benefit to 
leveraging advanced control techniques, such as neural 
network-based controllers, to further improve power system 
stability. Neuro-controllers demonstrate the advantages of 
modification and robustness, making them a potentially 
suitable means of adjusting system parameters in SMIB 
systems [11, 12]. Based on a comprehensive simulation 
learning and comparative analysis, the proposition that neuro-
control may offer a potential advantage in SMIB systems is put 
forth, thereby contributing to the advancement of control 
techniques for power system stability [13].  

This study focuses on the advancement of control methods 
in power systems, with a particular emphasis on the integration 
of neural network-based controllers with existing control 
methods to enhance reliability and stability. The results 
demonstrate that employing an ANN instead of a PSS with a 
PID and an AVR enhances the stability of the power system. 
By deploying a multi-layer neural network trained to use the 
Backpropagation (BP) algorithm and the Levenberg-Marquardt 
optimization technique, the efficacy of neuro-control in 
enhancing stability is analyzed and compared to conventional 
control approaches using MATLAB modeling to examine the 
distinctions in performance. The term "power system stability" 
is defined as the capability of an electric power system to 
restore its initial operational balance and remain in a state of 
equilibrium when it experiences an external disruption [14]. 
The electrical system has undergone a notable expansion in 
both size and complexity in recent times, thereby facilitating 
the deployment of robust instruments for the effective 
management of pertinent issues. The system responsible for 
generating the excitation signal depends on two principal 
components: the Automatic Voltage Regulator (AVR) and the 

exciter. The regulated output of the exciter is determined by 
measuring the terminal generator voltage and comparing it to a 
reference voltage. The damper and the field winding are 
designed to mitigate the effects of rotor oscillations following 
any disturbance. The AVR generates negative damping torques 
that impede the damping process [15]. The power system is 
susceptible to the potential loss of synchronization or the 
generation of undesired oscillations. To address this issue, the 
PSS has undergone an expansion and enhancement process 
using advanced technology. The PSS incorporates a damping 
element that is synchronized with fluctuations in rotor speed. 
This element serves as the primary signal generator for the 
system excitation, introducing an additional signal. Therefore, 
the installation of the PSS device would serve to enhance the 
stability of the system [16]. ANNs are frequently employed due 
to their capacity to comprehend intricate nonlinear 
relationships and their ability to process applications that 
include a substantial volume of past data [17, 18]. This research 
project is designed to examine the advancements in control 
methodologies for power systems, with a particular emphasis 
on the integration of neural network-based controllers with 
existing control techniques to enhance reliability and stability. 
The results demonstrate that employing an ANN instead of a 
PSS with a PID and an AVR for an infinite bus single-machine 
enhances the stability of the power system.  The deployment of 
the AVR and PSS has led to a discernible enhancement in 
stability, particularly in normal and minor disturbance 
scenarios. In order to enhance stability and control within 
operational systems, it is essential to identify more effective 
controller parameters. It is important noting that a number of 
distinctive optimization techniques have been investigated in 
the relevant academic literature. A substantial assortment of 
generators, transmission lines, transformers, safety apparatus, 
and additional pertinent components constitute the power 
system of an electric utility. The principal function of a power 
system is to generate, transmit, and distribute electrical energy. 
The system's end users can be interconnected at disparate 
voltage levels, such as sub-transmission, primary distribution, 
and secondary distribution, and they regulate the requisite 
generation needs through their continually shifting demand [14, 
15]. Authors in [19], studied an ANN-based AVR equipped 
with a synchronous generator. In contrast to conventional AVR 
systems that depend on PID controllers, the proposed AVR 
system employs ANN to guarantee a constant output voltage 
despite load fluctuations. 

The system uses synchronous generators, induction motors, 
and experimental data gathered from the design, encompassing 
frequency converters and weight groups. Three distinct 
learning methods in MATLAB are employed to train the ANN 
with experimental data on the snow. Subsequently, the trained 
ANN models are tested individually and their performances are 
compared in order to evaluate the optimal control of the 
generator output power. Authors in [20] proposed a novel 
robust PSS, designated as the Fractional Order PID Controller-
PSS (FOPID-PSS). This system integrates fractional order PID 
control with PSS, thus achieving enhanced robustness. The 
Integral of the Error Squared (ISE), the measured absolute 
Error Average Over Time (ITAE), and the squared error 
multiplied by the Interpolated Time Element (ITSE) are 
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effective criteria for evaluating the control performance. The 
Bat algorithm (BA), which is driven by echolocation behavior, 
is employed to ascertain optimal stability features. Authors in 
[21] employed, an ANN to enhance the dynamic stability of 
power systems. The model utilizes post-fault generator rotor 
angle trajectories as input to forecast the ultimate values and 
time for failure of substantial generator stability with precision. 
Authors in [22] investigated the use of ANN for the detection 
of faults in power lines. The simulations in MATLAB employ 
real 132 kV line data from the Enugu station of the 
transmission line, along with both real and synthetic 
parameters. The ANN is trained and designed to detect a 
variety of fault types, including line-to-ground, line-to-line, and 
line-to-line-ground faults. The results of the performance 
analysis demonstrate that ANN-based methods are an effective 
approach for accurate fault detection. Authors in [23], analyzed 
the electronic design process, and the use of ANN was 
employed to enhance the analytical process. This analysis 
incorporates several unknown variables, including the 
contained fault mode, fault type, fault location, and fault 
resolution time. The proposed method has been proven to 
accurately predict the short-term stability of large-scale power 
systems. Authors in [24], proposed the optimal advantages of 
equations as a means of designing a PSS to address the issue of 
slow (LFOs) in power systems. The performance of PSS is 
compared to that of ANN methods, with a particular emphasis 
on efficiency and effectiveness in the stabilization of power 
systems. Authors in [25] propose the use of integrating 
decentralized control in a multi-machine power system as the 
focus of this work. A model was constructed for each machine 
within the grid using the Blondel diagram. This is primarily 
due to the fact that the system is nonlinear, necessitating the 
use of a Takagi-Sugeno (TS) fuzzy logic controller, which was 
demonstrated to provide relatively good performance. A 
significant advantage of the proposed control system is its 
reduced susceptibility to disturbances. This is further evidenced 
by the simulation results on a nine-node Western System 
Coordinating Council (WSCC) test grid. The indices of system 
damping, matrix page size, transient stability, and voltage 
regulation were optimized by minimizing the ITAE for the 
optimization criterion. Synchronous numerical simulations 
have been conducted on a SMIB system, taking into account 
various fault and fault-cleared scenarios [26]. The results 
demonstrate the efficacy of the proposed approach in 
comparison to traditional PSS methodologies. While the 
precise degree of improvement may vary depending on the 
specific circumstances, the asserted outcomes include a 5% 
reduction in overshoot, an 87% decrease in transient time, and 
the absence of steady-state error. 

II. SYSTEM DYNAMIC MODELLING 

The nonlinear power system is a highly intricate and 
sophisticated entity. Therefore, when selecting a power system, 
it is essential to consider the stability of the rotor angle and the 
management of generator voltage. Consequently, an AVR is 
employed to regulate the generator voltage and guarantee 
system stability, in conjunction with a PSS [27, 28]. This 
research considers the single-machine connected to SMIB 
configuration, as shown in Figure 1 [29-33]. The synchronous 
generator model is a seventh-order detailed dynamic model. 

However, the third-order model remains a valuable tool for 
control and stability analysis of generators associated with 
power systems [34]: 
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where, δ is associated with the rotor angle of the generator, ω 
with the speed deviation between the synchronism and the 
generator, and Pe with the electrical power output delivered by 
the generator. The transient Electromagnetic Force (EMF) on 
the q-axis is represented by !��" , the input mechanical power is 
represented by Pm, and Efd is the input voltage excitation. The 
values of #�$" , KD, and H denote the system components that 
correspond to the excitation circuit time constant, damping 
torque coefficient, and inertia constant, respectively. Additional 
algebraic equations are: 
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where,  XK = XL + -M

 , X'K = X' + XK, X'K" = X'" + XK . The 

terminal voltage magnitude is represented by Vt(t). VS is the 
voltage to the infinite bus, Xq and Xd are the (q-d-axes) 
reactance and synchronous reactance, respectively. X'd is the 
transient reactance at the d-axis, while XL and XT are the single 
line reactance and transformer, respectively. Although the 
electrical active power, Pe(t), is accurately measured in 
practice, the generator's internal transient voltage is not. 
Consequently, in the system dynamic related to (1), the 
differential of E'q(t) may be replaced by the following electrical 
power differential equation: 
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The control action is represented by Efd that adjusts the field 
voltage to stabilize the system. A combination of PID control 
and PSS control can be used to achieve this. Let us denote the 
PID controller as uPID and the output of the PSS controller as 
uPSS. The control law for the combined control system is: 

  ��S� ���
�� = �

�T  �() �BU9�   − B���� + V��� − �������� (9) 

where the gain constant exciter is (W and the time exciter 
constant is TA and:  
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V��� = �XYPP + XYZ� �    (10) 

The objective of this research is to demonstrate the efficacy 
of employing a neural network to analyze a nonlinear power 
conclusion system. The study employs a SMIB model within 
the power system, interfaced with an artificial neural network 
developed in MATLAB using the Neural Network Toolbox. In 

order to maintain the nonlinear dynamics of the system, a 
feedforward neural network with time delays is deployed. It is 
noteworthy that a discrete model is a prerequisite for the 
training process [33]. 

 

 
 

Fig. 1.  Power system under study: single line diagram. 

The model state space for the power system exhibits 
nonlinear behavior, which can be described as: 

D[ = D���, ∅���D��� + X���
]��� = ^��D���, ∅��� _   (11) 

where X(t) is a vector representing the three states, Y(t) is a 
vector representing the output, and ∅(t) is the vector parameter 
for all function parameters. Consequently, these equations 
describe the state vector, output vector, and parameter vector. 
The state vector X(t) = [ δ(t), ω(t), Ε΄q(t)], Y(t) = [ω(t), Vt(t)], 
∅(t) = [XS, VS]. 

The discrete time for the third-order model with a sampling 
time Ts of the generator electrical and rotational dynamics 
using Euler approximation can be: 
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where k is the discrete time of the step, (k+1) is the discrete 
time of the next step, and Ts is the sampling time. This research 
uses the neuro-controller, and the architecture of the multi-
layer neural network, employing the BP technique, which is 
characterized by a feedforward network. This network exhibits 
a nonlinear behavior as it operates with many inputs and 
outputs. 

III. MODELING OF PID CONTROLLER WITH PSS 

The operation of power plants is subject to a number of 
uncertainties, including those pertaining to the conditions under 
which they are operated and the potential for disruption. The 
deployment of a PSS is essential for ensuring equipment 
efficiency, given that oscillatory stability [32] is maintained 
within an optimal operational range. The stratification of 
damping torque for an electrical damping torque (ΔTm) in 
conjunction with the PSS through the speed variation (Δω) 
serves to reduce oscillations in the power system. The study 
employs an active method that uses the PID controller to 
precisely adjust the tuning parameters of the PID-type PSS 
novel design structure, thereby determining the optimal PID-
PSS configuration for a SMIB power system [36]. The 
principal objective of a PSS is to enhance the stability of a 
generator by controlling its excitation through the introduction 
of stabilizing signals, which serve to minimize oscillations in 
the rotor. The stabilizer generates electrical torque that is 
synchronized with every variation in the rotor speed, thereby 
providing damping [37]. A PID is a type of control loop 
feedback mechanism that addresses the issue of variability 
between different operational parameters and the desired input. 
It accomplishes this by identifying the underlying issue and 
transmitting a corrective signal to optimize the process. In 
general, a controller PID can be expressed as: u (PID) = Kp + Ki 
+ Kd, where Kp is the proportional gain, Ki is the integral gain, 
and Kd is the derivative gain. The algorithm comprises three 
principal parameters: proportional, integral, and derivative 
values and oversees the implementation of the desired output 
[38]. The Simulink block set has been developed using 
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MATLAB software for the analysis and performance 
evaluation of the PSS. As evidenced in Figure 2, the PID 
controller and PSS validation have been evaluated under 
different operational conditions [39]. The stabilizer's input 
signal provides the speed deviation (Δω) and it is 
recommended for a PSS in conjunction with a PID controller to 
be employed to enhance the system's stability and performance, 
particularly in comparison to existing power systems. The 
response of the controller can be evaluated in terms of the 
achievement of the error controller, the points at which the 
controller exceeds the set point, and the degree of system 
oscillation [40]. 

 

 
Fig. 2.  Block diagram of PID-PSS. 

IV. DESIGN OF THE NETWORK WITH ANN 

In light of the ongoing advancement of power systems and 
the growing necessity for high-quality energy, it is imperative 
to undertake a comprehensive examination of contemporary 
control approaches. ANNs are particularly well-suited for 
addressing complex problems in a manner that is more 
effective than other techniques. This analysis examines ANN 
models and then engages in a comprehensive discussion of 
many key aspects. ANNs have been increasingly used in a 
variety of power systems to address a range of issues, including 
load forecasting, security assessment, fault detection, system 
identification, operation, planning, protection, and alarm 
processing [41, 42]. In a SMIB, the principal components are a 
synchronous generator, a PSS and an excitation system, a 
turbine and a governor system, and load dynamics. The 
synchronous generator is the component responsible for the 
conversion of mechanical energy into electrical energy. The 
PSS assists in maintaining system stability by regulating the 
excitation level of the generator. The excitation system is 
responsible for regulating the terminal voltage and reactive 
power output of the generator. The turbine and governor 
system are responsible for maintaining the rotor speed at the 
desired level. Finally, load dynamics pertain to the behavior of 
loads connected to the system that may result in fluctuations in 
the power output. These components, in combination, facilitate 
the functionality and stability of the SMIB system [2]. The 
neuro-controller plays a crucial role in regulating system 
parameters, which is essential for achieving stability and 
optimal performance in a single-machine infinite bus system 

[43]. A variety of training methods may be used for the 
development of a neuro-controller within the context of a 
single-machine infinite bus system. One approach is supervised 
learning. The neural controller offers several advantages over 
traditional controllers for power systems, especially in terms of 
self-tuning capabilities and its ability to handle nonlinear 
characteristics inherent to power systems. This is achieved with 
notable success in minimizing overshoot, reducing settling 
time, and enhancing overall system stability at varying fault 
levels. However, it is not without its limitations, including the 
necessity for extensive learning datasets, heightened model 
complexity, and augmented processing demands, as well as the 
potential for overlearning. Additionally, it appears to be more 
of an opaquer system rather than a conventional controller, 
which may limit its transparency. Nevertheless, the potential of 
the neural controller is evident, and this forms the basis for its 
use as an enhanced tool in power system control. 

A. Architecture and Training of the Neural Controller 

The Neuro-Controller is employed to supplant both a 
PSS/AVR and a PID controller, hence facilitating the provision 
of Efd. ANN employs a multi-layer neural network with a 
feedforward network trained using the BP algorithm. The neuro 
controllers are composed of one hidden layer and one output 
neuron, with two inputs: rotor speed deviation (Δωt) and 
voltage terminal (Vt). In subsequent learning trials, the number 
of hidden neurons remains constant. During these trials, the 
activation function for the hidden layer is that of a sigmoid, 
while the activation functions for the input and output layers 
are linear. The Levenberg-Marquardt algorithm is employed to 
efficiently train the neural network, and is renowned for its 
versatility and rapid convergence in nonlinear optimization 
systems. Therefore, it can be concluded that this algorithm is 
the most optimal among those that have been proposed so far. 
The network is trained to reproduce the specified target, or 
control signal. In this case, the discrepancy between the NN 
output and the reference is employed for the purpose of 
adjusting weights during the training process. The neural 
control system architecture, as presented in Figure 3, comprises 
a neuron at each layer, with the output of each neuron 
expressed by: 

  fg�`� � hbc�  i∑ kb  fg  �` � 1�l  (16) 

where f is the activation function. The neural controllers that 
are connected to the single machine are subjected to a 
comprehensive examination. The network comprises multiple 
layers and is feed-forward. The anticipated voltage at the 
subsequent instant (k+1) in the future, the actual voltage at the 
conclusion, and the generator deviation velocity constitute the 
input. The neural controller is responsible for emitting the 
actual energy that excites the machine. The NN controller 
accepts inputs from either the delayed values of the neural 
network's outputs (or the control signal), the system output, or 
both. The network is trained to reproduce the specified target, 
which is also referred to as the control signal. In this context, 
the discrepancy between the NN output and the reference 
(target) is employed for the purpose of adjusting weights 
during the training process. The network is trained with the 
Levenberg-Marquardt backpropagation algorithm, which uses 
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the trainlm algorithm. The neural controller is composed of 
three inputs, one hidden layer, and one output neuron. The 
activation function for the hidden layer is the sigmoid function, 
while the activation functions for the input and output layers 
are linear. Following the learning trials, the number of hidden 
neurons is fixed. 

 

 
Fig. 3.  Structure of the neural controller. 

In order to develop a successful neural controller through 
training, the value of the parameters from the machine is taken 
and used to train the neural controller. The data set is provided 
from SMIB. It should be noted that the parameter values in the 
system are updated in a dynamic model when the system 
training algorithm is in operation. The neural controller training 
was evaluated for different initial conditions, and is given by: 

m�`� � 0.5 ∑� o��` F 1� � o�` F 1��
  (17) 

The gradient descent of the error for the network weights is 
a function of the back-propagation method: 

  pgq�` F 1� � kgq�`� � r st�b�
suvw�b�     (17) 

st�b�
suv�b� � sx�bc��

syg�b�  syg�b�
suv�b�       zm�`�  (18) 

where X�`� is the output of the neural controller, which refers 
to the  ��� , and  r  is the learning rate, a hyperparameter 
controlling the step size during weight updates. The simulation 
results were obtained through the implementation of a 
specialized learning approach for neural networks. The initial 
step in developing a neural network controller is to define an 
appropriate network architecture, which involves specifying the 
number of neurons and the number of layers in each layer. A 
typical neural controller comprises a single output neuron and a 
single hidden layer. Following several learning trials, the 
number of hidden neurons remains constant, and the 
architecture that yields the fewest errors is selected. In regard to 
the hidden layer, the sigmoid activation function is a standard 
approach, whereas the input and output layers typically employ 
the linear activation function. 

It is therefore imperative to select an appropriate structure 
for the neural network. The training of the NN commences 
with a predefined number of neurons, and its performance is 
assessed through the recording of outcomes. In the event that 
the performance of the neural network fails to achieve the 
desired level of precision and accuracy, an additional neuron is 
added to the network, followed by retraining. This process is 
repeated until either the mean squared error reaches a 
sufficiently low level or no substantial improvement is 

observed when the neural network is expanded. To assist in the 
selection process, numerous trials have been based on the 
aforementioned process, resulting in a final NN structure 
comprising three inputs, 12 neurons in the hidden layer, and a 
single output. Following the training trials, the optimal 
configuration is determined to be a network with three neurons 
in the input layer, twelve neurons in the hidden layer, and one 
neuron in the output layer. The data set comprises 2,000 
samples, each of which was captured with the values of the 
state variables of the system and the corresponding control 
action taken at that time. The learning rate for this data set is 
set to 0.01, which allows for the control of the step size through 
weight updates. The data under study are typically divided into 
three categories: training data, which constitute 70% of the 
total data set, validation data, which typically constitute 15% of 
the data set and test data, which make up the remaining 15% of 
the data set. The performance is also measured in terms of the 
mean squared error. The mean square learning process, 
conducted using the Levenberg-Marquardt algorithm, yielded 
an average of 5.5727e10−6 at epoch 603, representing the 
optimal validation performance, as depicted in Figure 5. 

 

 
Fig. 4.  Neural network controller of the training process. 

 
Fig. 5.  Feedforward NN performance. 

The process for validating the neural controller in the SMIB 
system presents a planned approach to ensuring its 
functionality and stability, particularly with regard to the 
voltage terminal. The process commences with the 
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enhancement of an intricate SMIB model, which includes the 
dynamics of the synchronous generator. The subsequent phase 
of the process entails the design of a neural controller that 
optimizes the performance of the excitation system under a 
range of operational scenarios. The training process for the 
neural controller entails the usage of a dataset for the purpose 
of acquiring an understanding of the intricate relationship 
between the state system and the desired control inputs. The 
test validation encompasses the examination of the system 
under steady-state and transient conditions, in addition to a 
robustness assessment of the parameters. A comparative 

analysis should be conducted with traditional control strategies, 
with the performance metrics of voltage deviation and settling 
time evaluated. The validation findings are meticulously 
documented in order to highlight the strengths and limitations 
of the neural controller, thereby providing insights for further 
refinement and optimization. 

B. Simulation Results 

The power system under consideration is a single-machine 
system. The stability of a single-machine transmission system 
is analyzed in Figure 6. 

 

 

Fig. 6.  Model under study in power system. 

The simulations are conducted using MATLAB (R2019a), 
and the simulation approach is employed to assess the 
performance of a neuro-controller in regulating a SMIB 
system. The neuro-controller is designed as a multi-layer 
feedforward neural network, trained using the Levenberg-
Marquardt backpropagation algorithm (trainlm) method. 
Following the training trials, the optimal configuration was 
determined to be a neuro-controller with three neurons in the 
input layer, twelve neurons in the hidden layer, and one neuron 
in the output layer. The neuro-controller receives inputs, 
including rotor speed deviation (Δωt) and voltage terminal (vt), 
along with a previous value of vt, to generate the control signal 
Efd. Simulations are conducted using MATLAB/Simulink, with 
the neuro-controller serving as a substitute for the PSS or AVR 
controllers. An ANN is used to replace a PSS/AVR controller 
in the machine, therefore enhancing both steady-state stability 
and voltage regulation in the power system. The simulation is 
conducted for the various types of controllers, including AVR 
without PSS, AVR with PSS and PID, and AVR with ANN, 
and both steady-state conditions and dynamic responses to 
disturbances are examined, with a comparison of the 
performance of the neuro-controller against that of traditional 
control methods. The system was subjected to a three-phase to 

ground fault at two different times. The first and second faults 
occurred near the load at t=1 s and cleared at 100 ms and 300 
ms, respectively, by the disconnection of the faulted line. The 
results demonstrated the terminal voltage (vt), rotor speed 
deviation (ω), and load angle (δ), as illustrated in Figures 7 and 
8. 

The simulation results display the differences between the 
neuro-controller and other neural controllers, including the PID 
and PI controllers. The objective of this study is to conduct a 
comprehensive analysis with the aim of evaluating the 
efficiency of the neuro-controller in enhancing the system 
stability and the response characteristics. The incorporation of 
ANN has resulted in a notable reduction in the system's 
growing and settling times, when compared to traditional 
control methods, such as AVR+PSS with PID and AVR. It is 
evident that upon the removal of the short circuit and 
subsequent alteration of the topology, the system reverts to its 
equilibrium state. The employment of a conventional 
AVR+PSS controller results in the destabilization and 
fragmentation of the system. It is evident that the 
implementation of neural controllers in power systems leads to 
a discernible enhancement in transient stability, particularly in 
the context of fault conditions. 
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(a) 

 

(b)

 

(c) 

 

Fig. 7.  Simulation results at fault t=1 and cleared at 100 ms: (a) field 
voltage,(b) Rotor speed deviation, (c) load angle delta. 

(a) 

 

(b) 

 

(c) 

 

Fig. 8.  Simulation results at fault t=1 and cleared at 300ms:(a) field 
voltage,(b) Rotor speed deviation, (c) load angle delta. 

V. CONCLUSIONS 

This paper presents the design of a novel neuro-controller 
developed for the control of the excitation system of 
synchronous generators in the Single Machine Infinite Bus 
(SMIB) power system. The main contribution of this work is 
the use of the Levenberg-Marquardt algorithm for training the 
weight coefficients of the Artificial Neural Network (ANN), 
which has not been tried in power system control. Compared 
with Power System Stabilizer (PSS) and Proportional-Integral-
Derivative (PID) controllers, this paper proposes an effective 
control method that improves the transient stability and voltage 
regulation, and simulations are performed in 
MATLAB/Simulink under different operating situations. 
Compared with other similar works that aim to analyze the 
conventional control approaches, the present work shows that 
the proposed ANN-based neuro-controller exhibits faster 
response, higher precision and better generalization ability. 
Thus, the results presented in this paper indicate that the 
proposed ANN controller offers improved performance as well 
as more stability of power system operation in a wider range of 
disturbed conditions. This paper contributes to the use of neural 
networks in power system control and provides practical means 
to advance the conventional approaches for further 
development of the subject. 
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