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ABSTRACT 

This paper presents the application of the finite element method to columns with non-uniform cross-

sections resting on elastic foundations, solving the eigenvalue problem of finding the critical load. The 

formula for calculating the stiffness matrix resulting from column bending, elastic foundation, and 

geometric stiffness is established based on the principle of virtual work. Based on the finite element 

formulas, an algorithm is established in MATLAB to find the column’s critical force. The results obtained 

using the proposed approach agree with the exact solution obtained with analytical methods. In many 

cases, the calculation results of the critical force are given to assess the effects of the foundation’s stiffness 

and boundary condition on the critical load. 

Keywords-column; FEM; non-uniformity; stability; foundation   

I. INTRODUCTION  

Nowadays, there are many available high-strength and 
lightweight materials used to create many types of slender 
structures for mechanical and construction applications. 
Nevertheless, slender structures are prone to instability. For 
instance, bridges have many components subjected to 
compression, such as trusses and towers. These structures are 
commonly designed with variable cross-sections to suit the 
load-bearing characteristics of the components and avoid 
material wastage. The stability of structures with variable 
cross-sections has been studied, among others, in [1-3]. Some 
researchers have evaluated the stability of bars with variable 
cross-sections, using analytical methods to find exact or 
approximate solutions. Author in [4] found the exact solution 
for certain columns with variable cross-sections and elastic 
connections, subjected to distributed axial loads. Authors in [5] 
found the exact solution for the buckling problem of a non-
homogeneous Euler-Bernoulli column, using hypergeometric 
and elementary functions. Author in [6] used an approximate 
form solution applying a polynomial series to determine the 
stability of columns with variable cross-sections, subjected to 

axial loads. In [7], the stability of columns with variable cross-
sections and rigid and elastic connections was calculated by 
approximately solving the differential equation of stability. 
Authors in [8] evaluated columns with varying stepped cross-
sections, using the Rayleigh-Ritz method and authors in [9] 
studied the stability of reinforced concrete columns with elastic 
connections. 

Analytical methods have limitations in assessing complex 
structures, thus, many authors attempted to use numerical 
approaches like the finite element method to determine 
structural stability. Authors in [10] used a numerical method to 
investigate the nonlinear stability of axially functionally graded 
columns. Authors in [11] performed the bending-shear 
buckling of a sandwich beam, using approximate analytical 
solutions. Authors in [12] used a numerical method to 
investigate composite rods with semi-rigid nonlinear 
deformable connections. Authors in [13] used the finite 
element method to study the elastic-plastic stability of bars. 
Authors in [14] used the Galerkin finite element method to 
assess the stability of bars with variable cross-sections. Author 
in [15] used the finite element method to estimate the stability 
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of columns with variable cross-sections (e.g. steps and cracks). 
However, these studies have limitations due to the diversity of 
bars with variable cross-sections. The finite element method 
shows versatility in evaluating structures. However, there is 
only a limited number of studies on the stability of bars with 
variable cross-sections using the finite element method. 
Authors in [16] developed the ES-MITC3 triangular element to 
buckle functionally graded porous plates with variable 
thickness. Moreover, authors in [17, 18] studied the random 
stability of columns with variable cross-sections, using the 
random finite element method. 

This study proposes a finite element method for a column 
with a cross-section supported on an elastic foundation. The 
principle of virtual work was applied to establish the system of 
governing equations. MATLAB was used to calculate the 
critical force value.  

II. FINITE ELEMENT FORMULATION FOR A 

COLUMN RESTING ON AN ELASTIC FOUNDATION 

AND HAVING A NON-UNIFORM CROSS-SECTION 

Let us consider a column with any variable cross-section 
bearing a concentrated force at the top of the column, with 
elastic connections at both ends (Figure 1). 

 

 

Fig. 1.  Non-uniform column resting on an elastic foundation. 

Although the column has a variable cross-section, the cross-
section is assumed to be symmetrical, and the column centroid 
is a straight line. The flexural stiffness EI of the element 
holding the two nodes is linearly approximated, using the finite 
element model.  

The displacement of the element along the z-axis is 
approximated by Hermite functions [19, 20]: 
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The potential energy of deformation resulting from column 
bending is expressed as: 
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The potential energy of the elastic foundation is calculated 
by: 
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Substituting the displacement approximation (1) into the 
potential energy functions (3), (4), and (5), and then using the 
variational principle, we obtain the element stiffness matrix and 
the geometric stiffness matrix, which are combined to obtain 
the structure stiffness matrix. 

The stiffness matrix of the element due to bending can be 
expressed by (4): 
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Fig. 2.  Finite element model approximation for a non-uniform column. 

The geometric stiffness matrix is expressed by (5) and the 
element stiffness matrix of the elastic foundation is expressed 
by (6): 
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The column stability equation is: 

   0b f gK K K U        (7) 

where , , ,b f gK K K U are the bending stiffness matrix, the 

foundation’s stiffness matrix, the geometric stiffness matrix, 
and the displacement vector, respectively. 

The critical force is determined from the minimum value of 
the eigenvalue  . 

III. NUMERICAL EXAMPLES   

A. Example 1: Validation Example 

To validate the current approach, consider a free-clamped 
column with a variable cross-section, as shown in Figure 3. 

 

 
Fig. 3.  Non-uniform column. 

In this example, the stiffness ratio between both ends of the 
column is calculated as: 
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The bending stiffness of the column follows the below 
expression:  
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For a convenient comparison and checking of results, we 
calculate the stability coefficient k of the column through a 
dimensionless quantity, as follows: 
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The critical force is usually expressed as a normalized 
formula with the geometric length factor λ:  
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Thus, the geometric length factor is calculated as follows: 
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The error between the exact result and the finite element 
solution is estimated by:  
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Figures 4 and 5 illustrate the value of the stability 
coefficient k and error versus the number of elements. 
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(b) 

 

Fig. 4.  Convergence of the critical force and number of elements when the 

stiffness ratio is α = 0.3. (a) Stability coefficient k, (b) error. 

(a) 

 

(b) 

 

Fig. 5.  Convergence of the critical force and number of elements when the 

stiffness ratio is α = 0.6. (a) Stability coefficient k, (b) error. 

The stability coefficient k, calculated using the finite 
element method, is illustrated in Figures 4(a) and 5(a). The 
calculation results reveal an adequate convergence of the finite 
element method. High accuracy was achieved by dividing the 

column into only four elements. As shown in Figures 4(b) and 
5(b) the error of the finite element method was negligible.   

B. Example 2 

Consider the two-boundary condition of a column with 
stiffness EI changing according to a quadratic law, resting on 
an elastic foundation with stiffness Kdh. The boundary 
conditions at the two ends of the hinged-hinged column (Case 
1) and the clamped-free column (Case 2) are subjected to a 
concentrated force at the end of the column (Figure 6). 

 

 
Fig. 6.  Column subjected to a concentrated load. 

In this example, the finite element solution is implemented 
by dividing the column into elements of equal length. 

We introduce the normalized critical force to evaluate the 
influence of the elastic foundation: 
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In this example, the bending stiffness of the column follows 
the following rule:  

2

0
1 0.2

z
EI EI

L

   
 

    (16) 

In this example, the column is divided into 1 to 20 elements 
to investigate the convergence of the critical force k with the 
geometric length factor λ. Figure 7 shows the results of the 
convergence of the critical load factor. Figure 8 presents the 
results of the convergence of the geometric length factor of the 
hinged-hinged column and the clamped-free column, 
considering an elastic foundation stiffness of kdh = 10. Figures 7 
and 8 show that the critical force and geometric length factor 
converge quickly when there are five or more elements.  

Figures 9 and 10 display the critical force coefficient and 
the geometric length coefficient in relation to the elastic 
foundation stiffness. The results revealed that when the 
foundation stiffness increases, the structure’s stiffness 
increases, the critical force increases, and the geometric length 
coefficient decreases. Figure 9 shows that in the hinged-hinged 
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column (Case 1), the critical force increases almost linearly 
with the elastic foundation, whereas in the clamped-free 
column (Case 2), the critical force increases more slowly than 
the increase in stiffness of the elastic foundation. Moreover, the 
geometric length coefficient (Figure 10) decreases when the 
stiffness of the foundation increases.  

 

(a) 

 

(b) 

 

Fig. 7.  Randomness in the elastic modulus of the beam. (a) Case 1, (b) 

Case 2. 

(a) 

 

(b) 

 

Fig. 8.  Randomness in the elastic modulus of the beam. (a) Case 1, (b) 

Case 2. 

 
Fig. 9.  Column stability coefficient k and stiffness of the elastic 

foundation. 

 

Fig. 10.  Geometric length coefficient according to the elastic foundation 

stiffness. 

IV. CONCLUSIONS 

This paper presents the results of the use of the finite 
element method in calculating the stability of a column, resting 
on an elastic foundation, with a variable cross-section. The 
bending stiffness matrix for a beam with a variable cross-
section and the stiffness matrix for an elastic foundation were 
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established. Algorithms and computational programs were 
developed in MATLAB. Numerical examples showing the 
results of the critical load calculation demonstrate that the finite 
element method when compared to the analytical method 
yields highly accurate results. The numerical examples 
included various elastic foundations of different stiffnesses for 
the hinged-hinged column and the clamped-free column to 
assess the influence of these parameters on the column’s 
critical force and geometric length parameters. The calculation 
results reveal that when the foundation’s stiffness increases, the 
critical force increases and the geometric length coefficient 
decreases. Furthermore, the critical force of a hinged-hinged 
column increases faster than that of a clamped-free column as 
the stiffness of the elastic foundation rises. The finite element 
formulas in this paper can be applied to many types of column 
cross-sections with different shapes, including uniformly 
changing cross-sections and step-shaped cross-sections.  
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