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ABSTRACT 

To ensure reliable environmental perception in the realm of autonomous driving, precise and robust multi-

object tracking proves imperative. This study proposes an innovative approach to multi-object tracking by 

combining YOLOv9's sophisticated detection capabilities with an enhanced DeepSORT tracking 

algorithm, enriched through the integration of optical flow. In the proposed method, the YOLOv9 detector 

acutely identifies objects in input images, and these detected entities are subsequently transmitted to the 

optimized DeepSORT tracking algorithm. The principal contribution of this study lies in improving the 

Kalman filter measurement model within DeepSORT by incorporating robust local optical flow, thus 

adding a velocity dimension to the filter's update vector. This novel approach significantly improves 

tracking resilience in the face of occlusions, rapid movements, and appearance changes. Evaluations on 

MOT17 and KITTI show substantial improvement gains of 2.42%, 2.85%, and 1.84% for HOTA, MOTA, 

and IDF1, respectively, on MOT17, and 1.94% in MOTA and 2.09% in HOTA on KITTI. The proposed 

method particularly excels in managing scenarios involving dense traffic and light variations, which are 

recurrent problems in dynamic urban environments. This enhanced performance positions the proposed 

solution as an essential component of future perception architectures for autonomous vehicles, promising 

safer and more efficient navigation in the complex real world. 

Keywords-object detection; multi-object tracking; autonomous perception; YOLOv9; DeepSORT; optical flow 

I. INTRODUCTION  

Multi-Object Tracking (MOT) is a crucial issue in many 
modern applications, such as video surveillance [1], 
autonomous driving [2], and assistive robotics [3]. Recent 
advances in object detection have greatly stimulated the 
development of even more powerful MOT systems, enabling 
smoother interaction and a deeper understanding of dynamic 
environments [4]. In this context, this study proposes a new 
MOT approach that combines the strengths of YOLOv9 [5], a 
state-of-the-art object detector that stands out for its 
exceptional accuracy and efficiency in real-time object 
detection, with the DeepSORT (Deep Simple Online and 

Realtime Tracking) algorithm [6], renowned for its cutting-
edge approach, exploiting a synergetic relationship between the 
Kalman filter [7] and the Hungarian algorithm [8]. This 
algorithm orchestrates the motion model through the Kalman 
filter and achieves an optimal association between observations 
and predicted trajectories by minimizing the overall cost of the 
assignment, based on a distance metric between appearance 
features and state predictions. Despite DeepSORT's significant 
performance in real-time, it encounters difficulties when object 
movements become more complex or when detections become 
intermittent. The predictions of the Kalman filter can then 
diverge from the real observations, generating discontinuities in 
the trajectories. To overcome these difficulties, a robust optical 
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flow [9] was integrated to provide a detailed estimate of the 
motion between successive images. This innovative fusion 
significantly improves tracking accuracy and robustness, 
particularly in complex scenarios characterized by occlusions, 
changes in appearance, and rapid movements.  

Many studies have made considerable progress in the field 
of MOT since the integration of deep learning. Object 
detection, an essential preliminary stage, has benefited from the 
emergence of high-performance Convolutional Neural Network 
(CNN) architectures [10]. Single-phase detectors, such as 
RetinaNet [11] and CenterNet [12], have established 
themselves due to their efficiency and simplicity, and are 
widely adopted in tracking methods [13]. The YOLO series 
[14, 15] offers an attractive compromise between accuracy and 
processing speed. More recently, transformer-based 
architectures [16, 17] have revolutionized the field of computer 
vision, demonstrating a remarkable ability to model long-range 
relationships between different elements in a scene. Their 
application to tracking multiple objects [18] has opened new 
perspectives in managing complex and dynamic scenes. Data 
association in MOT is a fundamental process that begins by 
calculating the similarity between tracklets and detection 
boxes. This process then relies on various strategies to match 
these elements based on their similarity. Visual cues, such as 
position, motion, and appearance, are crucial to data matching 
in the MOT domain. The SORT algorithm [19] uses a Kalman 
filter to predict the position of tracklets in the next image and 
measures the Intersection over Union (IoU) between the 
predictions and the detection boxes as an indicator of 
similarity. Other more advanced approaches use networks 
dedicated to learning object trajectories [20], thus increasing 
robustness to significant camera movements or low frame rates. 
Position and motion similarities are particularly reliable for 
short-term association, while appearance similarity, quantified 
by the cosine similarity of the re-identification features, is 
essential for long-term association. An object can be re-
identified thanks to appearance similarity even after prolonged 
occultation.  

DeepSORT incorporates a separate re-identification model 
(Re-ID) to extract visual attributes from detection boxes. 
Recent models that combine object detection and re-
identification [21, 22] have gained popularity due to this 
integrated and powerful approach. Once similarities are 
calculated, various matching strategies are deployed to assign 
identities to detected objects. These strategies can include the 
Hungarian algorithm or gluttonous assignment methods. The 
SORT system performs a single pairing between detection 
boxes and tracklets, while DeepSORT uses a cascading 
matching strategy, prioritizing recent tracklets before tackling 
lost ones. MOTDT [23] uses appearance similarity for the 
initial matching of the tracklets, followed by the use of IoU for 
the remaining ones. QDTrack [24] transforms appearance 
similarity into probabilities via a bidirectional SoftMax 
function and uses nearest-neighbor matching. The attention 
mechanism allows boxes to propagate directly in images, 
establishing an implicit association [25]. Innovative techniques 
introduce tracking queries that anticipate future positions of 
tracked objects without using the Hungarian algorithm, but 

relying on the dynamic interaction of attention mechanisms 
[26]. These theoretical and methodological advances in MOT 
improve the accuracy and robustness of object-tracking 
systems in complex environments. 

The main contributions of this study are as follows: 

 Innovative hybrid model: Presents a hybrid tracking model 
that takes advantage of the strengths of YOLOv9, 
DeepSORT, and optical flow to achieve superior tracking 
results. 

 Improved robustness: The proposed approach is particularly 
effective at handling occlusions, appearance changes, and 
fast movements, thanks to the integration of optical flow. 

 Experimental validation: The proposed method was 
evaluated on recognized benchmarks (MOT17 and KITTI), 
demonstrating its robustness against occlusions and its 
ability to accurately track objects in dynamic environments. 

II. METHOD 

The proposed MOT pipeline, shown in Figure 1, is based 
on a sophisticated bipartite architecture. Initially, a YOLOv9 
CNN is deployed for object detection. This model, 
characterized by its single-pass architecture and exceptional 
inference speed, uses implicit convolutions and dense residual 
blocks to extract robust hierarchical features. YOLOv9 also 
incorporates a spatial attention mechanism and a multiscale 
prediction system, allowing the accurate detection of objects of 
various sizes. The network provides not only bounding boxes 
but also confidence scores and classifications for each detected 
object, with remarkable accuracy even in complex scenarios. In 
parallel, an optical flow estimator based on the Kanade-Lucas-
Tomasi (KLT) algorithm is used to calculate the apparent 
displacement vectors between two consecutive images, thus 
providing robust kinematic information.  

These two sources of information are then synergistically 
merged in a Kalman filter, which recursively estimates the 
position and velocity of each object, thus integrating the 
complementary advantages of the detection and tracking 
approaches. An optimized Hungarian assignment algorithm is 
then implemented to establish correspondences between 
current detections and Kalman filter estimates, taking into 
account both kinematic information (provided by the optical 
flow) and appearance information (extracted from visual 
descriptors). This innovative hybrid approach, combining the 
strengths of deep detection and optical flow tracking, ensures 
robust and accurate object tracking in complex video 
sequences, while mitigating the limitations inherent in each 
method individually. Thus, the created synergy enables 
effective management of partial occlusions, rapid changes in 
appearance, and nonlinear movements, which are recurrent 
problems in autonomous driving scenarios in dynamic urban 
environments. 

A. The YOLOv9 Detector 

The YOLOv9 detector, shown in Figure 2, represents a 
major advance in real-time object detection, challenging the 
current limits of computer vision. 
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Fig. 1.  The flowchart of the proposed object tracking algorithm with YOLOv9 and DeepSORT optimized with optical flow. 

 
Fig. 2.  PGI and related network architectures and methods [5]: (a) Path Aggregation Network (PAN), (b) Reversible Columns (RevCol) [3],  

(c) conventional deep supervision, and (d) the proposed Programmable Gradient Information (PGI). PGI is mainly composed of three components: (i) main 

branch: architecture used for inference, (ii) reversible auxiliary branch that generates reliable gradients to feed the main branch for backward transmission, and  

(iii) multi-level auxiliary information that controls learning of the plannable main branch at several levels of semantic information. 
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Its innovative architecture minimizes information loss in 
deep neural networks through dense connections and implicit 
knowledge, maintaining rich multiscale feature maps. An 
advanced attention mechanism and anchorless sensing head 
optimize accuracy and efficiency, particularly in complex 
scenarios with occlusions and dense objects. YOLOv9's 
algorithmic advances, building on the foundations laid by its 
predecessors and exploring new frontiers, enable it to achieve 
an optimal balance between average accuracy (mAP) and 
computational efficiency. While retaining exceptional inference 
speed, the results obtained on the COCO dataset [5] reveal a 
significant improvement in object detection performance with 
YOLOv9. By achieving an optimal balance between accuracy 
and efficiency, the YOLOv9 models outperform their 
predecessors, notably YOLOv8 [27]. These advances are 
attributable to improvements in model architecture, such as the 
introduction of flexible aggregation blocks, as well as 
innovative training strategies. 

B. DeepSORT Algorithm 

DeepSORT represents a significant advance in the field of 
MOT, offering a robust and accurate solution for the 
continuous localization and identification of objects in complex 
video sequences. This approach combines two complementary 
sources of information, which are then merged within a 
Kalman filter, providing a more accurate estimate of the 
dynamic state of the objects being tracked. Building on the 
SORT framework, DeepSORT introduces sophisticated data 
association mechanisms that exploit both kinematic 
information and object appearance. At the heart of DeepSORT 
is a deep feature extraction network, designed to capture 
discriminative visual representations that are invariant to 
geometric and photometric transformations. These visual 
descriptors, combined with a Kalman filter-based motion 
model, enable matches to be established between successive 
detections of the same object, even in the presence of 
temporary occlusions or variations in appearance. DeepSORT's 
cascade association phase is based on a multimodal similarity 
metric that incorporates both a Mahalanobis distance to 
measure the kinematic compatibility of trajectories and a cosine 
distance to assess the similarity of visual descriptors. This 
approach effectively manages ambiguities linked to similar 
appearances or rapid movements. Finally, DeepSORT 
integrates trajectory life management mechanisms, allowing 
traces to be created, updated, and deleted according to their 
consistency and reliability. These mechanisms contribute to the 
tracking robustness and the quality of the results obtained. 

C. Kalman Filter 

The use of the Kalman filter for kinematic modeling of 
objects in a visual tracking context can be formalized by 
considering an octo-dimensional state vector defined as follows  

S =  (x, y, γ, h, ẋ, ẏ, γ̇, ḣ)ᵀ   (1) 

where (�, �) represents the coordinates of the bounding box 
centroid, � denotes the aspect ratio, and ℎ is the height. The 
components (�̇, �̇, �̇, ℎ)̇ correspond to the respective time 
derivatives, characterizing the kinematics of the object in the 
image plane. 

The Kalman filter, based on the assumption of linearity and 
Gaussianity, operates in two distinct phases: prediction and 
updating. In the prediction phase, the a priori state is estimated 
according to 

Ŝₖ⁻ =  FSₖ₋₁ +  wₖ₋₁      (2) 

where F is the state transition matrix and wₖ₋₁ represents the 
process noise. The update phase incorporates zₖ observations to 
refine the estimate  

Ŝₖ =  Ŝₖ⁻ +  Kₖ(zₖ −  HŜₖ⁻)    (3) 

where H is the observation matrix and Kₖ is the optimal 
Kalman gain. This rigorous mathematical formulation of the 
Kalman filter, coupled with an effective association strategy, 
enables accurate and computationally efficient modeling of 
object kinematics in a multi-object tracking framework. 

D. Improved DeepSORT network 

This study proposes an extension of the DeepSORT 
framework to improve the robustness and accuracy of MOT by 
integrating optical flow estimation. This hybrid approach 
combines the advantages of CNNs for discriminative visual 
feature extraction and classical optical flow tracking methods 
for accurate motion estimation. Initially, a YOLOv9 network is 
used to generate object detections and associated bounding 
boxes. In parallel, a KLT optical flow estimator is used to 
calculate apparent displacement vectors between two 
consecutive images. These two complementary sources of 
information are then merged within an extended Kalman filter, 
providing a more accurate estimate of the dynamic state of the 
objects being tracked. 

E. Datasets and Metrics 

1) Datasets 

The MOT17 package [28] has substantially enriched the 
field of investigation of real-time MOT by introducing a corpus 
of stabilized videos acquired using various perceptual 
modalities. Comprising seven sequences dedicated to the 
model learning and validation phases, this benchmark has also 
consolidated its normative character by integrating the 
predictions of standard detectors such as DPM, Faster R-CNN 
[29], and SDP [30]. The KITTI dataset [31] has been designed 
to empower automotive platforms by focusing on detecting and 
tracking entities in road environments from onboard streams. 
To this end, it offers annotations in 2D and 3D modalities with 
an unprecedented level of precision. The relevant hybridization 
of KITTI's specificities with MOT17's metrological standards 
has generated reference frameworks that are particularly well 
suited to the challenges posed by multi-object localization in 
the singular context of intelligent driving. The KITTI tracking 
benchmark, based on 21 training sequences and 29 validation 
sequences, has become an essential tool for evaluating 
algorithmic paradigms developed in the related field of 
embedded computer vision. These databases provide a 
comprehensive scientific basis for testing and perfecting 
practical vision systems, particularly in the critical fields of 
driver automation and travel safety. 
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2) Metric Evaluation 

Rigorous performance evaluation of detection and tracking 
systems is essential in the field of computer vision. To quantify 
the effectiveness of the proposed tracking algorithm, specific 
metrics were used, including: 

 IDF1 criterion [32]: The F1 identification index (IDF1) is a 
composite measure that reflects the overall quality of the 
association between detections and pedestrian identities 
over time. It corresponds to the harmonic mean of 
identification precision (IDP) and identification recall 
(IDR), providing a balanced assessment of the system's 
ability to correctly assign a unique identity to each tracked 
object. 

� !1 =
#|%&'(|

#|%&'(|)|%&*(|)|%&*+|
   (4) 

 MOTA (Multiple Object Tracking Accuracy): This 
fundamental metric quantifies the overall accuracy of MOT 
by integrating false positives, false negatives, and identity 
change errors, as  

MOTA = 1 −
∑  

|2|
234 (*+2)*(2)%&52)

∑  
|2|
234 6'2

   (5) 

where Ground Truth (GT), False Positives (FP), Identity 
Changes (IDs), and False Negatives (FN) represent real 
objects, false detections, identification errors, and tracker 
omissions, respectively. 

 HOTA (Higher Order Tracking Accuracy) [33] is an 
advanced metric for evaluating tracking accuracy in 
computer vision. It excels at distinguishing superimposed 
objects and detecting incoherent movements, incorporating 
the probability of transition errors. It is given by 

789: =
'(;Mismatches;*'

'()*()*+;Mismatches;*'
  (6) 

where TP, FP, FN, Mismatches, and FT represent true 
positives, false positives, false negatives, tracking errors, 
and false transitions between objects, respectively. HOTA 
simultaneously evaluates object detection, association, and 
localization, offering a more comprehensive analysis than 
IDF1 or MOTA. This holistic metric takes into account 
localization, association, and fragmentation errors for an in-
depth evaluation of tracking performance. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

This study proposes a unified experimental framework for 
the comparative evaluation of object detection and tracking 
methods. By implementing an optimized implementation of 
DeepSORT that exploits optical flow and comparing it with the 
conventional DeepSORT implementation, an in-depth 
performance analysis was performed on MOT17 and KITTI 
benchmarks. Combining these approaches with the YOLOv9 
and YOLOv8 detectors aims to provide a comprehensive and 
rigorous assessment of MOT capabilities under a variety of 
conditions. 

A. Quantitative Analysis 

The results presented in Table 1 demonstrate the systematic 
superiority of the proposed tracking algorithm over DeepSORT 
for all the sequences evaluated. In particular, the HOTA metric, 
which simultaneously quantifies localization accuracy and 
identity association, reveals an average improvement of 2.42% 
for the proposed approach, with scores ranging from 22.55% to 
40.18%, compared to the range of 19.75% to 37.98% observed 
using DeepSORT. These results attest to a substantial 
improvement in the proposed algorithm's ability to accurately 
track objects and establish consistent identity associations. 
Furthermore, MOTA scores, which measure the prevalence of 
false positives and false negatives, corroborate this trend, with 
an average improvement of 2.85%. This metric, crucial for 
assessing the overall robustness of the tracking system, 
underscores the increased effectiveness of the proposed 
approach in minimizing detection and tracking errors. Finally, 
the IDF1 metric, which specifically assesses the quality of 
identity association across the entire sequence, shows an 
average increase of 1.84%. This significant improvement 
testifies to the increased robustness of the proposed method, 
particularly regarding long-term follow-up and the 
management of temporary occlusions. 

To assess the impact of detector choice on the performance 
of the proposed tracking algorithm, experiments were carried 
out by substituting YOLOv9 for YOLOv8. The results shown 
in Table II corroborate the superiority of the proposed approach 
over DeepSORT, irrespective of the experimental configuration 
adopted. The HOTA, MOTA, and IDF1 scores show that the 
proposed MOT algorithm is less sensitive to detector changes 
than the conventional DeepSORT algorithm. In particular, 
when switching from YOLOv9 to YOLOv8, performance 
degradation is much greater for DeepSORT than for the 
proposed approach. For the HOTA score, the drop is 1.33% for 
DeepSORT versus only 0.43% for the proposed algorithm. 
Therefore, the proposed algorithm is better able to adapt to 
slight variations in detection quality. MOTA decreases by 
1.05% for DeepSORT, but only by 0.2% for the proposed 
method. As MOTA directly evaluates tracking errors, the 
proposed approach is more robust to detector inaccuracies. The 
difference is similar for IDF1, which evaluates the quality of 
target identification over time (a drop of 1.04% for DeepSORT 
versus only 0.43% for the proposed algorithm). These results 
significantly demonstrate the greater resilience of the proposed 
framework to the qualitative hazards inherent in real detections. 
DeepSORT appears to be more coupled to the underlying 
detector, whereas the proposed solution seems to take 
advantage of the detections more efficiently. 

Therefore, it can be concluded that the proposed approach, 
by further integrating the specificities of detections into the 
tracking process, demonstrates increased robustness, which is 
essential in complex real-world application contexts. The 
results in Table III demonstrate the systematic superiority of 
the proposed algorithm over DeepSORT on all the sequences in 
the KITTI benchmark. On average, the proposed algorithm 
achieved a 2.09% improvement in HOTA over DeepSORT. 
More specifically, on pedestrian sequences, the proposed 
algorithm achieved a HOTA score of 40.39%, an improvement 
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of 2.2% over DeepSORT. Similarly, for vehicle sequences, an 
average HOTA score improvement of 1.97% was observed. 
These performance gains are also notable for the MOTA and 
IDF1 metrics, with average improvements of 1.94% and 

3.23%, respectively. These quantitative results underline the 
robustness and superior efficiency of the proposed approach, 
particularly in the complex scenarios of the KITTI benchmark. 

TABLE I.  TRACKING PERFORMANCE ON THE KITTI BENCHMARK WITH YOLOV9 

Sequence Trackers 
Sequences of MOT17 Dataset 

HOTA↑ MOTA↑ IDF1↑ MT↑% ML↓% FP↓ FN↓ IDs↓ 

MOT17 -01 
DeepSORT 21.30 31.60 36.01 19.57 39.20 63 6125 18 

Proposed 22.55 33.44 36.98 27.33 36.13 33 5012 10 

MOT17 -04 
DeepSORT 37.83 49.60 55.41 21.30 34.38 1730 53911 207 

Proposed 38.97 51.09 55.11 26.20 30.17 1529 49027 198 

MOT17 -06 
DeepSORT 37.98 50.30 57.12 22.30 31.30 449 5992 79 

Proposed 39.01 52.14 61.33 30.47 28.11 326 5211 109 

MOT17 -09 
DeepSORT 26.33 37.19 43.10 19.50 32.09 329 10779 101 

Proposed 30.98 42.21 46.03 28.71 30.51 401 10121 92 

MOT17 -11 
DeepSORT 37.01 48.65 59.21 23.75 30.75 211 3729 33 

Proposed 40.18 53.02 59.87 41.03 26.33 197 3631 28 

MOT17 -13 
DeepSORT 19.75 30.65 38.55 18.41 27.09 115 13012 100 

Proposed 23.02 33.20 41.14 21.09 24.16 95 12883 76 

MOT17-Mean 
DeepSORT 30.03 41.33 48.23 20.80 32.46 2897 93548 558 

Proposed 32.45 44.18 50.07 29.13 29.22 2581 85885 513 

TABLE II.  TRACKING PERFORMANCE ON THE MOT17 BENCHMARK WITH YOLOV8 

Sequence Trackers 
Sequences of MOT17 Dataset 

HOTA↑ MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ 

MOT17 -01 
DeepSORT 19.348 29.98 34.65 18.02 41.30 69 6303 23 

Proposed 21.89 32.96 35.86 26.87 36.96 34 5015 10 

MOT17 -04 
DeepSORT 36.03 47.95 54.31 20.55 36.88 1789 53998 225 

Proposed 38.13 50.99 54.89 25.59 30.98 1538 49089 203 

MOT17 -06 
DeepSORT 36.85 49.56 55.98 21.60 32.48 462 6002 82 

Proposed 38.94 51.89 61.04 30.07 29.06 334 5225 113 

MOT17 -09 
DeepSORT 25.12 36.22 41.96 19.05 33.17 335 10788 109 

Proposed 30.36 41.95 45.89 27.89 31.21 417 10139 96 

MOT17 -11 
DeepSORT 36.12 48.45 58.29 22.82 31.84 221 3745 39 

Proposed 40.02 52.91 59.23 40.79 26.89 199 3632 28 

MOT17 -13 
DeepSORT 18.79 29.56 37.99 17.10 29.03 126 13089 107 

Proposed 22.83 32.89 40.96 20.93 23.67 97 12886 76 

MOT17-Mean 
DeepSORT 28.70 40.28 47.19 19.85 34.11 3002 93925 585 

Proposed 32.02 43.93 49.64 28.69 29.75 2619 85986 526 

TABLE III.  TRACKING PERFORMANCE ON THE KITTI BENCHMARK WITH YOLOV9 

Metrics Trackers 
Kitti  Sequence-16 

Person 

Kitti Sequence-18 

Person 

Kitti Sequence-10 

Vehicle 

Kitti Sequence-17 

Vehicle 
Kitti Mean 

HOTA↑ 
DeepSORT 40.17 36.21 51.31 54.30 45.49 

Proposed 41.65 39.13 52.82 56.73 47.58 

MOTA↑ 
DeepSORT 56.20 48.07 55.11 58.21 54.39 

Proposed 58.31 51.77 56.30 58.95 56.33 

IDF1↑ 
DeepSORT 65.30 69.95 70.02 73.11 69.09 

Proposed 69.43 73.03 72.54 74.31 72.32 

 

B. Qualitative Analysis 

Figure 3 presents visualization results of complex cases that 
the proposed tracker handled effectively. Three MOT17 
sequences and one KITTI sequence were selected to illustrate 
complex cases. The complex situations include occlusion 
(MOT17-04, MOT17-06, MOT17-09), motion blur (MOT17-
06, KITTI-04) and the presence of small objects (MOT17-09). 
In the MOT17-04 video sequence, two people stand out for 
their behavior when it comes to keeping their ID. Person ID09 
showed remarkable stability by keeping his ID even when 
moving back and forth. This consistency is essential for 
accurate tracking of people in the video sequence. 

ID02 also retained its identity after an occlusion, 
demonstrating the robustness of the algorithms in the face of 
visual disturbances. After 428 images, its identifier was still 
valid. In the MOT17-06 video sequence, the object bearing 
ID85 (image #0376) completely exits the camera field in frame 
#0397. It reappears in frame #0415 with a change of direction 
while retaining the same identity. This continuity of 
identification, despite leaving the field of view and changing 
direction, illustrates the ability of the proposed algorithm to 
maintain a reliable and consistent association of identifiers, 
even under complex tracking conditions. In the MOT17-09 
video sequence, the objects identified by ID020 and ID021 
change direction and adopt various positions, including 
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variations in size. Despite these challenges, including 
occlusions, these objects retain their identifiers from frame 
#0177 to frame #0371. This algorithmic robustness 
demonstrates the effectiveness of the proposed method in 
maintaining persistent identification consistency in complex 
MOT scenarios, characterized by significant kinematic and 
morphological variations in the targets. The KITTI-04 
sequence in particular illustrates this performance: in image 
#0003, the vehicular entity identified by ID05 retains its unique 
identity marker despite being completely occluded by object 
ID01 in image #0006.  

 

Fig. 3.  Quantitative evaluation of MOT on the KITTI and MOT17 

benchmarks. 

Figure 4 presents example tracking sequences to visually 
evaluate the performance of the proposed approach, showing a 
direct comparison between the results obtained using the 
proposed DeepSORT method enriched with optical flow and 
those obtained using the conventional DeepSORT method. The 
comparative analysis highlights the superiority of the proposed 
method combining DeepSORT and optical flow over the 
standard DeepSORT pipeline, regarding several key evaluation 
criteria. The red bounding boxes correspond to the proposed 
DeepSORT method coupled with optical flow, and the yellow 
bounding boxes correspond to the standard DeepSORT. The 
proposed method provides bounding boxes that better match 
the morphology of the target, even in conditions of high visual 
clutter (image #0177 MOT17-11-DPM). 

 

 
Fig. 4.  Visual comparison of MOT performance between standard 

DeepSORT and the proposed DeepSORT combined with optical flow. 

Partial occultations are managed due to constant 
delimitation (image #0177, MOT17-11-DPM). The ability to 
adapt to variations in scale is due to refining the bounding 
boxes as a function of distance from the object (image #0406, 
MOT17-13-SDP). The robustness in the face of visual 
ambiguities is illustrated by constant boxes under changing 
lighting (image #0406 MOT17-13-SDP). This phenomenon 
highlights the system's ability to effectively manage temporary 
occlusions thanks to advanced trajectory prediction and robust 
re-identification mechanisms, ensuring tracking continuity even 
in the momentary absence of direct visual information. Finally, 
Figures 3 and 4 effectively illustrate the ability of the proposed 
algorithm to operate in various traffic scenarios, characterized 
by a wide range of lighting conditions, variable object sizes, 
and different levels of clutter and obstruction. These examples 
highlight the robustness and effectiveness of the proposed 
tracking approach in complex environments, consolidating its 
potential for critical applications such as autonomous driving. 

IV. CONCLUSION AND OUTLOOK 

This research was motivated by the persistent challenges of 
MOT in dynamic urban environments, where existing methods 
struggle to maintain high accuracy and consistency in the face 
of frequent occlusions and rapid scene changes. This study 
identified significant gaps in the integration of state-of-the-art 
detectors with tracking algorithms, as well as in the effective 
exploitation of optical flow information to improve tracking 
robustness. This innovative work fills these gaps through the 
synergistic integration of YOLOv9, the state-of-the-art in 
object detection, with an optimized version of DeepSORT. The 
innovative incorporation of optical flow into the DeepSORT 
architecture significantly improves tracking consistency during 
rapid movements or partial occlusions. The domain-specific 
contributions of this study include the following: 

 A quantifiable improvement in tracking performance, with 
gains in HOTA, MOTA, and IDF1 on the KITTI and 
MOT17 benchmarks, compared to conventional 
DeepSORT. 

 A new evaluation framework for tracking robustness in 
complex urban scenarios, including metrics for tracking 
stability during prolonged occlusions. 

 A modular and extensible architecture that facilitates the 
future integration of additional perception modalities and 
adaptation to various operational environments. 
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This study sets a new benchmark for perception systems in 
autonomous vehicles, paving the way for more reliable and 
safer applications in complex urban environments. Future work 
will focus on integrating advanced predictive capabilities and 
extending this approach to multi-sensor scenarios, promising 
significant advances in real-time autonomous perception. 

NOMENCLATURE 

Multi-Object Tracking (MOT): The core concept of tracking 
multiple objects in a scene. 

You Only Look Once version 9 (YOLOv9): A specific object 
detection algorithm, particularly its v9 variant. 

Deep Simple Online and Realtime Tracking (DeepSORT): A 
popular multi-object tracking algorithm that combines a deep 
appearance model with a Kalman filter. 

Convolutional Neural Network (CNN): A neural network type 
commonly used for image and video analysis. 

Intersection over Union (IoU): A metric used to measure the 
overlap between two bounding boxes. 

Re-identification model (Re-ID): A model used to match an 
object in one image with the same object in another image. 

Kanade-Lucas-Tomasi (KLT): A feature tracking algorithm 
that is often used in computer vision. 

F1 identification index (IDF1): A metric used to evaluate the 
performance of re-identification models. 

Multiple Object Tracking Accuracy (MOTA): A popular metric 
to evaluate MOT algorithms. 

Higher Order Tracking Accuracy (HOTA): A comprehensive 
metric that considers tracking accuracy, identification accuracy, 
and false positives/negatives. 
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