
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 17973-17978 17973  
 

www.etasr.com Ait Ben Hamou et al.: Application of LightGBM Algorithm in Production Scheduling Optimization on … 

 

Application of LightGBM Algorithm in 
Production Scheduling Optimization on Non-
Identical Parallel Machines 

 

Khalid Ait Ben Hamou 

Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, 
Morocco 
khalid.aitbenhamou@ced.uca.ma (corresponding author) 
 
Zahi Jarir 

Computer Sciences Engineering Laboratory, Faculty of Sciences, Cadi Ayyad University, Marrakech, 
Morocco 
jarir@uca.ac.ma  
 
Selwa Elfirdoussi 

Emines - University Mohammed VI Polytechnic, Benguerir, Morocco 
selwa.elfirdoussi@emines.um6p.ma 

Received: 20 August 2024 | Revised: 15 September 2024 | Accepted: 19 September 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.8779 

ABSTRACT 

Production scheduling plays a decisive role in supply chain management, directly influencing the 

operational efficiency and competitiveness of companies. This study explores the effectiveness of the 

LightGBM algorithm for production scheduling on non-identical parallel machines, comparing it to 

algorithms such as logistic regression, KNN, decision tree, and XGBoost. LightGBM was chosen for its 

speed of execution and its ability to handle large amounts of data. The results show that LightGBM 

outperforms the other models in terms of RMSE, MAE, explained variance score, and R² score for 

regression tasks, as well as in classification accuracy for certain features. Its superiority is attributed to its 

ability to efficiently handle data complexity while reducing computational complexity through its leaf tree 

growth technique. This study highlights LightGBM's potential for improving the efficiency of supply chain 

management systems and the challenges associated with computational scalability for large datasets. The 

results suggest that LightGBM is a robust and effective solution to optimize production scheduling, paving 

the way for future research in this field. 
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I. INTRODUCTION  

Production scheduling plays an important role in supply 
chain management and has a direct impact on operational 
efficiency and competitiveness. In a production environment 
characterized by the multiplicity of products and the diversity 
of non-identical parallel machines, the complexity of 
scheduling increases exponentially. Traditional solutions, while 
effective in specific contexts, often struggle to adapt to the 
dynamics and rapid variations of modern industrial 
environments. Among the various types of scheduling 
problems, Parallel Machine Scheduling (PMS) [1] is 
particularly relevant. PMS refers to the assignment of tasks to a 
set of parallel machines with the aim of optimizing various 
objectives such as total production time, costs, or resource 
utilization. This type of problem is commonly encountered in 

industrial environments where several machines of different 
capacities are working in parallel to process various sets of 
tasks. The inherent complexity of PMS calls for sophisticated 
approaches to find optimal or near-optimal solutions. 

The main objective of this study is to explore and compare 
the performance of the Light Gradient Boosting Machine 
(LightGBM) Machine Learning (ML) algorithm with logistic 
regression, KNN, decision tree classification, and XGBoost. 
LightGBM was chosen due to its advantages in terms of 
execution speed and the ability to handle large amounts of data, 
which is crucial in production contexts with strict time 
requirements [2, 3]. This comparison aims to determine 
whether LightGBM can offer significant improvements in 
terms of classification accuracy and production cost prediction 
while optimizing the allocation of products to available 
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machines. Testing new algorithms is essential to improve the 
performance of production scheduling systems. Recent 
advances in ML offer opportunities to develop more robust and 
adaptive models that are capable of better managing the 
variability and complexity of production data. By introducing 
LightGBM in this context, this study aims to provide 
innovative and more efficient solutions for supply chain 
managers, contributing to improved operational performance 
and reduced production costs. 

Previous work on parallel machine scheduling has shown 
significant advances through the application of ML techniques 
and optimization algorithms. In [4], a hybrid learning-based 
meta-heuristic algorithm was developed for scheduling additive 
manufacturing systems with parallel SLM machines. This 
study used neural networks to predict processing times and 
optimization algorithms, such as NSGA-II and SPEA2, to 
assign tasks to machines. This approach demonstrated superior 
performance over existing methods, optimizing the coverage 
and distribution of solutions on the Pareto front. In [5], ML and 
inverse optimization were used to estimate weighting factors in 
multi-objective production scheduling problems. This study 
showed that integrating ML into optimization models better 
captures decision-makers' preferences and results in solutions 
that are more aligned with real production objectives. In [6], a 
deep reinforcement approach was introduced, based on 
Recurrent Neural Networks (RNN), to solve the scheduling 
problem of parallel machines with due dates and family 
configurations. This method modeled the problem as a Markov 
decision process and used Gated Recurrent Units (GRUs) to 
approximate the agent's policy. In [7], learning-augmented 
heuristics were introduced to schedule parallel machines. This 
approach combines supervised learning techniques with 
traditional heuristics to improve the accuracy of predictions and 
the efficiency of scheduling solutions. This combination 
enabled better management of the variations and uncertainties 
in the production data. 

In [8], artificial neural networks were used to enhance 
multi-start grid search in serial batch scheduling problems. The 
ML Enhanced Grid Search (MLGS) approach predicted the 
best parameter configurations for the BATCS-b heuristic, 
significantly reducing computation times while maintaining 
competitive solution quality. This method optimized task 
assignment to machines and reduced total weighted tardiness, 
demonstrating the effectiveness of ML in improving traditional 
scheduling heuristics [8]. In [9], a model based on Deep 
Reinforcement Learning (DRL), called DPMS, was used to 
treat parallel machine scheduling problems by formulating 
them as a Markov Decision Process (MDP) problem. DPMS 
uses dispatching rules as actions and dynamically adapts them 
according to the environment or unexpected events, enabling 
efficient and adaptive rescheduling. Experimental results 
showed that this approach can produce promising results in 
dynamic environments. In [10], ML methods were used to 
estimate processing times in parallel machine scheduling 
problems. The neural network-based approach showed a 
significant improvement in estimation accuracy over traditional 
methods, leading to more efficient scheduling and reduced 
production times. In [11], an approach was proposed that used 
classification models to assign products to suitable machines 

and regression models to predict overall production cost. The 
XGBoost model stood out for its superior performance, 
demonstrated by reduced accuracy scores and Root Mean 
Squared Error (RMSE) values. In [12], a data mining method 
was proposed for industrial big data to solve the problem of 
scheduling large-scale parallel machines. 

These studies show the diversity and effectiveness of ML-
based approaches to parallel machine scheduling problems. 
However, they have revealed several important challenges. 
Among these, overfitting and extended training time [4] are 
major concerns, especially when using complex models such as 
deep neural networks. In addition, the complexity of 
determining precise weighting factors in multi-objective 
programming problems has been highlighted, making it 
difficult to obtain optimal solutions [5]. Scalability to larger 
problems is another notable challenge, which limits the 
applicability of the methods to larger real-world scenarios [8]. 
Furthermore, the complexity of integrating different heuristic 
and metaheuristic approaches into scheduling algorithms 
increases the implementation difficulties [7]. Finally, model 
accuracy under variable conditions remains an obstacle [10], as 
performance can fluctuate depending on variations in input 
data. Building on this work and attempting to address a few 
challenges, this study aims to explore the application of the 
LightGBM algorithm to optimize production scheduling, 
providing a detailed comparison with existing algorithms. 

II. METHODOLOGY 

This study uses the same dataset and preprocessing 
techniques as those described in [11]. This dataset contains 
25710 instances of the problem of scheduling six products on 
three machines over a 12-period horizon, with their optimal 
solutions. The dataset has been normalized and standardized to 
ensure better performance for the ML models. This study used 
LightGBM to compare it with the algorithms used in [11], 
namely logistic regression, KNN, decision tree classification, 
and XGBoost. LightGBM is a boosting algorithm, based on 
decision trees, designed to be efficient in terms of memory and 
speed, and is capable of handling large amounts of data while 
offering high accuracy [13]. LightGBM uses a leaf tree growth 
technique, which reduces computational complexity and 
improves performance in terms of training time [14]. 

The metrics used to assess the performance, accuracy, and 
efficiency of regression models were RMSE [15], R² score 
[16], Mean Absolute Error (MAE) [15], and explained variance 
score. For classification, accuracy, precision, recall, and F1 
score were used. [17]. These techniques and metrics were used 
to thoroughly evaluate and compare the performance of 
LightGBM against the algorithms used in [11], highlighting 
potential improvements in production scheduling optimization. 

III. EXPERIMENTAL RESULTS 

A. Regression Results 

This section presents the experimental results obtained 
using the LightGBM algorithm and compares them with those 
of the algorithms used in [11], namely linear regression, KNN 
(k=11), decision tree, and XGBoost. Table I presents the 
performance of these different algorithms. 
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TABLE I.  PERFORMANCE COMPARISON OF ML 
ALGORITHMS FOR PRODUCTION SCHEDULING 

Metrics used 

Previous algorithms [11] 
Current 

algorithm 

KNN 

regression 

Decision 

tree 

Linear 

regression 

XGBoost 

regression 

LightGBM 

regression 

RMSE 2900.80 1676.67 1415.74 1090.16 1074.53 
MAE 2242.57 1099.49 880.53 707.51 637.57 

Explained 
variance 

0.74 0.91 0.94 0.96 0.97 

R² Score 0.74 0.91 0.94 0.96 0.97 

 
The results show that LightGBM achieved the best overall 

performance, with an RMSE of 1074.53, an MAE of 637.57, an 
explained variance score of 0.97, and an R² score of 0.97. 
These results indicate an improvement over the XGBoost 
model, which showed superior performance in [11], as shown 
in Figure 1. 

 

 
Fig. 1.  Comparison of ML algorithms' performance in terms of RMSE and 
MAE for production scheduling. 

The results show that LightGBM outperformed all other 
models, including XGBoost, which was the best model in [11]. 
This suggests that LightGBM is particularly effective for 
production scheduling problems on non-identical parallel 
machines. These experimental results confirm LightGBM's 
effectiveness and demonstrate its potential to improve 
production scheduling optimization, offering more accurate and 
efficient solutions for supply chain management. 

B. Classification Results 

This section shows the results of LightGBM compared with 
the algorithms in [11]. For the P1 feature, Table II shows that 
the XGBoost and LightGBM models performed the best in 
terms of accuracy, achieving a value of 0.96, closely followed 
by KNN and logistic regression with an accuracy of 0.92. In 
terms of precision, KNN slightly outperformed the other 
models with a score of 0.96, but had relatively low recall at 0.5, 
indicating difficulty in correctly identifying all positive 
instances. In contrast, XGBoost and LightGBM offered a better 
compromise with F1 scores of 0.84 and 0.85, respectively, 
suggesting better overall performance for this feature. 

TABLE II.  RESULTS FOR P1 FEATURE  

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

tree 

Logistic 

regression 
XGBoost LightGBM 

Accuracy 0.92 0.91 0.92 0.96 0.96 
Precision 0.96 0.72 0,77 0.89 0.9 

Recall 0.5 0.77 0.6 0.8 0.81 
F1-Score 0.48 0.74 0.63 0.84 0.85 

 
The ROC curve in Figure 2 shows the excellent 

performance of the LightGBM model for the P1 feature, with 
an Area Under the Curve (AUC) of 0.97. This curve, close to 
the upper left-hand corner, indicates the high capacity of the 
model to correctly distinguish classes, with a high rate of true 
positives for a low rate of false positives. 

 

 
Fig. 2.  Receiver Operating Characteristic (ROC) for P1. 

Figure 3 depicts the calibration curve for the P1 feature, 
showing that the LightGBM model is well calibrated, with the 
curve points close to the diagonal line, indicating that the 
probabilities predicted by the model correspond well to the 
observed fractions of positives. This match between model 
predictions and observed results reinforces the reliability of 
LightGBM's predicted probabilities for the P1 feature. Figure 4 
illustrates the confusion matrix for the P1 feature, showing that 
the LightGBM model correctly classifies the majority of 
samples, with 4,657 true positives and 273 true negatives. 
However, there are still classification errors, with 158 false 
positives and 54 false negatives. These results indicate a strong 
overall performance for the model, particularly in predicting 
positive cases, although there is still room for improvement in 
reducing false positives and false negatives. Figure 5 shows the 
precision-recall curve for the LightGBM model on feature P1, 
showing that the model maintains high precision over a wide 
recall range, with a slight decrease only as the recall 
approaches 1. This indicates that the model is effective in 
identifying a high proportion of true positives while 
minimizing false positives. The slight drop in precision at very 
high recall levels suggests an increase in errors, although this 
remains moderate. Overall, the curve demonstrates that the 
LightGBM model offers robust performance for the P1 feature. 
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Fig. 3.  Calibration curve for P1 using LightGBM. 

 
Fig. 4.  Confusion Matrix for P1 using LightGBM. 

 
Fig. 5.  Precision-Recall curve for P1 using LightGBM. 

For P2, the results in Table III show that LightGBM still 
stands out with the best accuracy at 0.93, followed by XGBoost 
at 0.92. However, the accuracy of all models is significantly 
lower than for P1, reflecting weaker performance for this 
feature. The highest F1 score was achieved by LightGBM at 

0.68, which, although superior to the other models, highlights 
the challenges faced when classifying P2, where even the best 
models struggle to achieve robust performance. 

TABLE III.  RESULTS FOR FEATURE P2  

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

tree 

Logistic 

regression 
XGBoost LightGBM 

Accuracy 0.88 0.87 0.89 0.92 0.93 
Precision 0.63 0.57 0.64 0.75 0.79 

Recall 0.33 0.55 0.45 0.61 0.62 
F1-Score 0.31 0.56 0.49 0.67 0.68 

 
For feature P3, Table IV shows that all models achieved 

perfect performance, with accuracy, precision, recall, and F1 
score of 1. This suggests that P3 is a particularly easy feature to 
classify, as the structured data show that P3 can only be 
produced by the m3 machine. 

TABLE IV.  RESULTS FOR FEATURE P3 

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

Tree 

Logistic 

Regression 
XGBoost 

LightGB

M 

Accuracy 1 1 1 1 1 
Precision 1 1 1 1 1 

Recall 1 1 1 1 1 
F1-Score 1 1 1 1 1 

 
For P4, Table V shows that XGBoost and LightGBM stand 

out with an accuracy of 0.92, slightly outperforming the other 
models. However, LightGBM's precision (0.79) is significantly 
higher than that of the others. The F1 score follows this trend, 
indicating that LightGBM and XGBoost are better suited to 
handle this feature. 

TABLE V.  RESULTS FOR FEATURE P4 

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

Tree 

Logistic 

Regression 
XGBoost LightGBM 

Accuracy 0.87 0.76 0.88 0.92 0.92 
Precision 0.29 0.44 0.64 0.76 0.79 

Recall 0.33 0.49 0.46 0.62 0.63 
F1-Score 0.31 0.46 0.49 0.67 0.69 

 
Table VI shows the results for P5, confirming that 

LightGBM again excels with an accuracy of 0.99, closely 
followed by XGBoost at 0.98. These models also show high 
precisions, 0.98 for LightGBM and 0.94 for XGBoost, 
suggesting high reliability in predicting positive classes. 
LightGBM's F1 score is the highest at 0.89, indicating an 
overall superior performance, particularly in terms of the trade-
off between precision and recall. Finally, for P6, Table VII 
indicates that LightGBM and XGBoost continue to show their 
superiority with an accuracy of 0.99. LightGBM stands out 
with a precision of 0.99 and a recall of 0.8, resulting in an F1 
score of 0.87. These results confirm the trend observed on the 
other features, where LightGBM and XGBoost are consistently 
the best-performing models, offering an optimal balance 
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between the various performance metrics, while the other 
models show more varying results. 

TABLE VI.  RESULTS FOR FEATURE P5 

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

tree 

Logistic 

regression 
XGBoost LightGBM 

Accuracy 0.96 0.97 0.96 0.98 0.99 
Precision 0.48 0.8 0.75 0.94 0.98 

Recall 0.5 0.79 0.52 0.81 0.82 
F1-Score 0.49 0.79 0.53 0.86 0.89 

TABLE VII.  RESULTS FOR FEATURE P6 

Metrics 

used 

Previous algorithms [11] 
Current 

algorithm 

KNN 
Decision 

Tree 

Logistic 

Regression 
XGBoost LightGBM 

Accuracy 0.97 0.98 0.97 0.99 0.99 
Precision 0.48 0.8 0.68 0.98 0.99 

Recall 0.5 0.85 0.52 0.79 0.8 
F1-Score 0.49 0.83 0.53 0.86 0.87 

 
Comparing LightGBM and XGBoost on all six features, it 

is clear that the two models perform very similarly, with the 
former being superior in most cases. For features P1, P2, P4, 
P5, and P6, LightGBM outperforms XGBoost in terms of 
precision and F1 score, suggesting a better ability to minimize 
false positives while maintaining good recall. For example, for 
P5, LightGBM displays a precision of 0.98 versus 0.94 for 
XGBoost and an F1 score of 0.89 versus 0.86, indicating better 
overall performance. Similarly, for the P2 feature, although the 
gap is smaller, LightGBM manages to achieve a slightly higher 
F1 score of 0.68 versus 0.67 for XGBoost. Overall, although 
the differences are sometimes small, LightGBM seems to offer 
a marginal advantage over XGBoost in terms of precision and 
the balance between precision and recall, particularly for more 
complex features such as P1 and P5. 

IV. DISCUSSION 

The regression results show that the integration of the 
LightGBM algorithm brought significant improvements over 
the algorithms used in [11], as it outperformed them in terms of 
RMSE, MAE, explained variance score, and R², confirming its 
robustness and effectiveness for production scheduling on non-
identical parallel machines. LightGBM's superiority can be 
attributed to its ability to efficiently handle large amounts of 
data while optimizing prediction accuracy, thanks to its leaf 
tree growth technique that reduces computational complexity. 

The classification results also show some interesting trends. 
For the P1 feature, LightGBM performed slightly better than 
XGBoost, with slightly better accuracy and F1 score. This 
suggests that LightGBM can be slightly more effective in 
contexts where the performance of boosting models is already 
high. On the other hand, for the P2 feature, LightGBM also 
outperformed XGBoost, although the difference was less, 
which could indicate that LightGBM performs better for more 
complex or less well-separated features. For feature P3, all 
models achieved perfect performance, indicating easy class 
separation for this feature. For features P4, P5, and P6, 

LightGBM maintained slightly better performance than 
XGBoost, confirming its tendency to outperform other models 
in complex classification situations. This ability to deliver high 
performance, even with diverse datasets, reinforces the idea 
that LightGBM is a robust choice for classification applications 
in addition to regression tasks. 

Although LightGBM and XGBoost show remarkable 
performance, computational scalability remains a challenge for 
very large datasets. Adopting approximation strategies or 
heuristics may be necessary to maintain optimal performance 
while reducing computational costs. Future studies could also 
explore the integration of real-time feedback and dynamic 
adjustments to make production systems even more responsive 
and economically efficient. 

Several interesting perspectives can be envisaged to extend 
this work. It would be relevant to explore the fusion of different 
ML strategies [18] and other ML algorithms or ensemble 
techniques to compare and potentially improve current 
performance. Applying this approach to other industrial fields 
would allow us to test its universality. A study of the costs and 
benefits of implementing this model in real production would 
be crucial to assess its economic impact. Finally, analysis of the 
model's robustness in the face of imperfect data, as well as 
ethical and sustainability considerations, deserves particular 
attention to ensure responsible and sustainable adoption of 
these technologies. 

V. CONCLUSION 

This study demonstrated the effectiveness of the LightGBM 
algorithm for optimizing production scheduling on non-
identical parallel machines. Experimental results showed that 
LightGBM outperformed other models in terms of RMSE, 
MAE, explained variance score, and R² score, highlighting its 
ability to handle large amounts of data and deliver accurate 
predictions. The potential impact of using LightGBM to 
improve the efficiency of supply chain management systems is 
significant, offering more accurate predictions and optimized 
task assignments. The limitations observed, particularly 
regarding computational scalability for large datasets, suggest 
the need for future research. Such research could focus on 
adopting approximation strategies, optimizing 
hyperparameters, and exploring deep learning techniques. 
Integrating real-time feedback and dynamic adjustments into 
models could also make production systems more responsive 
and economically efficient. 

In short, this study confirms the robustness and 
effectiveness of the LightGBM algorithm for production 
scheduling and paves the way for further research into the 
optimization of supply chain management systems using 
advanced ML techniques. 
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