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ABSTRACT 

Tropical Cyclones (TCs) are extreme climatic conditions that can crucially disrupt human life. Heavy 

rainfall and resilient winds that follow these systems can result in severe consequences for property and 

hamper social and economic growth in respective areas. Thus, accurate assessments of TC intensity is 

paramount for practical applications and theoretical research in predicting and preventing disasters. 

Satellite Cloud Images (SCIs) are a primary preferable and effective data source for the study of TCs. 

Efficient and accurate estimation of TC intensity is often challenging despite the remarkable success in 

different SCI-based studies. Recently, Machine Learning (ML) and Deep Learning (DL) methods have 

shown significant potential and gained fast development against big data, especially with images. 

Considerable progress has been made in applying Convolutional Neural Networks (CNNs) to predict and 

evaluate the intensity of TCs. This study focuses on developing a Discrete Migratory Bird Optimizer with 

Deep Learning Dirven Cyclone Intensity Prediction (DMBODL-CIP) technique on remote sensing images 

to estimate the intensity levels of TCs. To accomplish this, the DMBODL-CIP technique initially undergoes 

preprocessing in two phases: Bilateral Filtering (BF) and Adaptive Histogram Equalization (AHE)-based 

noise removal and contrast enhancement. The DMBODL-CIP technique utilizes a deep CNN-based 

SqueezeNet model for the feature extraction process. Then, a Deep Belief Network (DBN) model is used to 

predict TC intensity. Finally, the DMBO technique is employed for optimal hyperparameter selection of 

the DBN model, which assists in improving the overall prediction results. The proposed DMBODL-CIP 

approach was evaluated on a cyclone image dataset and a comparison study showed an RMSE of 6.02 kt 

outperforming existing techniques. 

Keywords-tropical cyclones; remote sensing image; contrast enhancement; discrete migratory bird optimizer; 

deep learning 

I. INTRODUCTION  

TCs are extremely critical natural disasters, and their 
precise evaluation can be crucial to avoiding and minimizing 
damage [1]. Intensity is an important component of TC 
parameters, as it depends not only on several features, namely 
environmental conditions, inner TC structures, and their 
relations, but it differs unpredictably with time and location [2]. 
Consequently, research on TC intensity is a primary concern in 
oceanography and meteorology, as due to the large scale of TC 
structures and the problematic development in the spatial-
temporal domain, the description of TC intensity through earth-
based equipment is difficult [3]. Given the limitations of 
numerical techniques, statistical models offer greater 
adaptability while requiring fewer computational resources, 
opening new opportunities in big data analysis [4]. 

Conventional methods such as the Statistical Hurricane 
Intensity Prediction Scheme (SHIPS), standard regressions, and 
Generalized Additive Models (GAM) are used for TC 
predictions. However, traditional non-linear regression 
struggles to capture complex non-linear relationships [5]. 

Many of these models are based on experience-based 
manipulations, which can lead to specific errors and reduced 
efficiency [6]. There is a critical need for more accurate 
techniques to estimate the TC intensity. Recent advances in 
ML, specifically CNNs, have crucially improved the extraction 
and classification of complex TC data [7]. Although 
specialized Neural Networks (NNs) enhance prediction 
reliability, the high costs of airborne observation limit their 
global application. This underscores the need for innovative 
methods that can effectively analyze TC data in various spatial 
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and temporal contexts [8]. Satellite remote sensing, particularly 
from SCIs, provides continuous data on TCs and their 
surrounding environments, making it a valuable resource for 
research and analysis. Accurate intensity prediction is essential 
for effective disaster management, as TCs pose significant risks 
[9]. Traditional observation methods often fail, especially 
before landfall, underscoring the need for advanced models. 
This research aims to improve TC intensity prediction through 
DL and innovative optimization models, ultimately enhancing 
preparedness and response strategies [10]. 

This study presents a novel Discrete Migratory Bird 
Optimizer with Deep Learning Dirven Cyclone Intensity 
Prediction (DMBODL-CIP) technique on RSIs. To achieve 
this, the DMBODL-CIP technique improves the quality of the 
input images via Bilateral Filtering (BF) and Adaptive 
Histogram Equalization (AHE)-based noise removal and 
contrast enhancement. Additionally, the DMBODL-CIP 
method utilizes the SqueezeNet method to derive feature 
vectors. A Deep Belief Network (DBN) classifier is employed 
with DMBO-based hyperparameter tuning to predict the TC 
intensity levels. To ensure the performance of the DMBODL-
CIP technique, a simulation was performed on a cyclone image 
dataset. The key contributions of the DMBODL-CIP technique 
are as follows. 

 Utilizes BF and adaptive histogram equalization to 
effectively eliminate noise and improve the contrast of the 
input images. This enhances the overall quality of the data 
for accurate TC intensity predictions. 

 Utilizes the SqueezeNet model to extract effectual feature 
vectors from the processed images. This results in a 
lightweight model that achieves high performance for TC 
intensity prediction. 

 Utilizes a DBN classifier to precisely predict TC intensity 
levels. This facilitates the effectual interpretation of the 
extracted features, resulting in improved prediction 
accuracy. 

 Incorporates DMBO-based tuning to optimize the 
hyperparameters of the DBN classifier. This model also 
improves prediction performance, achieving more reliable 
intensity forecasts for TCs. 

 Integrates advanced image processing models with a 
lightweight NN for feature extraction and a robust 
classifier. The novelty is in the incorporation of these 
methods to substantially enhance the prediction accuracy of 
TC intensity, allowing more effective disaster management. 

II. LITERATURE WORKS 

In [11], a physics-enhanced CNN was presented that 
incorporated successive IR images from satellite images and 
previous data of TCs, including Minimum Pressure (MP), 
MSW, and Center Position (CP). Multichannel images were 
arbitrarily separated into a specific ratio. Sensitivity 
experiments could be developed to examine the effect of 
various inputs on the effectiveness of the model. In [12], an NN 
model was proposed, called TC-Pred,. An innovative feature 
extraction and aggregation technique was developed using 

multiple source environmental indicators. Additionally, a 
technique influenced by the convolutional transformer was 
devised. In [13], a new TC intensity evaluation method was 
developed using a Deep Multisource Attention Network 
(DMANet). In addition, a message-passing improvement 
method relied on Conditional Random Fields (CRFs). Then, a 
local-global attention method was employed, focusing on local 
key features and acquiring TC deep global semantic data. 
Finally, a Kalman filter was utilized. 

In [14], the Temporal Attention Mechanism ConvLSTM 
(TAM-CL) method was proposed, which improved the 
extraction of 3D spatiotemporal features by employing 
ConvLSTM with 3D convolution kernels combined with an 
attention mechanism. In [15], advanced deep learning and 
smoothing techniques were employed, using a Vision 
Transformer (ViT) DCNN for regression and a classification 
phase, along with four precise smoothing methods for both 
methods and their fusion. In [16], the STE-TC spatiotemporal 
encoding model was introduced. In [17], a TL-based TC 
intensity assessment technique was presented. The pre-trained 
method was designed by utilizing the Swin-T. Next, a TL 
model was presented by fine-tuning the pre-trained method. In 
[18], a linear support vector regressive gradient descent 
Jaccardized deep multilayer perceptive (LEGEMP) was 
introduced. The chosen features fed the Nesterov gradient 
descent jeopardized deep-MPC. However, models that balance 
complexity and interpretability are needed to allow effective 
real-time tropical cyclone predictions and enhance the 
generalizability of Transfer Learning (TL) across diverse 
datasets. 

III. THE PROPOSED MODEL 

This study developed the DMBODL-CIP technique to 
estimate the intensity levels of TCs using an optimal DL 
model. The DMBODL-CIP technique involves four different 
processes: preprocessing, feature extraction, DBN-based 
prediction, and DMBO-based hyperparameter tuning. Figure 1 
presents the structure of the proposed DMBODL-CIP 
technique. 

A. Preprocessing 

Initially, the DMBODL-CIP technique performs 
preprocessing in two stages: BF and AHE-based noise removal 
and contrast enhancement [19]. BF is a complex noise removal 
process increasingly used in image processing and remote 
sensing applications. It efficiently suppresses noise while 
ensuring details and edges in the image. Unlike classical 
smooth filtering that averages pixel values within the 
neighborhood, the BF considers the intensity similarity and 
spatial proximity between pixels. Integrating the weighted 
average based on the pixel intensity difference and spatial 
distance ensures that noise is reduced without blurring essential 
features, making it especially applicable for RSI where 
preserving spatial reliability is critical for interpretation and 
accurate analysis. The adaptability of BF to noise features and 
its ability to retain image details make it a crucial preprocessing 
stage in increasing the utility and quality of RS data. AHE is a 
powerful model to improve contrast in RSIs [20]. Unlike 
conventional histogram equalization that applies uniform 
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contrast adjustments, AHE dynamically alters the contrast 
based on local pixel neighborhoods. This adaptability 
efficiently compensates for variations in terrain and lighting, 
enhancing the visualization of both prominent and subtle 
details. AHE improves the analysis and interpretation of remote 
sensing data by delivering clearer and more informative 
images. 

 

 

Fig. 1.  Structure of the DMBODL-CIP approach. 

B. Feature Extraction Process 

The DMBODL-CIP technique utilizes a deep CNN-based 
SqueezeNet model for the feature extraction process [21]. Due 
to greater efficiency, CNNs are standard DL models today and 
are extensively employed in a wide range of uses. Like 
Artificial Neural Networks (ANNs), CNNs consist of neurons 
that use weights and biases to cover a decision-making 
procedure in the subsequent layer. The large Hidden Layer 
(HL) size in fully connected networks slows image 
identification. SqueezeNet, with a structure similar to AlexNet 
but 50 times fewer parameters, is ideal for mobile devices. It 
replaces traditional fully connected layers with global average 
pooling, generating class-specific feature maps for direct input 
to the Softmax layer, enhancing efficiency and performance 
compared to traditional CNNs. 

C. TC Prediction Using the DBN 

The DMBODL-CIP technique employs a DBN model, 
which is a probability-based generative network containing a 
sequence of Restricted Boltzmann Machine (RBM) and BPNN 
[22]. This method excels in TC prediction by capturing 
complex patterns in massive datasets through unsupervised pre-
training, improving accuracy, and allowing real-time 
forecasting in dynamic environments. The DBN comprises of 
HLs, an output layer, and a Visible Layer (VL). The VL acts as 
the input layer, where features are removed to explore manifold 
HLs. Each RBM is trained layer-wise with unsupervised 
models, followed by supervised fine-tuning using labeled data 
to optimize DBN parameters. 

1) RBM Pre‐Training 

There is a bi-directional link in the intermediate of the dual 
layers, without a relationship in the intermediate of the cell 
layers. Assume that the amount of components in the VL is �. 
The VL is signified by the vector � = {��, ��, … , �	}, and at 
the same time, the amount of units in the HL is represented by 
�. The vector ℎ = {ℎ�, ℎ�, … , ℎ}  signifies the  ��. The RBM 
energy function is described by: 

���, ℎ; �� = − ∑ ∑ ���

���

	
��� ��ℎ� − ∑ ��

	
��� �� −  

   ∑ ��

��� ℎ�     (1) 

where � and �� denote the set of RBM parameters and the HL 

unit deviation, ��� and �� indicates the link weight among the 

HL node and input layer and the unit deviation of the VL. The 
mutual dispersion of the layer is calculated using an RBM: 

�� , ℎ� = �

!�"�
#$%�&,'�    (2) 

(��� = ∑ #$%�&,'�
&,'     (3) 

where (���  represents the factor of normalization. The 
independent probability dispersion of VL is given by: 

�� � = ∑ �' � , ℎ� = �

!�"�
∑ #$%�&,'�

'   (4) 

Since no link occurs at the intermediate of the node, the 
conditional probability dispersions are: 

��ℎ� = 1| ; �� = +,∑ ���
	
���  � + ��.  (5) 

�,�� = 1/ℎ; �. = +,∑ ���

��� ℎ� + ��.  (6) 

where +�0� = �

�1 234 5�
 represents the activation function from 

the HL probability neurons intended by the VL and parameters. 

RBM aims to increase the probability value �� �  by 

altering the weights ��� and biases �� , ��. The set of RBM 

parameters � = {�� , �� , ���} are obtained from the model with 

the highest likelihood estimate by the subsequent gradients for 
each parameter. 

789�:�

7;<=
= 〈 �ℎ�〉@ABA − 〈 �ℎ�〉	C@D8   (7) 

789�:�

7A<
= 〈��〉@ABA − 〈��〉	C@D8    (8) 
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where 〈⋅〉	C@D8  and 〈⋅〉@ABA denote the probability of the rebuilt 
and existing RBM technique data distribution. The model of 
contrast scattering upgrades the factor �. 

����GH△G� = ���
�B� + J

K
,〈��ℎ�〉@ABA − 〈��ℎ�〉	C@D8. (10) 

��
�B1△B� = ��

�B� + J

K
,〈 �〉@ABA − 〈 �〉	C@D8. (11) 

��
�B1△B� = ��

�B� + J

K
�〈ℎ�〉@ABA − 〈ℎ�〉	C@D8� (12) 

where L and M refer to the learning rate and step size. 

After training the RBM, the existing HL converts into the 
VL of the following RBM. Once every RBM is trained, depth 
features are removed layer-wise at the novel feature series. 

2) DBN Fine‐tuning 

To obtain the global optimized parameters of the DBN 
method, every RBM layer only certifies that the weights grab 
the optimum feature vector mapping instead of mapping the 
complete DBN. So, the BP networks spread the error data to 
every RBM layer from upper to lowest to perfect the complete 
DBN method. With the RBM procedure, the DBN can 
overcome the defects of BP networks. 

D. Hyperparameter Tuning Process 

Finally, the DMBO technique is employed for the optimal 
hyperparameter selection of the DBN method, helping to 
improve the overall prediction results [23]. This method is ideal 
due to its effective exploration of the search space and its 
ability to converge quickly on optimal solutions. This model 
balances exploration and exploitation, enhancing ML 
performance while reducing computational costs. Here, leaders 
and followers evolve through a local search, with the leader 
shifting to the queue's end and the first bird becoming the new 
leader for the next iteration. This model improves population 
recombination and leader replacement for faster convergence, 
using three adjustment strategies to enhance diversity and avoid 
stagnation in local optima. 

Individual development is the advantage of DMBO. Once 
the birds are organized into the shape of N , every bird can 
produce a few NSs over mutation and crossover operators, so 
they can pick a superior distinct from the NS to substitute itself. 
Unemployed NSs were revealed with subsequent birds to aid 
its progress. The NS set of the leader bird is denoted as O8DA@DP , 
and the NS set of the right and left subsequent birds are 
denoted as OP�Q'B and O8DRB . 

(a) Initialize population: Depending upon n-dimension 
population, n are arbitrarily generated feasible solutions, and 
the one possible solution denotes a migrant bird. 

(b) Build N from a line: Pick a robust individual as the leader 
bird, and the remaining birds are separated to the right and left 
sides to create a N form. The right and left lines are signified as 
SP�Q'B  and S8DRB . 

(c) Leader evolution: The leader bird generates various new 
solutions and stores them in O8DA@DP . If any solution surpasses 

the leader's, it gets replaced; otherwise, the leader remains. 
Finally, the unexploited NSs are shared with the groups. 

(d) Follower evolution: Initially, the followers produce NSs 
according to the evolution tactic. Then, the model places the 

NS and solutions handed by the preceding birds into O8DRB  or 

OP�Q'B . If the individual in O8DRB/OP�Q'B  is superior to the 

existing follower bird, then the follower is substituted. 

(e) Re-combination of the population and re-placement of the 
leader bird: Once the overall rounds are completed, every 
migrant bird advances and the initial population integrates with 
new entities to form a novel set S. The initial population is 
modified and added to this set to improve convergence toward 
the optimal solution. The model selects the top � individuals 
for a new population, designates the best as the leader, and 
allocates the others accordingly. Moreover, the best individual 
is stored in an external archive U . The algorithm concludes 
once the maximum number of iterations is attained. 

DMBO is used to optimize the hyperparameters of the 
DBN model. Performance evaluation is based on MSE: 

VO� = �

W
∑ ∑ ,X�

� − Y�
�.

�Z
���

[
���    (13) 

where V and � characterize the subsequent values of layer and 

data, respectively, and X�
�  and Y�

�  denote the achieved and 

appropriate magnitudes for the \B'  element in the secondary 
layer of the network with time ]. 

IV. EXPERIMENTAL VALIDATION 

The performance of the DMBODL-CIP method was 
evaluated using INSAT3D Infrared & Raw Cyclone Images 
(2012-2021) from [24]. This image dataset encompasses 
INSAT3D obtained infrared and ray cyclone images through 
the Indian Ocean in the period 2012 to 2021, with every 
cyclone image intensity in knots. The proposed technique was 
tested using Python 3.6.5 on a PC with i5-8600k CPU, 250GB 
SSD, GeForce 1050Ti 4GB, 16GB RAM, and 1TB HDD. The 
parameter settings were: learning rate: 0.01, activation: ReLU, 
epoch count: 50, dropout: 0.5, and batch size: 5. 

Table I shows the TC intensity prediction results of the 
DMBODL-CIP technique on the Training (TRS) and Testing 
(TSS) sets. Based on MSE, the proposed technique achieved 
MSE of 71.6542 and 36.2834 under TRS and TSS, 
respectively. Additionally, it achieved RMSE of 8.4649 and 
6.0236 at TRS and TSS, respectively. Meanwhile, the 
DMBODL-CIP method achieved MAE of 5.7639 and 4.1655 
under TRS and TSS. Furthermore, the DMBODL-CIP method 
achieved MAPE of 0.1131 and 0.0958 under TRS and TSS. 
Finally, the DMBODL-CIP method achieved NSE of 0.8853 
and 0.9272 under TRS and TSS, respectively. 

TABLE I.  TC INTENSITY PREDICTION RESULTS OF THE 
DMBODL-CIP MODEL 

Metrics Training Set Testing Set 

MSE 71.6542 36.2834 

RMSE 8.4649 6.0236 

MAE 5.7639 4.1655 

MAPE 0.1131 0.0958 

NSE 0.8853 0.9272 
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The RMSE results of the proposed technique were 
compared with those of previous models [15, 25-27]. The 
proposed DMBODL-CIP technique achieved superior 
performance, with a minimal RMSE of 6.02 kt, improving the 
prediction of TC intensities. 

V. CONCLUSION  

This study presented the development of the DMBODL-
CIP technique on RSIs. The objective was to estimate the 
intensity levels of TC utilizing an optimal DL model. The 
DMBODL-CIP technique initially performs preprocessing in 
two stages: BF- and AHE-based noise removal and contrast 
enhancement. Moreover, a deep CNN-based SqueezeNet 
model is employed for feature extraction. For the prediction of 
TC intensity, the DMBODL-CIP technique employs a DBN 
model. Finally, the DMBO model is used for optimum 
hyperparameter selection of the DBN model. The 
investigational analysis of the DMBODL-CIP technique was 
tested on a cyclone image dataset from Kaggle. The 
comparison study of the DMBODL-CIP technique portrayed a 
superior RMSE value of 6.02 kt, which is better than existing 
techniques. Future works may focus on developing more 
effectual models that balance complexity and interpretability, 
allowing real-time predictions while addressing limitations in 
generalizability and responsiveness to dynamic storm 
conditions. 
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