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ABSTRACT 

As IoT continues to expand, the security of connected devices remains a critical concern, particularly in the 
face of DDoS attacks. This study introduces a novel approach that leverages blockchain technology 
through smart contracts integrated with an advanced attack detection mechanism. Central to this 
approach is the Enhanced Residual Gated Recurrent Unit (ERGRU) architecture, designed to effectively 
identify and mitigate DDoS attacks within IoT networks. The Adaptive Coati Optimization Algorithm 
(ACOA) was used to adjust the hyperparameters of the ERGRU model, such as the learning rate and the 
number of GRU neurons, to further improve detection accuracy. In addition, the proposed framework 
uses a one-way compression function to generate secure hashes for input data, utilizing the Merkle-
Damgård cryptography technique to ensure data integrity and confidentiality. The proposed solution was 
tested through a rigorous process using a DDoS dataset. Performance was assessed by focusing on metrics 
such as processing time, data integrity rate, and confidentially rate. The results demonstrate the 
effectiveness of the proposed smart contract-based framework in providing a durable and efficient 
protection mechanism against DDoS attacks in IoT environments. 

Keywords-IoT; distributed denial of service; residual gated recurrent unit; Coati optimization algorithm; 
Merkle-Damgård cryptographic technique 

I. INTRODUCTION  

An IoT network consists of items that perceive, interact, 
and communicate with the outside environment [1]. Everyday 
life involves several IoT applications, such as traffic control, e-
health, smart cities, smart automobiles, and smart homes. The 
IoT is expected to reach more than 27 billion connections by 
2025, increasing at a rapid pace [2]. Everything is online, and a 
plethora of new IoT gadgets emerge every day. IoT 
technologies have enabled a massive increase in the number of 
heterogeneous devices connected to the Internet. The growth of 
IoT has been one of the most significant technological 
advances in the last 10 years. The IoT fundamentally altered 
technology by allowing real objects to connect and 
communicate with each other online to improve human lives 
[3, 4]. The IoT epitomizes the transformation of the digital 
landscape, moving beyond traditional devices such as 
computers and smartphones to create an interconnected web of 
everyday objects, being the cornerstone of the 21st-century 
revolution [5, 6]. 

IoT devices are one of the main targets of threats. Recent 
reports claim that DDoS attacks and botnets account for most 
cyber-attacks that occur nowadays. The frequency and severity 
of these episodes have increased dramatically during the last 
ten years [7-10]. Traditional security measures, especially 
centralized intrusion detection systems, are not well equipped 
to handle the intricacies of IoT. These centralized systems often 
suffer from scalability issues and are struggling to monitor the 
massive data flows generated by the plethora of IoT devices. 
Moreover, centralized systems also introduce a single point of 
failure, making them attractive targets for adversaries [11-13]. 

Many secure data storage and attack detection systems have 
been proposed for IoT environments. In [14], Principal 
Component Analysis (PCA) was used along with the Random 
Forest (RF) classifier, achieving high precision, recall, F1-
score, accuracy, and kappa coefficients. On the other hand, the 
Naive Bayes classifiers performed comparatively worse. In 
[15], behavior models based on Stochastic Petri Nets (SPNs) 
and an iterative computational technique with linear 
complexity in the number of nodes were introduced. This made 
it possible to specify and examine attack and defense plans for 
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performing voting-based IDS operations. In this method, good 
nodes could maximize the system lifetime. However, attackers 
target higher-capacity nodes more frequently than lower-
capacity ones in an attempt to bring about an application 
failure. 

In [16], a two-pronged machine-learning technique was 
proposed to detect and prevent IoT botnet attacks. The 
performance of the introduced ResNetScan-1 and 
ResNetDDoS-1 models was evaluated using scans and DDoS 
traffic samples from three publicly available datasets. The 
ResNet-18 model was trained over these datasets and the 
resulting ResNetScan and ResNetDDoS models were saved. 
However, the latter was unable to fairly identify DDoS traffic, 
having an average F1-score far below the typical precision. In 
[17], a tool known as C-DAD (Counter-based DDoS Attack 
Detection) was developed, which efficiently detected DDoS 
attacks using values of various network properties. The 
performance of this framework was analyzed in detail on 
several aspects such as SD-IoT network throughput, CPU and 
memory consumption, and attack detection time. However, 
security is one of the main issues with an IoT ad-hoc system. 

In [18], Federated Learning (FL) was used to strengthen the 
security landscape of IoT networks, focusing specifically on 
the detection of DDoS attacks. The proposed FL-DAD method 
underscored the efficacy of decentralizing the learning process, 
ensuring data privacy while not compromising detection 
accuracy. The numerical results demonstrated that this 
approach achieved an accuracy consistently above 98% across 
various DDoS attack classes. 

II. OPTIMIZING IOT ATTACK DETECTION WITH 
SMART CONTRACTS AND COMPRESSION 

TECHNIQUE 

A. Overview 

This study aims to improve the detection of IoT attacks 
through the application of blockchain and deep learning. Data 
are first collected using IoT sensors. A one-way compression 
function is integrated into the blockchain architecture to protect 
data confidentiality. This feature ensures that the information is 
kept private and safe. Subsequently, an attack detection 
mechanism using an Enhanced Recurrent Gated Recurrent Unit 
(ERGRU) model is added to the blockchain smart contract. 
This model is necessary to identify and evaluate abnormalities 
suspicious of assaults. The ERGRU's hyperparameters, such as 
learning rate and GRU neuron count, were set using an 
Adaptive Coati Optimization Algorithm (ACOA) to achieve 
optimal performance. All input data are hashed using the one-
way compression function in the Merkle-Damgård 
cryptography technique, ensuring data integrity and 
confidentiality. Finally, the processed and hashed data is 
uploaded to the blockchain, providing the foundation for real-
time attack detection in the IoT environment. Figure 1 
illustrates the workflow. 

B. Enhanced RGRU Architecture for Smart Contract 
Detection 

The system collects data from IoT sensors and divides them 
into various categories to start the classification process. An 

enhanced RGRU architecture, optimized with the help of the 
ACOA, is used to achieve this. The data are labeled to 
differentiate between usual and potentially dangerous behavior. 
To correctly detect and prevent potential attackers in the IoT, 
the proposed blockchain-based smart contract must complete 
this classification process. 

 

 
Fig. 1.  Flow chart for the proposed structure. 

1) Enhanced RGRU Architecture 

This study leveraged an enhanced Long Short-Term 
Memory (LSTM) neural network, known as RGRU, to enhance 
the IoT vulnerability detection mechanism. The simpler 
structure of GRU, compared to LSTM, results in faster training 
and higher computing efficiency, making it ideal for this 
setting. Figure 2 shows the neural structure diagram of the 
deep-enhanced RGRU neural network, which is derived from 
the GRU neural network. 

 

 
Fig. 2.  Enhanced RGRU structure. 

Figure 2 shows how the improved RGRU neuron varies 
from the GRU neuron because the reset gate can rescreen the 
current input data �� , as in the update gate �� , the ��  is 
multiplied with prior values to conceal the state weight. In 
other words, the output of the reset gate is utilized to alter the 
update gate to improve the neuron system, where the weight 
between the input is denoted as ��  and the update gate is 
denoted as ℎ��	 . The reset gate's weight between input and ℎ��	 is represented by �
. ��represents the weight of ℎ�. The 
symbols �� and �� in this formula indicate the same function as 
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regular GRU neurons among them. The series of inputs is 
assumed to be (�	,��,..., ��), and the formula for computing a 
typical enhanced RGRU output for a unit is described below. 

Reset gate calculation: 

�� = ���
 ∗ �ℎ��	, ����    (1) 

Update Gate Calculation: 

�� = ���� ∗ �ℎ��	, �� ∗ ����   (2) 

Candidate hidden state calculation: 

ℎ� = ���ℎ�� ∗ �� ∗� ℎ��	, ����   (3) 

Final hidden state calculation: 

ℎ� = �1 − ��� ∗ ℎ��	 + �� ∗ ��    (4) 

�� = ���� ∗ ℎ��    (5) 

The ERGRU neural network, which reduces gradient 
attenuation and simplifies hidden state identification, has a 
more efficient neuron structure than the standard GRU, as 
shown in (2) and Figure 2. As a result, the RGRU model can 
retain long-term relationships while improving accuracy and 
learning efficiency. Three layers comprise the network: input, 
hidden, and output. The hidden layers of the network contain 
sophisticated RGRU neurons. Performance is enhanced overall 
by optimizing the ERGRU model, which also improves 
information retention and effective information propagation. 

a) Residual Network 

Due to the limited learning efficiency of GRU, the slow 
convergence rate, and the complexity of time series data, it is 
sometimes not possible to eliminate all duplicate state 
information in a single screening. Therefore, the improved 
RGRU neural network is used. Residual Networks (ResNets) 
take advantage of residual blocks, which, include skip 
connections, and a quick path for gradient flow. The network's 
capacity to transfer information is increased by adding 
gradients element by element through the use of residual 
blocks. ResNets are very useful for extracting complex and 
abstract data. Skip connections are required to prevent feature 
loss and maintain past data, helping the model learn and extract 
more dependable features. Two 1D convolutional layers with a 
filter size of one, batch normalization, and a Rectified Linear 
Unit (ReLU) activation function are usually used to construct 
each residual block. A ResNet has a convolutional weight 
layer, referred to as  ���, where the input is � and the output is 
ℎ��� . The following equation describes the relationship 
between these elements: 

ℎ��� =  ��� + �    (6) 

In the residual network, the input � is directly connected to 
the network's output. Equation (2) illustrates that the network 
will learn its residual rather than the best mapping function 
directly at this stage. 

 ��� = ℎ��� − �    (7) 

The model continues to learn the residual mapping as the 
network expands, ensuring that the gradients do not vanish as 
the network deepens. If the residual mapping reaches zero 

( ��� = 0), the output ℎ��� equals the input � , theoretically 
keeping the network in an optimal state even as network depth 
increases. This study aimed to enhance the efficacy of the 
threat detection system in the blockchain-based IoT 
architecture using the efficiency and simplicity of RGRU. This 
approach ensures the fast and precise identification of security 
threats, thus improving the overall security of the IoT network. 

2) Optimization of RGRU using ACOA 

By optimizing important hyperparameters, such as learning 
rate and GRU neuron count, ACOA improves the performance 
of the RGRU neural network. This optimization makes the 
RGRU more effective and adaptable, improving its capacity to 
identify and analyze intricate patterns in sequential data. 
ACOA improves the RGRU configuration by imitating the 
adaptive hunting and defensive systems of coatis, inspired by 
their strategic behaviors. This ensures that ACOA has better 
learning and prediction capabilities. Table I shows the 
hyperparameters and values for GRU optimization. 

TABLE I.  HYPERPARAMETERS AND VALUES FOR GRU 
OPTIMIZATION 

Symbols  Hyperparameters  Values  " Learning Rate [.01,.05,.1,.2,.5,.8,1.0] 

#$ GRU neuron count [64,128,256,512,1024] 

 

a) Initialization 

To tune ERGRU, key hyperparameters were adjusted such 
as learning rate (") and GRU neuron count (#$). To start the 
optimization process, a candidate solution is generated, which 
is represented by the number of coats in the search space. The 
values of the choice factors are determined by each coati's 
position in this area. The coatis' locations in the search space 
are initialized using (8) at the start of the ACOA 
implementation. 

% = &'	, '�, '(, … … , '*+   (8) 

where % is the population and '* represents the ��ℎ solution. 

'	 = �", #$�     (9) 

b) Fitness Calculation 

The fitness of each initialized solution is calculated. Fitness 
is determined by calculating accuracy, with higher accuracy 
indicating better fitness. Equation (10) shows the fitness 
function. 

,-��.// = 0���1''2��'��   (10) 

Accuracy is calculated by: 

1''2��'� = 3$435
3546543$46$   (11) 

c) Update the Solution 

In their native environments, coatis perform two unique 
actions that inspire the ACOA: hunting lizards and protecting 
themselves from predators. By considering these behaviors, 
potential solutions are modified. Half of the coatis climb trees 
after a lizard falls, while the other half stay on the ground 
throughout the phase of exploration (attacking behavior). The 
coatis's position on the tree can be determined using: 
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789	: /8,;9	 = /8,; + � ⋅ �-=2���; − > ⋅ /8,;�  

- = 1,2, . . . . . , A$
�B ,    D = 1,2, . . . . E  (12) 

The following formula can be used to locate a spiny-tailed 
lizard that has fallen to the ground: 

-=2���;F = GH; + � ⋅ �2H; − H;�  (13) 

789	 = I/8,; + � ⋅ �-=2���;F − >. /8,;�,  8JKL*LF <  8
/8,; + � ⋅ �/8,; − -=2���;F�, else  (14) 

where: 

- = A$
�B + 1, A$

�B + 2, . . . . . . , Q,    D = 1,2, . . . , E.  
In this formula, 78  denotes as the - th coati in the search 

space, and /8,;  denotes the value of the D th decision variable. 

The total number of coatis is denoted as Q , the number of 
decision variables is denoted as E , a random real number 
between 0 and 1 is denoted as �, and GH;  and 2H;  denote the 

lower and upper limits of the Dth decision, respectively. 

78 = I789	  89	 <  878   .G/.     (15) 

The new position for the - th coati is estimated using 789	
, 

where /8,; represents the Dth dimension of the -th coati's position. 

The variable /8,;9	
 indicates the Dth dimension,  8JKL*LF  represents 

the value of the objective function, and � is a random real 
number within the range [0,1]. The position of the spiny-tailed 
lizard in the search space, which indicates the location of the 
best member, is indicated by -=2���; , where D denotes the Dth 

dimension. Additionally, > is an integer randomly chosen from 

the set {1,2}, ⌊⋅⌋ is the floor function, -=2���F  depicts the 

lizard's position on the ground, and -=2���;F  indicates the jth 

dimension of the lizard's location. 

d) Levy Flight Mechanism 

The algorithm's flexibility and convergence speed are 
improved when adaptive weighting and the Levy flight 
mechanism are incorporated during the exploration stage. This 
results in a notable enhancement in the algorithm's search 
capabilities. The following formula is used for this 
improvement: 

���� = 0.2 'T/ UV
� W1 − �

3XY   (16) 

78�4	 = 78� + �	 + " ⊕ ".���[�   (17) 

where 78� denotes the location of the ith coati during � iteration, \ is the maximum number of iterations, and " denotes the step 
size control parameter. When specifying a specific path or 

trajectory, " = 0.01�78���� − 79� , and ".���[�  indicates the 

Levy distribution. 

e) Exploitation Phase (Escaping Behavior) 

In ACOA, optimization is guided by a behavior inspired by 
the survival instinct of coatis, prompting them to flee from 
predators. 

789�: /8,;9� = /8,; + �1 − 2�� ⋅  
    WGH;]^_L] + � ⋅ �2H;]^_L] − GH;]^_L]�X  (18) 

where GH;]^_L] = ] à
� , 2b;]^_L] = K à

� , 789�
 is the modified spot 

of the ith lengthy-nosed coatis, /8,;9�
 is the jth dimension of the 

coatis,  89�
 is the coatis's objective function value, � is a 

randomly chosen real number between 0 and 1, and GH;  and 2H; stand for the lower and upper boundaries of the jth decision 

variable. 

f) Termination 

The ACOA iteration is considered completed when there is 
a shift in location for each coati in the search space between 
phases one and two. Applying (12)-(18), the population is 
updated iteratively until the last iteration is reached. As a result 
of optimization, the ERGRU's performance improves and 
provides more accurate results. The learning rate and number 
of GRU neurons are two essential hyperparameters that ACOA 
carefully optimizes. 

C. Cryptographic Hash Generation using Miyaguchi–Preneel 
Technique 

After classifying the data, the proposed method ensures 
secure transfer by utilizing blockchain technology based on the 
Merkle-Damgård cryptographic hash. The usage of blockchain 
technology protects against unauthorized access to data 
transfers. 

In the construction of the blockchain, several blocks are 
connected to form a chain. Each block in the chain consists of a 
timestamp (�c ), data (ℎ8 ), and a cryptographic hash of the 
previous block (d�.efLcf). Every user on the blockchain has a 
unique transaction history. Sensitive data collected by sensor 
nodes is part of every transaction. The Merkle-Damgård hash 
cryptographic function is utilized to ensure data preservation. 
Every transaction generates a blockchain using the Merkle–
Damgård hash cryptographic technique. The hash function 
divides the data into message blocks and a hash value is created 
for every message block. Sensitive data is provided to the 
server with its final hash value to improve data security. The 
prior block's hash (prev-hash) is used for block confirmation. 
The time steps (tsp) show the time at which the block was 
formed. 

The Merkle-Damgård architecture uses a one-way 
compression algorithm to build a fixed hash for each data 
input. Before creating the hash, the Merkle-Damgård 
construction divides the input data into fixed-size message 
blocks. 

ℎc → 0	, 0	, 0	, 0
  

After the data is split, the message block is passed to the 
compression function hi
, which requires a final hash, i.e., an � − j-�  message block 0
  and an � − j-�  chaining value kL . 
Using compressive Merkle-Damgård construction, a fixed-
length message is processed iteratively by the compression 
function hi	, hi�, . hi
 , resulting in the hash number kL ∈&0,1+ . The compression function is provided using a 
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straightforward block cipher method. For the lone output, the 
hash is the same size as the input hash. The two fixed-size 
inputs that are formed are the message block and the previous 
hash. 

An initial hash of the algorithm is denoted as k�: 

k� = h6�k8�	, 08�,     - = 1,2,3, . . . �  (19) 

The data's final hash value is kL , the function of 
compression is h6 , the previous block hash is k8�	  and the 
block of messages is 08. 

III. RESULTS AND DISCUSSION  

The proposed system was implemented on a Windows 10 
PC with an i5 processor running at 1.6 GHz and 16 GB of 
RAM using Python. The DDoS dataset in [19] was used to 
evaluate the effectiveness of the proposed method. 

A. 3.1 Experimental Results  

The proposed approach was compared with the LSTM, 
GRU, and Bidirectional Gated Recurrent Unit (BiGRU) models 
using various metrics. In addition, the proposed system's 
performance evaluation examined processing speed, data 
integrity, and confidentiality rates. The dataset was divided into 
training and testing validation ratios of 70:30 and 80:20. Table 
II presents a comparison of various methods for the 70:30 data 
split, evaluated across different metrics. Table III provides a 
similar comparison for the 80:20 data split. 

TABLE II.  COMPARISON TABLE WITH 70:30 SPLIT 

Methods GRU LSTM Bi-GRU Proposed 
Accuracy 0.96712 0.95665 0.96081 0.97925 

Precision 0.96701 0.95645 0.96065 0.97915 

F-score 0.96805 0.95830 0.96218 0.97002 

Specificity 0.96812 0.95843 0.96228 0.97008 

Sensitivity 0.96793 0.95810 0.96201 0.97992 

MCC 0.96797 0.95816 0.96206 0.97995 

NPV 0.96805 0.95830 0.96218 0.97002 

FPR 0.05765 0.06416 0.05965 0.04614 

FNR 0.03787 0.04622 0.04106 0.03565 

 
The findings in Table II show that the proposed ERGRU 

model achieved the best performance, with an accuracy of 
97.93%. It also demonstrates the highest precision of 97.92%, 
F-score of 97.00%, specificity of 97.01%, sensitivity of 
97.99%, MCC of 97.99%, NPV of 97.00%, FPR of 0.04614%, 
and FNR of 0.03565%, indicating its ability to effectively 
detect both normal and attack instances. BiGRU and GRU 
follow with an accuracy of 96.08% and 96.71%, commendable 
precision of 96.06% and 96.70%, F-score of 96.22% and 
96.80%, sensitivity of 96.20% and 96.79%, specificity of 
96.23% and 96.81%, MCC of 96.20 and 96.80%, NPV of 
96.22% and 96.80%, FPR of 0.05965% and 0.05765%, and 
FNR of 0.04106% and 0.03787%, respectively. The LSTM 
method demonstrated slightly lower accuracy levels of 95.66%, 
precision of 95.64%, F-score of 95.83%, specificity of 95.84%, 
sensitivity of 95.81%, MCC of 95.81%, NPV of 95.83%, FPR 
of 0.06416%, and FNR of 0.04622%, respectively. For the 
70:30 data split, all models showed good predictive 
performance and high accuracy. However, the proposed model 

performed significantly better in most measures, suggesting its 
efficacy for the task at hand.  

TABLE III.  COMPARISON TABLE WITH 80/20 SPLIT 

Methods LSTM Bi-GRU GRU Proposed 
Accuracy 0.97046 0.97458 0.97872 0.98712 

Precision 0.97021 0.97436 0.97854 0.98701 

F-score 0.97255 0.97638 0.98024 0.98805 

Specificity 0.97271 0.97652 0.98035 0.98812 

Sensitivity 0.97229 0.97615 0.98005 0.98793 

MCC 0.97236 0.97622 0.98010 0.98797 

NPV 0.97255 0.97638 0.98024 0.98805 

FPR 0.05660 0.04762 0.04110 0.03614 

FNR 0.03614 0.03226 0.02913 0.02655 

 

 
Fig. 3.  (a) Confidentiality rate, (b) integrity rate, (c) processing time. 

The findings in Table III show that the proposed proposed 
ERGRU model achieved the most superior performance, with 
an accuracy of 98.71%. It also demonstrated the highest 
precision of 98.70%, F-score of 98.80%, specificity of 98.81%, 
sensitivity of 98.79%, MCC of 98.97%, NPV of 98.80%, FPR 
of 0.03614%, and FNR of 0.02655%, indicating its ability to 
effectively detect both normal and attack instances. 
Comparatively, GRU and BiGRU followed with an accuracy of 
97.87% and 97.45% and exhibited commendable precision of 
97.85% and 97.44%, F-score of 96.22% and 96.80%, the 
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sensitivity of 98.00% and 97.61%, specificity of 98.03% and 
97.65%, MCC of 98.01% and 97.62%, NPV of 98.02% and 
97.63%, FPR of 0.04110% and 0.047625%, and FNR of 
0.02913% and 0.03226%. The LSTM method demonstrated a 
slightly lower accuracy of 97.04%, precision of 97.02%, F-
score of 97.25%, specificity of 97.27%, sensitivity of 97.29 %, 
MCC of 97.24%, NPV of 97.25%, FPR of 0.05660%, and FNR 
of 0.03614%, respectively. For the 80:20 ratio data split, all 
models showed good predictive performance and high 
accuracy. However, the proposed model performed 
significantly better across most measures, suggesting its 
efficacy for the task at hand. Compared to existing models, the 
proposed approach demonstrated superior results, indicating its 
efficacy against DDoS threats. 

Figure 3 shows the data integrity rate, the processing time, 
and the confidentiality rates. High confidentiality, data integrity 
rate, and processing time demonstrate how well the proposed 
system protects against illegal access and data tampering. The 
proposed DDOS mitigation strategy achieved significant 
performance metrics, such as a 100% data integrity rate and a 
98.8% confidentiality rate, coupled with a 2-minute processing 
time. These numbers highlight how well the proposed model 
handles DDoS attack detection and mitigation while 
maintaining data confidentiality and integrity.  

IV. CONCLUSION 

Strong security measures are increasingly necessary to 
protect sensitive data from potential dangers as the number of 
IoT devices increases, particularly in the context of DDoS 
attacks. This study proposed a unique strategy that used 
blockchain technology by combining smart contracts with a 
sophisticated attack detection system. An improved RGRU 
architecture was proposed for IoT network DDoS attack 
detection and mitigation. To further increase detection 
accuracy, the hyperparameters of the RGRU model were 
optimized using ACOA. Furthermore, the proposed framework 
utilized a one-way compression function to generate secure 
hashes for input data utilizing the Merkle-Damgård 
cryptography technique to ensure data integrity and 
confidentiality. The proposed method outperformed existing 
methods and achieved the highest accuracy of 98.71%. Future 
studies might focus on expanding the framework to handle 
other types of cyber threats, such as Advanced Persistent 
Threats (APTs) and insider attacks. 
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