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ABSTRACT 

This study investigates the critical task of assessing water potability using supervised machine-learning 

techniques. The problem statement involves accurately predicting water potability based on chemical and 

physical parameters, which are crucial for public health and environmental sustainability. Exploratory 

Data Analysis (EDA) highlighted significant insights into feature distributions and correlations, guiding 

preprocessing steps and model selection. The Synthetic Minority Oversampling Technique (SMOTE) was 

applied to mitigate class imbalance, ensuring robust model training. Three classification algorithms, 

namely Logistic Regression (LR), K-Nearest Neighbors (KNN), and Random Forest (RF), were evaluated, 

with RF exhibiting superior performance after Optuna hyperparameter tuning, achieving an accuracy of 

68%. Based on the performance of RF and KNN, a weighted voting-based ensemble technique achieved an 

accuracy of 71%. This study emphasizes the importance of leveraging machine learning to support water 

quality assessment, offering reliable tools for decision-making in public health and environmental 

management. 

Keywords-SMOTE; machine learning; water quality; water potability; random forest; k nearest neighbors; 

logistic regression 
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I. INTRODUCTION  

Drinking water is scarce in this world. It is a fundamental 
human right, critical for sustaining life and promoting good 
health. Although there are substantial improvements in water 
treatment technologies, with regulatory frameworks around the 
world to ensure water potability, it remains a major challenge 
that persists worldwide [1]. Industrial activities, agricultural 
practices, urbanization, and natural environmental changes are 
some of the main causes of water contamination [2]. The 
contamination of water bodies can change some water quality 
parameters, leading to non-potable water. Water can be 
contaminated by various factors, with arsenic being one of the 
contaminants [3]. The assessment of water quality is even 
essential for aquaculture systems. Researchers are developing 
Internet-of-Things-based systems to measure water quality. 
Water contamination can lead to low dissolved oxygen levels, 
which threatens aquatic life [4, 5]. According to the World 
Health Organization (WHO), approximately 2 billion people 
lack access to safe and potable water. Therefore, the 
conservation and maintenance of drinking water is an essential 
sustainable goal worldwide [6]. 

The microbial contamination of water bodies is examined 
with traditional laboratory-based and molecular detection 
techniques [7], biosensors and electromechanical approaches 
[8], optical detection techniques [9], and fluorescence [10]. 
These techniques play an important role in ensuring good water 
quality. However, traditional water quality monitoring 
generally relies on periodic sampling and manual testing, 
which can be labor-intensive and time-consuming [11]. The 
field of Artificial Intelligence (AI) and Machine Learning (ML) 
has made significant progress in the recent era. AI has become 
part of everyday human activity. ML models are especially 
suitable for data collection and sensor-based environments to 
process data effectively [12]. Despite these advances, 
leveraging the full benefits of AI and ML models for tasks such 
as water potability assessment is not an easy task. As data 
continually evolve, the performance of ML models can 
decrease. If the collected data are incorrect or inaccurate, it can 
lead to adverse behavior of the ML model, leading to unreliable 
results [13]. There is a definite need for explainable AI-based 
solutions that can assist managers and policymakers trust the 
recommendations obtained from ML-based analyses [14]. To 
handle these challenges, this study proposes three supervised 
ML classification models for efficiently classifying if the water 
is potable or nonpotable for the given set of water quality 
parameters.  

Water quality prediction is a challenging and socially-must-
required issue. There are several types of water, such as 
drinking water, wastewater, groundwater, surface water, 
seawater, and freshwater [15]. Each of these categories has 
unique characteristics and chemical compositions that make 
them relatively distinct. The importance of accurate water 
classification of water potability cannot be overstated, 
especially in regions where access to clean water is limited 
[16]. Ensuring that water is safe for consumption is crucial for 
public health, and automated classification systems based on 
ML offer a powerful tool to assist in this process [17-19]. ML 
algorithms, particularly ensemble methods, are well-suited to 

handle the multifaceted nature of water quality data, which can 
include a variety of physical, chemical, and biological 
parameters [20, 21]. This study proposes a novel ensemble 
classification model for water potability classification, 
combining the benefits of the Random Forest (RF) and K-
Nearest Neighbors (KNN) classifiers using a weighted voting 
mechanism to integrate their predictions and improve 
prediction accuracy and robustness. The proposed approach not 
only advances the field of water quality monitoring but also 
demonstrates the broader potential of ML and ensemble 
techniques in solving critical real-world problems with 
significant social impact. 

Water potability classification is an important research goal. 
Although the current research showcases the relevance of ML 
models for water potability classification, it lacks 
interpretability and suffers from model overfitting. This paper 
presents efficient water potability classification models with 
the following contributions: 

 Preprocesses the dataset with SMOTE analysis to address 
the data imbalance. 

 Implements three supervised machine learning 
classification models to efficiently classify water as potable 
or nonpotable for the given set of water quality parameters.  

 By evaluating the performance of the supervised machine 
learning models on the water quality dataset, the RF 
classifier is suggested as the most suitable model for the 
classification task. 

 The RF classifier is systematically hyperparameter-
optimized with the Optuna framework to further enhance 
the classification results. 

 Proposes a weighted ensemble classifier that combines the 
strengths of the RF and KNN classifiers. 

II.  WATER POTABILITY DATASET 

The problem considered is to classify the suitability of 
water as potable or not using ML models. A dataset was 
obtained from [22], which consists of several water quality 
parameters, such as pH, Hardness, Solids, Chloramines, 
Sulfate, Conductivity, Organic carbon, Trihalomethanes, and 
Turbidity. These water quality characteristics are used to 
classify whether the water is suitable for drinking. Potability is 
a categorical target variable. If water is potable, then Potability 
has a value of 1 and, in the case of non-potable, the value is 0. 
In water quality features, pH measures the water level acidity 
and alkalinity, ranging from 0 to 14. Hardness Water represents 
the amount of soap to be precipitated by the water, with 
recorded values ranging from 47.43 to 323.12 mg/L. Total 
Dissolved Solids (TDS) are represented by the Solids feature, 
with a minimum of 320.94 to a maximum of 61227.19 mg/L. 
Similarly, chloramine and sulfate compounds are represented 
using the Chloramines and Sulfate features, respectively. 
Conductivity measures water's capacity to conduct electricity 
because of dissolved salts and minerals. Organic carbon, with 
values between 2.2 and 28.3 mg/L, indicates the concentration 
of carbon-containing compounds derived from natural and 
synthetic sources. The Trihalomethanes (THMs) feature varies 
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from 0.73 to 124 µg/L, whereas Turbidity ranges from 1.45 to 
6.73 NTU (Nephelometric Turbidity Units). The dataset 
contains 3,276 rows. Figure 1 shows a snapshot of sample 
values of the dataset. 

 

 

Fig. 1.  Water potability dataset sample. 

III. EXPLORATORY DATA ANALYSIS 

Figure 2 illustrates the distribution of water samples 
classified by potability status. Within the dataset, there are 
1998 entries classified as 0, representing non-potable water 
samples, accounting for approximately 61.0% of the dataset. In 
contrast, there are 1278 entries classified as 1, indicating 
potable water samples, comprising approximately 39.0% of the 
dataset. This distribution highlights a significant proportion of 
non-potable water samples compared to potable ones, 
underscoring the importance of accurately classifying water 
quality to ensure safe drinking water standards are met. 

 

 
Fig. 2.  Distribution of water potability. 

The correlation analysis reveals the relationships between 
Potability and various water quality parameters. Among these 
attributes, pH and Hardness show negligible negative 
correlations of -0.0036 and -0.014, respectively, indicating 
minimal influence on water potability. Solids and Chloramines 
exhibit positive correlations of 0.034 and 0.024, respectively, 
suggesting a slight association with Potability. Conversely, 
Sulfate and Conductivity display negative correlations of -
0.024 and -0.0081, respectively, implying a minor impact on 
Potability. Organic_carbon, Trihalomethanes, and Turbidity 
show negligible correlations near zero. These findings highlight 
complex relationships between water quality parameters and 
Potability, underscoring the nuanced factors that influence the 
classification of drinking water. 

Several steps were taken to address the issue of missing 
values and class imbalance in the dataset. Initially, it was 

identified that three attributes, pH (491 missing values), Sulfate 
(781 missing values), and Trihalomethanes (162 missing 
values), lacked complete data points. These missing values 
were managed to ensure data integrity and reliability. 
Subsequently, the Synthetic Minority Oversampling Technique 
(SMOTE) was employed to mitigate class imbalance in the 
dataset using the imblearn.over_sampling.SMOTE module. 
This works by generating synthetic samples for the minority 
class (Potability = 1) to match the number of samples in the 
majority class (Potability = 0). In addition, to prepare the data 
for modeling after handling missing values and applying 
SMOTE, MinMaxScaler was utilized to normalize the features, 
ensuring that all variables were on a consistent scale for 
optimal performance of ML algorithms. This scaling step 
normalized each attribute to a range between 0 and 1, thus 
reducing potential biases due to different scales among the 
variables. 

IV. MACHINE LEARNING CLASSIFICATION 
MODELS 

A. Logistic Regression (LR) Classifier 

LR was the first algorithm used to implement the 
classification, as it is one of the preferred binary classification 
models. It models the probability of a binary outcome, i.e., 
potable or nonpotable, based on input water quality features. 
LR estimates the probability that a water sample belongs to a 
specific class. A sigmoid function is used to map the 
predictions between 0 and 1.  

B. K-Nearest Neighbors (KNN) Classifier 

The KNN classifier is a simple yet effective algorithm for 
binary classification tasks. It classifies a sample by a majority 
vote of its k nearest neighbors in the feature space. In this 
context, the algorithm calculates the distances between the 
sample to be classified and all other samples in the training set. 
The sample is then assigned to the class that is most common 
among its k nearest neighbors. The KNN classifier is intuitive 
and adaptable to various datasets, making it suitable for 
identifying water samples as potable or non-potable based on 
their measured attributes. 

C. Random Forest (RF) Classifier 

The RF classifier is a powerful ensemble learning method 
for binary classification tasks. It constructs multiple decision 
trees during training and outputs the mode of the classes 
(potable or non-potable) as the prediction. Each tree in the 
forest is built using a random subset of features and a random 
subset of training data, reducing overfitting and improving 
accuracy. RF can handle large datasets with high 
dimensionality and is robust against noise and outliers. It also 
provides insight into feature importance, aiding in 
understanding the factors that influence the classification of 
water quality. 

D. Fine-tuning Random Forest Classifier 

The Optuna library effectively optimized the RF classifier, 
yielding improved performance with specific parameter 
settings: ��������� � 	�
��, ������� � 48, ���������� �

′����′ , �������������� � 3 , and ����������!��"� � 5 . After 
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parameter tuning, 67.32% accuracy was obtained, indicating a 
substantial improvement over the initial performance of the 
model and proving that hyperparameter tuning worked well. 
This leads to a deeper and more complex tree ensemble, which 
in turn might reduce overfitting and improve generalization. 
The result reiterates the significance of systematically tuning in 
improving model accuracy and robustness, allowing a 
preference stamp on the RF classifier once fine-tuned for 
accurate prediction of water potability. 

E. Proposed Ensemble Classifier 

Based on the performance of the KNN and RF classifiers, a 
weighted voting-based ensemble technique was used to 
leverage the strengths of both classifiers and further improve 
classification accuracy. Each classifier's prediction is weighted 
according to its overall performance (F1-score). The final 
prediction is based on the class that receives the highest 
weighted vote, as shown in Algorithm 1. 

Algorithm 1: Ensemble Model for Potability 

Classification using KNN and RF 

Data: Training dataset with features $ and 

labels % 

Result: Prediction for potability %& for a 

new sample  
Step 1: Train individual classifiers: 

  Train KNN to obtain '())*+; 

  Train RF to obtain '-.*+; 
Step 2: Compute weights for classifier: 

  Calculate F1-scores for KNN (	1())) and  

  RF (	1-.); 

  Computer normalized weights: 

  0()) �
.1233  

.12335.167
 and 0-. �

.167 

.12335.167
 

Step 3: Ensemble prediction: 

  For each class 8 ∈  :��������
�, �����
�< 
   Calculate ensemble probability:  

   '=>���?��*+ � 0()) ⋅ '())*+ + 0-. ⋅ '-.*+ 
  Assign predicted class: 

  %&  � ��B maxF ∈ :>G>H�G��?��,   �G��?��< '=>���?��*+ 

Step 4: Output predictions: 

  Return %& 
 

The ensemble model integrates predictions from KNN and 
RF using a weighted voting mechanism. Let '())*+  and 
'-.*+ represent the likelihood of a sample input features  
belonging to class 8 . To balance the influence of these 
classifiers, their contributions are weighted by their respective 
F1-scores, 	1())  and 	1-. . The weights, calculated as 

0()) �
.1233 

.12335.167
 and 0-. �

.167 

.12335.167
, ensure that 

classifiers with higher performance metrics have a 
proportionally greater impact. The ensemble model aggregates 
these weighted probabilities as: 

'=>���?��*+ � 0()) ⋅ '())*+ + 0-. ⋅ '-.*+  

The final classification decision, %, is made by selecting the 
class 8 with the highest ensemble probability.  

V. RESULTS AND DISCUSSION 

A. Software Requirements 

The implementation of the water potability classification 
system was carried out in the Google Colab environment with 
Python ver. 3.12.3. Google Colab is an ideal platform for 
running the code, as it offers cloud-based resources. Key 
libraries required for the implementation include NumPy for 
numerical operations, Pandas for data manipulation, and 
visualization libraries such as Seaborn and Matplotlib for data 
exploration and analysis. Machine learning models were 
developed using scikit-learn libraries. Additionally, 
MinMaxScaler was used for feature scaling. 

The Optuna library was used to tune the model's 
parameters. The TPESampler from the Optuna sampler's 
module enables the use of the Tree-structured Parzen Estimator 
algorithm. 

B. Evaluation Metrics 

Accuracy measures the proportion of correctly classified 
samples (both potable and non-potable) among all samples in 
the dataset, providing an overall assessment of the model's 
correctness. 

Accuracy  �  
OP 5 O)

OP 5 O) 5 .P 5 .)
   (1) 

Precision measures the proportion of correctly predicted 
potable water samples (true positives) among all samples 
predicted as potable, quantifying the model's ability to avoid 
false positives. 

Precision �
OP

OP5.P
    (2) 

Recall measures the proportion of correctly predicted 
potable water samples (true positives) among all actual potable 
samples, indicating the model's ability to identify all positive 
instances. 

Recall �
OP

OP5.)
    (3) 

The F1-score is the harmonic mean of precision and recall, 
providing a single metric that balances both metrics.  

F1 − score � 2 ⋅
P��F"�"G>⋅-�F���

P��F"�"G>5-�F���
  (4) 

Support refers to the number of actual occurrences of each 
class in the dataset, providing context to the precision, recall, 
and F1-score by showing the distribution of the classes. In 
these formulas, \' (True Positives) is the number of correctly 
predicted positive observations, \]  (True Negatives) is the 
number of correctly predicted negative observations, 	' (False 
Positives) is the number of incorrectly predicted positive 
observations, and 	]  (False Negatives) is the number of 
positive observations that were incorrectly predicted as 
negative. 

C. Comparative Evaluation 

LR showed moderate precision and F1-score but relatively 
lower recall, suggesting that it may struggle to correctly 
identify positive instances. KNN exhibited higher precision and 
F1-score, indicating better performance in correctly 
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determining positive cases, although its recall was slightly 
lower than that of RF. RF demonstrated the highest values 
across all metrics, suggesting that it effectively balances 
precision and recall, making it the most promising classifier for 
this task. These findings highlight RF as the preferred choice 
due to its overall superior performance in this classification 
context. Tables I, II, and III show the precision, recall, F1-
score, and support observed for LR, KNN, and RF, 
respectively. The ensemble model had the best performance, as 
shown in Table IV. 

TABLE I.  PRECISION, RECALL, AND F1-SCORE OF LR 

Class Label Precision Recall F1-score Support 

Non-Potable 0.5 0.56 0.53 641 
Potable 0.51 0.45 0.48 659 

TABLE II.  PRECISION, RECALL AND F1-SCORE OF KNN 

Class Label Precision Recall F1-score Support 

Non-Potable 0.64 0.85 0.61 641 
Potable 0.63 0.68 0.65 659 

TABLE III.  PRECISION, RECALL, AND F1-SCORE OF RF 

Class Label Precision Recall F1-score Support 

Non-Potable 0.67 0.7 0.68 641 
Potable 0.69 0.66 0.68 659 

TABLE IV.  PRECISION, RECALL AND F1-SCORE OF THE 
ENSEMBLE CLASSIFIER  

Class Label Precision Recall F1-score Support 

Non-Potable 0.70 0.78 0.74 641 
Potable 0.73 0.75 0.74 659 

 
The average accuracies of LR, KNN, RF, and Ensemble 

classifiers were 51%, 62%, 68%, and 71% respectively, 
showing a progressive improvement. LR, with an accuracy of 
51%, performs only slightly better than random guessing, 
indicating that it struggles to classify water potability. It can be 
clearly understood that such unreliable classifications are 
unsuitable for real-world applications. KNN, with an accuracy 
of 62%, is relatively better, suggesting that it has learned some 
patterns in the data and is making more correct classifications. 
However, it still leaves significant room for error, which could 
be problematic if the model is used in sensitive areas such as 
public health or environmental monitoring. RF was better, with 
an accuracy of 68%. Finally, the proposed ensemble classifier 
shows the best performance among the four models. Although 
not perfect, with 71% accuracy, it still might not be sufficient 
for high-stakes decision-making, but with more training data, 
the accuracy can be further improved. 

D. Novel Contributions and Knowledge Gaps 

This research makes a significant contribution to the field 
of water potability classification by introducing a weighted 
ensemble classifier that combines the strengths of two well-
established ML algorithms, RF and KNN. Although individual 
classifiers have been widely used in similar classification tasks, 
their performance can be limited by inherent biases or 
overfitting particular patterns in the data. By integrating these 
classifiers through a weighted voting scheme, the proposed 
ensemble approach overcomes these limitations, offering a 

more robust and accurate model for water potability 
classification and leading to improved generalization and 
performance on unseen data. While RF excels at capturing 
complex nonlinear patterns in high-dimensional datasets, KNN 
contributes through its ability to model local relationships in 
the feature space. By combining these classifiers with a 
weighted ensemble, the aim is to overcome the individual 
limitations of each method, thus improving overall predictive 
performance.  

This study fills a critical gap by addressing both the 
hyperparameter optimization of the RF model and the 
imbalance in the dataset. The Optuna framework was used to 
ensure that the RF model parameters were fine-tuned for 
maximum predictive accuracy. Furthermore, the dataset used in 
this research was balanced using SMOTE. By incorporating 
these advanced techniques, namely hyperparameter 
optimization, ensemble learning, and data balancing, this study 
not only enhances the accuracy of water potability 
classification but also provides a more scalable and reliable 
solution for real-world applications in water quality 
monitoring. 

VI. CONCLUSION AND FUTURE WORK 

This study investigated the classification of water potability 
using LR, KNN, and RF algorithms, the latter two showing 
relatively better classification accuracy. As a result of fine-
tuning, the RF model reached an accuracy of 68%, 
demonstrating its potential to accurately predict potable water. 
The dataset was useful in the interpretation of importance and 
observations for the feature set, which is necessary to bridge 
toward a thoroughly operational ML paradigm. When applied 
to solve complex classification problems relevant to water 
quality assessment, the performance of the RF classifier was 
found to be the best. It should be noted that further fine-tuning 
model parameters or experimenting with different algorithms 
might improve performance, but these results demonstrate 
potential efficacy. Although the accuracy of the algorithm 
improved, there is still much work to improve it further. 
Additionally, developing more ML models will be considered 
in the future. Future research could explore additional feature 
engineering strategies and evaluate the model's performance 
across diverse geographical and temporal datasets, further 
validating its applicability in real-world scenarios. 
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