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ABSTRACT 

Patient safety is in danger because healthcare networks are more susceptible to cyberattacks as they 

become more intricate and linked. By altering data transmitted between various system components, 

malicious actors can hack into these networks. As cloud, edge, and IoT technologies become more widely 

used in contemporary healthcare systems, this difficulty is predicted to increase. This study presents a 

Combined Hybrid Deep Learning Framework with Layer Reuse for Cybersecurity (CHDLCY) to address 

this issue. This system is built to detect malicious actions that modify the metadata or payload of data flows 

across IoT gateways, edge, and core clouds quickly and precisely. The CHDLCY's is a unique design 

demanding less training time, while bigger models at the core cloud profit from a cutting-edge layer-

merging method. The core cloud model is partially pre-trained by reusing layers from trained edge cloud 

models, which drastically reduces the number of training epochs required from 35 to 40 to just 6 to 8. 

Thorough tests demonstrated that CHDLCY not only accelerates the training phase but also achieves 

remarkable accuracy rates, ranging from 98% to 100%, in identifying cyber threats. The proposed 

approach offers a significant improvement over previous models in terms of training efficiency and 

generalizability to new datasets. 
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I. INTRODUCTION  

The cost of medical treatment is enormous and 
continuously rising, with the USA spending approximately four 
trillion dollars in 2020, accounting for 17% of its GDP [1]. 
Despite these substantial investments, many countries face 
ineffective healthcare systems plagued by challenges such as 
poor chronic patient tracking, high readmission rates, delayed 
diagnoses, and a significant number of avoidable errors. These 
preventable errors remain one of the leading causes of death in 
the United States [2]. To address these issues and reduce rising 
costs, there is an increasing reliance on technology, particularly 
the Internet of Things (IoT), to improve healthcare outcomes 
through early and precise diagnoses. The projections of the 
International Data Corporation indicated that by 2022, 90% of 
medium- and large-size enterprises will have adopted cloud 
computing solutions, including multi-cloud and hybrid cloud 
environments [3]. In the healthcare sector, the use of multi-
cloud technologies was expected to increase from 19% in 2019 
to 37% in 2021 [4]. These advances not only improve patient 

survival and recovery rates by accelerating diagnosis and 
treatment but were also accelerated by the COVID-19 
pandemic [5].  

However, as analytics and data storage shift from 
traditional on-premises setups to edge and public clouds, the 
vulnerability to cyberattacks escalates [6]. Reports indicate that 
91% of healthcare organizations experienced at least one 
cyberattack in the past two years, with breaches increasing by 
71% in 2020 compared to 2019 [7-8]. The healthcare industry 
had the highest number of insurance claims related to 
ransomware attacks among major economic sectors from 2015 
to 2019 [9]. Such cyber threats jeopardize patient data, placing 
individuals at serious risk during diagnosis, treatment, or 
transport. In [10], the significant impact of data breaches on 30-
day hospital mortality rates was highlighted. Additionally, the 
targeting of critical medical equipment, such as pacemakers, 
poses severe threats to patient safety. For instance, the FDA 
recalled insulin infusion pumps due to potential manipulation 
[11].  
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As next-generation healthcare increasingly incorporates 
cloud computing and telecommunications virtualization, a 
more complex landscape emerges, presenting both 
opportunities and challenges. Currently, security and 
confidentiality concerns have limited the adoption of cloud 
services in healthcare to approximately 14% [12]. Traditional 
Intrusion Detection Systems (IDSs) are often ineffective in this 
context [13]. This situation underscores the pressing need for 
practical strategies to mitigate the increased risks of 
cyberattacks within next-generation healthcare systems. In 
response to this urgent challenge, this study proposes the 
CHDLCY architecture, designed to protect healthcare 
organizations from both internal and external threats. By 
leveraging a decentralized design of deep learning algorithms 
across edge and core clouds, CHDLCY aims to anticipate and 
detect data flow threats by closely monitoring transmitted data 
and identifying subtle changes in metadata. This innovative 
approach utilizes a collaborative set of neural network models 
across various cloud tiers, effectively addressing the expanded 
attack surface of modern medical facilities. Although larger 
and more sophisticated deep learning models improve detection 
accuracy, they often come with longer training times. 
CHDLCY tackles this issue by employing a combination of 
Deep Neural Network (DNN) models that significantly reduces 
training times for the more complex core cloud models without 
compromising detection accuracy. The particular contributions 
of this study are: 

 Creates an overview framework suitable for vital medical 
services, such as emergency scenarios and patient care 
while en route. 

 Creates a thorough threat model that describes dangers 
linked to IT and OT as well as how to mitigate them in a 
multi-domain next-generation healthcare architecture. 

 Outlines a unique hierarchical DNN strategy to protect 
medical data as it moves between edge and core clouds and 
the IoT domain. 

 Presents a merged core cloud DNN that improves 
predictability and training time for identifying anomalous 
activity in data flows. 

 Carries out an exhaustive assessment of the suggested 
approach and offers an in-depth analysis of the results. 

In addition to offering a strong defense for contemporary 
healthcare systems, this research shows how to use integrated 
and layered DNN models to achieve high detection accuracy 
and quick learning periods.  

II. RELATED WORKS 

This study presents a review of selected research, mainly 
from 2020 to 2024. Some earlier studies are also included for 
their relevance and comparative value. Some recent studies 
have closely examined the effectiveness of shallow Machine 
Learning (ML) compared to Deep Learning (DL) in security 
applications. As the DL detection capabilities have improved 
steadily, they have attracted considerable attention. Although 
DL often performs better than shallow ML in many areas, in 
[14], it was highlighted that this is not necessarily the case in 

cybersecurity. In [15], an intrusion detection model was 
presented that incorporated ML classifiers such as XGBoost, a 
shallow learning approach called PV-DM (Paragraph Vector-
Distributed Memory), and feature selection using SHAP values 
(SHapley Additive explanations). This method performed 
exceptionally well on the UNSW-NB15 and NSL-KDD 
datasets. Using only four features, an excellent 98.92% 
accuracy was achieved on the NSL-KDD dataset, with 
precision, recall, and F1 scores of 98.92%, 95.44%, and 
96.77%, respectively.  

Many studies used DL in multicloud medical systems. For 
example, authors in [16] applied it in edge cloud setups with 
IoT sensors. Likewise, authors in [17, 18] used it with ECG 
classifiers to help identify and diagnose heart problems. In 
[19], Cognitive Fog (CF) was used to detect abnormalities 
medical reports. Additionally, authors in [20] explored the use 
of blockchain technology to help diagnose certain medical 
conditions BDSDT employs Ethereum smart contracts to 
strengthen data security and connects with the InterPlanetary 
File System (IPFS) for off-chain storage to control data storage 
costs. The verified data are then given to a DL architecture to 
detect intrusions in healthcare system networks. This design 
combined Bidirectional LSTM (BiLSTM) with the Deep-
Sparse Autoencoder (DSAE). The results showed that BDSDT 
achieved near-perfect accuracy of 99% on two public datasets, 
CICIDS-2017 and ToN-IoT, outperforming existing state-of-
the-art approaches in both blockchain and non-blockchain 
contexts. 

In [21], a CNN IDS on a GPU obtained remarkable results, 
with 99.86% accuracy for five-class classification on the 
NSLKDD dataset. Similarly, in [22], a CNN model achieved 
96.55% accuracy on the CICIDS2017 dataset. However, this 
method used only one flat cloud structure and emphasized the 
importance of model training durations. In [23], a DL traffic 
cyberattack prediction and data offloading method (DLTPDO-
CD) was introduced. A DBN adjusted with the Barnacles 
Mating Optimizer (BMO) approach achieved 97.65% accuracy. 
In [24], accuracy rates of 96.7% and 98.5% were achieved 
using CNN and LSTM networks. In [25], an Autoencoder 
(AE)-based retrieval module was used in conjunction with a 
CNN-based supervised pretraining module to achieve 
accuracies of 89.45% and 80.25% for benign and defect flow in 
different datasets. Using the Plant Pathology 2020 dataset, AEs 
were used in [26] to achieve 95% training and more than 90% 
validation accuracy in agricultural settings. In [27], a thorough 
examination of DL and ML methods was carried out to 
precisely identify and categorize microorganism images on a 
larger scale. The CNN method performed better than other 
approaches on a dataset consisting of eight different species of 
microorganisms. 

These results demonstrate that although DL has seen 
occasional success in network intrusion detection, the area is 
still in its early stages of development. Utilizing a combined 
approach to stacked distributed systems in multiple cloud 
situations has attracted little focus. Although some first ideas of 
hierarchical neural networks in essential services were 
presented in [28], this study provides a more thorough and 
validated implementation in this domain. 
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III. PROPOSED HEALTHCARE FRAMEWORK 

The design of a medical facility framework provides 
significant information for improving the systems and aids in 
understanding the data flow. With this configuration, a threat 
model and targeted protections for the cyber-physical system 

under investigation may be constructed. The infrastructure is 
segmented into three primary domains: IoT, multi-cloud, and 
visualization, as illustrated in Figure 1.  

 

 

 
Fig. 1.  Architecture of the proposed next-generation healthcare system. 

Virtual Νetwork Services (VNS), or contemporary wide 
area network services, can be used for data transfer between 
various domains. ISPs are expected to use VNS more 
extensively. The IoT sector includes a wide range of wired and 
wireless devices, such as actuators, wearables, swallowed 
devices, etc., intended to collect and distribute patient data. 
These sensors monitor vital indicators such as blood pressure, 
heart rate, and oxygen saturation. IoT devices can 
automatically convey alerts and suggestions to paramedics for 
patients in ambulances [29]. This area typically performs the 
roles of an input, producing large amounts of multidimensional 
patient data, and a sink for instructions that are sent to actuators 
and other devices. 

However, the short battery life, low computing power, and 
small memory of IoT devices provide operational challenges, 
making them dependent on the multi-cloud domain to provide 
extra processing, analytics, and storage capacity. Situated at the 
boundary of this domain, the IoT gateway serves as a GUI 
between the cloud and the IoT domain, facilitating operations 
such as data translation and protocol management as required. 
The computing or cloud domain in the proposed framework is 
organized into a hierarchy of edge and core clouds. The closest 
cloud to the patient is an edge cloud, run by mobile service 

providers using servers mounted on mobile towers adjacent to 
base stations. These close clouds manage workloads that profit 
from proximity to IoT devices and offer low-cost and high-
latency connections to the multi-cloud system. Core clouds, 
also known as public clouds, provide large amounts of 
historical data storage along with sophisticated analytics 
features. For long-term storage, edge-cloud data collected for 
active monitoring or diagnostics can be moved to core clouds. 
Core clouds have higher latency and connectivity costs than 
edge clouds, but can analyze massive amounts of historical and 
real-time patient data utilizing advanced AI-based analytics. 
Finally, data ingestion in many representations is the core 
function of the visualization domain. Clinical personnel use 
these data to monitor patient health, find abnormalities and 
exceptions, and recognize early warning indicators [30]. 
Although the primary focus of this area is processed data, 
commands, instructions, and prescriptions can also create tiny 
amounts of data. This approach can help in fast and precise 
diagnoses by providing clinical professionals with different 
data streams in tabular, graphical, and other forms. Using 
ambulance data, physicians can instantly consult with medics 
to provide patient care recommendations. Improved 
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visualizations aid in more accurate diagnoses and successful 
therapy outcomes. 

The framework in Figure 1 aims to provide medical 
programs that manage patient care devices with complete data. 
It includes all the necessary features, including telemedicine, 
analytics, communication, remote consultations, and image 
collection. As a result, large amounts of data are sent for 
processing and preservation to the IoT-Cloud space. The 
proposed design is scalable and versatile, able to keep up with 
growing system requirements while maintaining strong 
security. It is organized into four linked domains. This 
segmentation facilitates the development of modular security 
rules throughout the healthcare network. The following are 
important elements in each of these domains. 

A. IoT Gateway 

Existing in homes, offices, hospitals, and ambulances, IoT 
gateways act as a link between the edge cloud and IoT 
domains. These routers maintain cloud connectivity and 
manage important functions, including data transformation and 
protocol handling. They may interact with edge clouds or core 
clouds straight away, and they can link to the virtual or 
physical wide area network of the service provider. 

B. Gateways to the Edge-Core Clouds (GECC) 

These gateways offer workload allocation, numerous 
capacity possibilities, and data compression for faster 
transmission. They collect telemetry data by connecting IoT 
gateways and devices. Physical or virtual routers (vRouters) 
can serve as gateways. 

C. Edge and Main Processors (EMP) 

With enough processing capacity and often particular 
hardware, such as edge tensor processing units, edge processors 
oversee data streams from devices or gateways. They can train 
and use smaller neural network models. Patient data are 
temporarily stored in edge storage during ambulance transit or 
when there is a need for quick data access. Core cloud 
computers, in the meantime, manage sophisticated analytics by 
analyzing both recent and historical data using sizable neural 
network models. They provide a thorough data display and 
analysis by integrating various information sources with the 
visualization area. 

D. Agents for Artificial Intelligence (AAI) 

Along with the main processor, the core cloud domain 
typically consists of sophisticated software for historical data 
analysis and specialized hardware such as GPUs. This 
configuration helps in the detection of new diseases and the 
prediction of patient readmissions. 

E. Visualization 

This area offers solutions for handling, tracking, and 
diagnosing patients by displaying their data. Many information 
sources are combined and synthesized, providing healthcare 
professionals with crucial insights. It facilitates the process of 
making better decisions by drawing attention to patterns and 
relations that are not immediately obvious from raw data or 
reports. 

F. Access Control (ACL) 

Authorization, authentication, and accounting for 
connections made by both persons and devices are managed by 
access control, which prevents data from being accessed 
without authorization, whether it comes from core or edge 
clouds. 

G. Provisioning, UI, and Other Tools (i.e., Management 
Console) 

These solutions give area controllers a straightforward 
interface for allocating cloud resources and injection policies. 
This approach enhances end-to-end security by providing 
consistent protection across all domains and reducing the need 
for manual provisioning. It also ensures patient safety, 
regulatory compliance, high availability, and improved patient 
care, whether in transit or at home. The main goal of this study 
is to develop an anomaly detection system that uses stacked DL 
to identify vulnerabilities in data flow between the edge and 
core clouds or the IoT_EdgeCloud. Strong and reliable 
authentication is critical to secure patient data and related 
information. A promising solution for patients in emergencies, 
such as in ambulances, is the use of brain wave biometrics.  

Integrating biometric methods with cryptographic 
techniques to implement AAA ensures strong protection. This 
study uses public-key cryptography combined with advanced 
hashing algorithms, including Stacked Sparse Autoencoder 
(SSAE) [31], to achieve this goal. 

����, ��� = �
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trained to minimize the MSE between ��  and �� . This is the 
input and the output for the second hidden layer. 

�� = �������
�
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repeated up to the last hidden layer that is linked to the output 
layer. For � hidden layers, the output vector is: 

�� = ��������
�
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SSAE can be improved using training samples in the format 
��, �� (or feature vectors, output vector), where � is the ground 
truth from training samples ��, ��. The weights linking the nth 
trained layer to the output layer are used, predictions ��  are 

derived, and all weights are altered to minimize 
�

�
‖� − ��‖�. 

During the last process, all weights are refined. A 
regularization term is introduced to reduce the MSE in the 
overall cost function: 

��, �� = �

�
∑ ������ + � ! + " #$%&#�'( (2) 

The third element is the small amount of regularized 
information (with coefficient ") that restricts the outcome of 
the hidden layer to be sparse. The initial element is the MSE 
averaged over all training samples. The second term applies a 
regularization to the weights to keep the regularizer from 
becoming too small. Kullback-Leibler Divergence (DKL) is a 
commonly used regularization that provides considerable value 
when the neuron's activity is not at the expected level. Each 
SSAE's associated weights and biases are variables that can be 
learned. To achieve acceptable results, hyperparameters, such 
as the number of layers, neurons, and loss function parameters, 
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must be properly adjusted. Table I lists several of the 
hyperparameters and their common values used. 

TABLE I.  SSAE HYPERPARAMETERS 

Measurement Synopsis Normal value(s) 

No. of layers 
Determines the neural network's 

depth 
4, 12 

Quantity of neurons 
in every single layer 

Reduce from the input layer to the 
output layer, then symmetrical raise 

60, 180 

Code size 
Outermost level with a highly 
condensed source description 

30 

Loss function MSE  
λ Regularization factor 0.00000001 
Β Sparsity regularizer 0.2 
β1, β2 Adam optimization decay rates 0.8, 0.9 

 
Unlabeled data are used to train one layer of DNN at a time. 

A network can avoid simple symmetric local optima by starting 
it with modest random weights (e.g., evenly between  
-0.1 and 0.1). The reconstruction error serves as a signal of 
normality or abnormality in the data flow, as the SSAE is 
trained solely on normal events. After training, the SSAE fails 
to rebuild anomalous data and instead reconstructs regular data 
flows with a low Root Mean Square Error (RMSE). The dataset 
is divided into one or more test datasets and a training dataset. 
Training ends when the RMSE regularly falls below a 
predetermined threshold. The trained model is then tested using 
the test dataset. To avoid overfitting, the network is frequently 
cross-validated throughout training. The number of epochs 
needed to obtain an error minimum is commonly used to 
indicate the duration of the training. The evaluation portion 
covers hyperparameter settings. 

IV. PROPOSED FRAMEWORK IMPLEMENTATION 
AND VALIDATION 

SSAEs were employed to train an intrusion detection 
classifier, comparing its performance with classical classifiers 
such as SVM, Naive Bayes (NB), DT, and Random Forest 
(RF), and evaluating the training time and detection accuracy 
of CHDLCY with standard DNNs. Finally, a hierarchical 
multi-cloud framework is presented for securing data in 
motion, with attention on the boundaries of edge and core 
clouds. 

The CHDLCY model was tested on various datasets, 
including the NSL-KDD dataset [32], containing 41 features. 
To evaluate the model's performance, metrics such as accuracy, 
precision, recall, F1-score, training time, false positives, and 
false negatives were analyzed. 

Different scenarios were tested to achieve the best results. 
The code was implemented using an edge-cloud model with 
Keras and TensorFlow. 

In summary, CHDLCY provides a distributed, hierarchical 
deep-learning framework to secure data in transit within a 
multi-cloud environment. Leveraging SSAEs, it ensures fast 
and accurate intrusion detection across all cloud levels. Its 
hierarchical structure offers a scalable and efficient solution for 
real-time applications, improving detection accuracy while 
minimizing training time. 

V. EVALUATION AND RESULTS 

This paper used two datasets (DSs), namely a Public DS 
and a Synthetic DS to estimate the efficiency of the proposed 
model. 

A. Public Dataset 

The BOT-IoT-DS, unconstrained in Nov. 2018 by the 
UNSW Canberra Cyber Centre, is considered to imitate 
genuine IoT network traffic and occurrence scenarios. This DS 
using practical network formations and outdone IoT devices, 
bests older DS like KDDCup99 and NSL-KDD by containing a 
extensive series of recent outbreak methods. The dataset 
contains nine outbreak attack types such as DoS, 
Reconnaissance, and Fuzzer in conjunction with standard 
circulation, letting indistinct discrepancy amongst malicious 
and legitimate activities. With 48 traffic-related features, it 
assists as a strong reserve for rising and difficult IDS tailored 
for IoT spheres. Recognized for its accurate simulation of IoT 
devices and outbreaks, the BOT-IoT DS is widely used for 
evolving difference exposure and pretty IoT cybersecurity. 

B. Data Produced on the Testbed 

Figure 2 illustrates the production of a healthcare-specific 
dataset using botnet attacks, although the BOT-IoT dataset is 
composed of semantic info from a variety of IoT devices. The 
testbed setup includes: 

 IoT Domain: An external Ethernet shield and an Arduino 
Mega microcontroller are used for medical IoT sensors. 

 Network Domain: Three machines and the microcontroller 
are connected via an Ethernet switch on an internal 
network. 

 Visualization Domain: An Ubuntu Linux server to view 
metadata and information regarding patients. 

 Attacker Domain: A Kali Linux-powered server for 
emulating harmful operations, such as dataflow 
manipulation and sniffing. 

C. Infrastructure for Deployment and Development Tools 

Numerous hardware and software platforms were used to 
evaluate the edge and core models. Some of the code was 
converted to MATLAB from Python on the Jupyter Notebook 
platform. The method was evaluated on a Windows 10 PC and 
a Mac 8-core CPU. The models were also trained and tested on 
Google Colab with TensorFlow V2.x and Keras during the 
review process, using CPUs and GPUs such as Nvidia L70s, 
T5s, P5s, and P300s. The aforementioned testbed was utilized 
to create botnet attack and normal data, anonymize it, and 
record it across some sessions. A Kali Linux system was used 
to mimic attack data, and the Argus Network Management 
System [35] was used to extract metadata. Weka [36] was used 
to rate the data. 
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Fig. 2.  Healthcare testbed for dataset generation. 

D. Results 

1) Training and Assessment at the Edge Clouds 

In this setup of the stacked AE for training in edge clouds, 
the dataset was randomized by shuffling its records before 
feeding it into the model. To achieve this, built-in functions 
from ML libraries, such as Python's NumPy shuffle function, 
were used. This ensures that the data do not follow any 
particular order, preventing potential biases during training. 

Randomization helps the model to generalize better by 
avoiding overfitting to any specific sequence in the data. This 
approach enables the model to learn diverse and robust 
features, essential for high performance in real-world edge 
cloud environments. As shown in Figure 3, the model, when 
tested on unseen datasets, demonstrated excellent 
generalization, with training and test losses converging within 
20-60 epochs. 

2) Training and Assessment at the Core Cloud 

Figure 4 displays the results for the integrated model in the 
core cloud. When compared to edge cloud learning, cross-
trained models stabilize more quickly (in less than four instead 
of five epochs). The layer reuse from the edge clouds 
contributes significantly to the efficiency and reliability 
benefits. 

3) Training Time Analysis 

For neural network models, the computational demand 
study revealed a high order of complexity O(n5). The edge 
cloud models take roughly 125 seconds for 4,000 training and 
1,000 testing on an Nvidia Quadro 8GB M4000 GPU, which is 
faster than the baseline findings in [27]. The training time is 

notably reduced by the combined model with twelve layers, 
which reuses edge-trained layers, compared to the uncombined 
core model with eight layers and a deeper depth (see Table II). 

 

 
Fig. 3.  Loss vs. Epochs for the cloud edge model. 
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Fig. 4.  Loss vs. Epochs for the cloud core model. 

TABLE II.  TRAINING TIME COMPARISON 

Model Epochs Training time (s) 

Unmerged 8-layer 100 5000 
Merged 12-layer 100 3200 

 

4) Training and Testing Accuracy 

Table III presents the training and evaluation accuracy for 
the edge and core cloud environments. The edge cloud exhibits 
a testing accuracy of 95.23% and a training accuracy of 
96.36%. On the other hand, the core cloud demonstrates a 
testing accuracy of 99.75% and a training accuracy of 99.80%. 
These results indicate that while the core cloud configuration 
achieves higher accuracy in both training and testing phases, 
the edge cloud may offer better overall effectiveness in 
practical scenarios due to its closer proximity to data sources, 
resulting in lower latency that can enhance learning. 

TABLE III.  TRAINING AND TESTING ACCURACIES FOR 
CLOUD AND EDGE MODELS ON THE DATASETS 

Cloud 

Model 

Accuracy (%) 

Testing Training 

Edge 95.23 96.36 
Core 99.75 99.80 

 

5) CHDLCY Method’s Effectiveness in Detecting Attacks 

The testbed and UNSW datasets were used to evaluate the 
model's performance in intrusion detection. Table IV 
summarizes the results, which were obtained using attack 
situations that impact metadata. The system achieved high 
accuracy (98-100%), a low false positive rate (0.5%), and a 
notable improvement over the unmerged model (95-97%). 

 

 

 

TABLE IV.  CONFUSION MATRIX FOR ATTACK DETECTION 

No. Attack Normal Attack Normal Total Accuracy 

 (TP) (FN) (FP) (TN) Vectors (%) 

1 200 0 19 355 574 96.69 
2 188 0 0 511 699 100.00 
4 96 0 3 232 331 99.09 
5 92 16 0 184 292 94.52 
6 100 0 0 280 380 100.00 
7 80 17 0 243 340 95.00 
8 110 1 1 287 399 99.50 
9 27 1 1 100 129 98.45 
10 126 12 0 398 537 97.76 

 

VI. CONCLUSION 

This study emphasizes how DL, more specifically ANNs, 
can be used to identify attacks in a variety of settings. Although 
these models have been the subject of many studies, relatively 
few of them discuss their use in cloud or multi-cloud contexts. 
To the greatest extent of our understanding, not much research 
has been done on IoT-multi-cloud infrastructures, particularly 
when it comes to merged and hierarchical AEs with layer 
reuse. The proposed CHDLCY system successfully closes this 
gap. The hierarchical structure of this model is in line with the 
organization of healthcare networks. Models that scale in 
complexity were used from IoT devices to core clouds, 
optimizing the implementation based on the processing power 
at each stage, using a distributed IDS.  

The temporal complexity of sophisticated deep learning 
models is a prevalent problem. This proposal involves utilizing 
learned layers from edge clouds on the core clouds, which is a 
unique way to address this problem. This approach allows large 
neural network models to train faster, reducing the number of 
factors that must be learned in core clouds. The proposed 
strategy significantly improved the efficacy of training. 
Compared to an eight-layer uncombined model without edge 
cloud training, a twelve-layer combined model that reuses 
trained layers from edge cloud models reduces training time by 
10.1% to 29.2%. Moreover, the accuracy of the merged 
models, routinely exceeded 98%, frequently reaching 98-100%, 
whereas the accuracy of the unmerged models was 95-97%. 
Combined models trained on a mix of recent data from IoT 
gateways and edge clouds and previous patient data from core 
clouds are expected would perform comparably in real-world 
applications.  

The CHDLCY system is designed to be scalable and 
adaptable, capable of detecting medicine problems techniques 
not included in the UNSW-NB15 dataset. In healthcare, where 
patient lives and well-being are at stake, deep learning systems 
must provide clear and justifiable conclusions. Healthcare 
providers need to critically evaluate and understand the 
reasoning behind any diagnosis or prognosis these systems 
offer. This transparency can build trust and encourage adoption 
of such technologies. Future research should aim to enhance 
and expand this approach to address these challenges and 
further strengthen its capabilities. 
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