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ABSTRACT 

This paper presents an optimization study of 3D printing parameters for Polylactic Acid (PLA) using a 

combined SMART-MOORA multi-criteria decision-making approach. The research focused on three key 

performance characteristics: tensile strength, strain, and modulus. By employing the Taguchi L27 

orthogonal array, the authors conducted 27 experimental trials, varying the printing temperature, print 

speed, layer height, and bed temperature. The Simple Multi-Attribute Rating Technique (SMART) 

method was utilized to assign weights to the criteria, emphasizing tensile strength due to its significance in 

structural applications. Subsequently, the Multi-Objective Optimization on the Basis of Ratio Analysis 

(MOORA) method was applied to rank the experiments based on the weighted criteria. The findings 

demonstrated that experiments with high tensile strength and strain values were ranked the highest, 

underscoring the importance of balancing strength and flexibility in optimizing 3D-printed parts. The 

sensitivity analysis confirmed the robustness of the optimization results, as the rankings remained stable 

even when the importance of the criteria was adjusted. This study showcases the effectiveness of the 

SMART-MOORA approach in optimizing 3D printing parameters, providing a framework to enhance the 

mechanical performance of PLA parts. 

Keywords-PLA 3d printing; smart-MOORA; optimization; sensitivity analysis 

I. INTRODUCTION  

Over the past several years, Additive Manufacturing (AM), 
commonly referred to as 3D printing, has undergone rapid 
advancements, enabling its integration into a diverse array of 
industries. This technology's ability to produce intricate 
geometries, minimize material waste, and facilitate customized 
production has driven its widespread adoption [1, 2]. Among 
the materials utilized in 3D printing, PLA has gained 
significant traction due to its biodegradable properties, ease of 
printing, and relatively low cost [3, 4]. PLA is derived from 
renewable sources, such as corn starch and sugarcane, 

positioning it as an environmentally friendly alternative to 
petroleum-based plastics, like ABS [5]. Dimensional accuracy 
is a critical factor in the 3D printing process, particularly for 
materials like PLA that are frequently employed in applications 
requiring precise measurements. Multiple studies have 
investigated the impact of various Fused Deposition Modeling 
(FDM) parameters on the dimensional accuracy of PLA-printed 
components. For instance, the dimensional accuracy of 3D-
printed PLA dog-bone tensile samples was examined, revealing 
how specific printing parameters can significantly influence 
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dimensional fidelity [6]. As a thermoplastic polymer, PLA 
offers good dimensional accuracy and a low tendency to warp, 
making it a highly suitable choice for both novice and 
experienced 3D printing practitioners [7]. 

Optimizing the printing process parameters for PLA is a 
significant challenge, as the performance of 3D-printed parts is 
highly sensitive to variations in factors, such as nozzle 
temperature, print speed, and layer height [8, 9]. These 
parameters significantly impact key properties, like tensile 
strength, surface roughness, and dimensional accuracy, all of 
which are critical for producing high-quality parts [10]. For 
instance, while a higher print speed can decrease production 
time, it may compromise surface quality and tensile strength. 
Addressing these trade-offs necessitates a systematic approach 
to optimization, as traditional trial-and-error methods are time-
consuming and inefficient. 

Researchers have increasingly turned to Multi-Criteria 
Decision-Making (MCDM) methods to address the challenges 
of evaluating and selecting optimal solutions when faced with 
multiple conflicting objectives [11]. These approaches provide 
a structured framework for decision-makers to assess the trade-
offs between different performance criteria, ensuring that the 
selected process parameters lead to an overall improvement in 
the quality of the printed parts. One of the most widely utilized 
MCDM methods is MOORA, which ranks alternatives based 
on their performance across multiple criteria [12]. However, a 
notable limitation of MOORA is its assumption of equal 
importance across all criteria, which may not be appropriate 
when certain criteria, such as tensile strength, are more critical 
than others, like surface finish [13]. 

The application of MCDM techniques in 3D printing 
process optimization has been an area of growing research 
interest in recent years. Several studies have explored the use 
of methods, such as TOPSIS, AHP, VIKOR, and MOORA, to 
optimize the manufacturing process parameters, including 
machining and 3D printing, for various materials, involving 
PLA, ABS, and PETG [2, 13-16]. These studies have 
demonstrated the effectiveness of MCDM techniques in 
identifying optimal printing conditions by balancing multiple 
performance criteria. 

The weakness of MOORA method regarding weighting can 
be overcome by combining it with a method for determining 
weights, such as Entropy or SMART, which can enhance the 
effectiveness of calculations and decision-making. For 
instance, authors in [17] applied the TOPSIS method to 
optimize process parameters for PLA, focusing on improving 
dimensional accuracy and mechanical properties. Similarly, 
authors in [18] used MOORA to optimize parameters for PETG 
3D printing, emphasizing the importance of balancing 
mechanical strength with printing speed. 

The SMART method has been widely employed in solving 
MCDM, exhibiting advantages due to its simplicity in 
calculations and flexibility in evaluating criteria. However, 
there has been limited research combining SMART with the 
MOORA method in optimizing 3D printing processes. The 
integration of SMART-MOORA promises to offer a robust 
approach, balancing the subjective importance of criteria with 

the objective performance, thereby enhancing the quality and 
efficiency of 3D printing processes, and potentially extending 
to other materials and applications in additive manufacturing. 

To address this limitation, the present study proposes 
combining the SMART method with MOORA. SMART is a 
flexible weighting method that enables decision-makers to 
assign subjective importance to each criterion based on their 
specific preferences or expert judgment. By incorporating 
SMART into the MOORA framework, it is ensured that the 
criteria are appropriately weighted according to their 
importance, providing a more accurate and comprehensive 
ranking of the alternatives. This SMART-MOORA 
combination has been successfully applied in various fields, 
including material selection and manufacturing optimization, 
and is considered a robust approach to balancing conflicting 
objectives in 3D printing optimization. 

The current paper aims to optimize 3D printing parameters 
for PLA deploying the combined SMART-MOORA method. 
Multiple conflicting criteria, such as tensile strength, surface 
roughness, and printing time, are evaluated to identify the most 
favorable set of process parameters that maximize overall 
performance. The study includes 27 experimental runs with 
varying process parameters to demonstrate the effectiveness of 
the SMART-MOORA approach in optimizing the 3D printing 
process for PLA. The findings from this research are expected 
to provide valuable insights into the optimal use of PLA in 3D 
printing and contribute to the broader field of additive 
manufacturing. 

II. METHODOLOGY 

A. Experimental Setup and Specimen 

The present study utilized a Taguchi method-based L27 
orthogonal array design to systematically optimize the 
experimental conditions. The Taguchi approach is extensively 
applied in manufacturing and engineering to minimize the 
number of experiments required for process optimization while 
maintaining the robustness of the results. It is particularly well-
suited when there are multiple factors with varying levels, as is 
the case with PLA 3D printing. In the present experiment, four 
input factors were investigated, each set at three distinct levels, 
leading to an L27 orthogonal array experimental design. This 
experimental design allows for the efficient exploration of the 
multi-factorial parameter space to identify the optimal 
conditions for the PLA 3D printing process. The four process 
parameters considered in this experiment are: Nozzle 
Temperature (Tprinting), Print Speed (vprinting), Layer Height 
(hlayer), and Bed Temperature (Tbed). The use of Taguchi's L27 
orthogonal array allows studying the effects of these four 
parameters at three different levels with a manageable number 
of experimental runs. 

TABLE I.  INPUT PARAMETERS AND THEIR LEVELS FOR THE 
L27 TAGUCHI EXPERIMENTAL DESIGN 

Variants Symbol Unit Level 

1 2 3 

 Nozzle Temperature Tprinting 
oC 190 210 230 

 Print Speed vprinting m/min 40 60 80 

Layer Height hlayer mm 0.1 0.2 0.3 

Bed Temperature Tbed 
oC 30 45 60 
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The experiments were carried out utilizing a tensile test 
machine to evaluate the mechanical properties of the 3D-
printed PLA specimens. The geometry of the specimen used 
for testing was designed according to standard dimensions, as 
shown in Figure 1. Figure 2 depicts the actual PLA specimen 
after being printed and prepared for tensile testing. 

 

 

Fig. 1.  Schematic diagram of the PLA specimen used in tensile testing. 

 

Fig. 2.  Actual PLA specimen prepared for tensile testing. 

Each experimental run was designed to investigate how 
these parameters affect the mechanical performance and 
dimensional accuracy of the PLA parts. 

B. Data Collection and Performance Criteria 

This study examines the key material properties of 3D-
printed parts: tensile strength, strain, and modulus. Tensile 
strength indicates the maximum load the part can withstand, 
which is vital for structural integrity in high-load applications. 
Strain reflects the material's capacity for elongation before 
fracturing, which is crucial for applications requiring the part to 
withstand mechanical deformation. Modulus represents the 
material's stiffness and resistance to deformation under load, 
which is important for evaluating the part's rigidity and 
dimensional precision under stress. The experiments utilized 
the L27 orthogonal array, with each run being repeated three 
times to guarantee the reliability and consistency of the results. 
The response measurement for each condition was calculated 
as the mean of the three trials, which minimizes variability and 
ensures that the results accurately represent the performance of 
the 3D-printed parts under the given process parameters. The 
tensile test was performed using a mechanical apparatus 
capable of progressively loading the samples until failure. The 
tensile testing procedure has four primary phases: the linear 
domain, the yield point, the elongation region, and the fracture 
region, as illustrated in Figure 3. The consolidated findings of 
the L27 matrix and the measured response values are presented 
in Table II. 

 

 
Fig. 3.  Picture of the tensile testing process for the PLA specimen.. 

TABLE II.   L27 ORTHOGONAL ARRAY  

No Tprinting vprinting hlayer Tbed  
Max 

Load 

Max 

Strain 
Modulus 

1 210 60 0.2 45 1.330 6.620 0.758 

2 210 40 0.2 30 1.410 6.900 0.745 

3 210 80 0.3 45 1.380 6.500 0.721 

4 190 60 0.2 30 1.180 6.240 0.653 

5 210 60 0.1 30 1.410 7.080 0.745 

6 190 60 0.2 60 1.315 7.840 0.702 

7 210 40 0.2 60 1.385 6.660 0.754 

8 190 60 0.3 45 1.360 9.980 0.749 

9 230 80 0.2 45 1.310 6.700 0.749 

10 190 40 0.2 45 1.320 6.520 0.702 

11 210 60 0.2 45 1.565 6.900 0.829 

12 210 80 0.2 60 1.690 6.640 0.839 

13 230 60 0.2 60 1.505 7.760 0.745 

14 210 60 0.2 45 1.490 7.200 0.737 

15 230 60 0.1 45 1.535 7.720 0.799 

16 230 40 0.2 45 1.505 7.380 0.780 

17 210 40 0.3 45 1.565 8.860 0.794 

18 190 60 0.1 45 1.510 6.360 0.780 

19 210 60 0.3 60 1.535 8.500 0.725 

20 210 80 0.1 45 1.470 7.700 0.741 

21 210 80 0.2 30 1.445 7.420 0.737 

22 230 60 0.2 30 1.355 6.620 0.713 

23 210 60 0.1 60 1.515 7.040 0.754 

24 230 60 0.3 45 1.280 7.780 0.702 

25 190 80 0.2 45 1.395 7.240 0.713 

26 210 40 0.1 45 1.570 6.820 0.771 

27 190 40 0.1 30 1.585 6.952 0.756 

 

C. MCDM Approach 

To optimize the printing parameters for PLA, the SMART 
and MOORA methods were combined. The SMART-MOORA 
method provides an effective framework for evaluating the 
experimental data and determining the optimal combination of 
the printing parameters for PLA. 

1) Weight Assignment Using SMART 

The SMART framework was employed to assign weights to 
each performance criterion, leveraging the expertise of domain 
specialists. Experts in the fields of 3D printing and materials 
science rated the significance of each criterion on a scale from 
1 to 10, with tensile strength receiving the highest scores due to 
its pivotal influence on the mechanical characteristics of PLA 
components. The ratings were subsequently normalized to 
determine the relative importance weights for each evaluation 
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criterion, ensuring that the total of the weights sums to 1 
utilizing. This approach allowed for a comprehensive and 
quantitative assessment of the various performance factors, 
ensuring that the most critical criteria were given appropriate 
consideration in the evaluation process utilizing (1). 

�� = ������	
∑ ������	�	�

    (1) 

where �� is the weight of criterion �, �������  is the importance 
rating of criterion �, and � is the total number of criteria. 

2) Application of MOORA Method 

The MOORA method was then applied to rank the 27 
experimental runs based on their performance across the 
weighted criteria. The first step is the normalization of the 
performance values. Each performance value was normalized 
to make the criteria comparable. The normalization formula for 
each criterion is: 

���� = �	�
�∑ �	���	�

     (2) 

where ���  is the performance value of the experimental run � 
for criterion �, ����  is the normalized value of ��� , and � is the 

total number of experimental runs. 

The second step refers to the acquisition of the weighted 
normalized values using: 

�� = ∑��� . ���� �    (3) 

where �� is the weighted normalized score for the experimental 

run �, ��  is the weight of criterion �, and ����  is the normalized 

value for the experimental run � for criterion �. 

The third step includes the ranking of the experiments. The 
final scores were computed by aggregating the weighted 
standardized values for each experimental trial. Higher scores 
indicated better performance across the multiple criteria that 
were evaluated. Benefit criteria, such as effectiveness and 
efficiency, were maximized, while cost criteria, including 
resource usage and time requirements, were minimized to 
identify the most favorable experimental conditions. 

III. RESULTS AND DISCUSSION 

Optimizing the 3D printing parameters for PLA material 
requires carefully weighing the evaluation criteria to determine 
the ranking of experiments. The three main criteria selected are 
max load, max strain, and elastic modulus, with their respective 
weights being based on their relative significance to the overall 
performance of the printed part. Max load is assigned the 
highest weight of 0.4, as it represents the load-bearing capacity 
of the printed part before failure, which is critical for 
applications demanding high structural integrity. Max strain, 
with a weight of 0.3, reflects the printed part's ability to 
withstand deformation before breaking, ensuring the flexibility 
of the product. Similarly, Elastic modulus, also weighted at 0.3, 
captures the material's stiffness and capacity to maintain shape 
under applied forces. These criteria are crucial in evaluating the 
performance and quality of the 3D printed parts made from 
PLA material. After the weights were selected, the MOORA 
method was applied to calculate and rank the experimental 
results. Equations (2) and (3) were used to normalize the values 
of each criterion and then multiply them by the corresponding 
weights. The aggregated MOORA scores were then utilized to 
determine the final ranking of the experiments, with the results, 
including the MOORA scores and rankings for each 
experiment, being presented in Table III. 

TABLE III.  MOORA RANKING RESULTS FOR 3D PRINTING EXPERIMENTS WITH WEIGHTED CRITERIA 

No Tprint vprint hlayer Tbed 
Max 

Load 

Max 

Strain 
Modul. 

Norm. 

Max. 

Load 

Norm. 

Max. 

Strain 

Norm. 

Modul. 

Weighted 

Max. Load 

Weighted 

Max. 

Strain 

Weighted 

Modulus 
Si Rank 

1 210 60 0.2 45 1.33 6.62 0.76 0.177 0.174 0.195 0.071 0.052 0.058 0.182 22 

2 210 40 0.2 30 1.41 6.90 0.75 0.188 0.182 0.191 0.075 0.055 0.057 0.187 17 

3 210 80 0.3 45 1.38 6.50 0.72 0.184 0.171 0.185 0.073 0.051 0.056 0.180 24 

4 190 60 0.2 30 1.18 6.24 0.65 0.157 0.164 0.168 0.063 0.049 0.050 0.162 27 

5 210 60 0.1 30 1.41 7.08 0.75 0.188 0.187 0.191 0.075 0.056 0.057 0.188 16 

6 190 60 0.2 60 1.32 7.84 0.70 0.175 0.207 0.180 0.070 0.062 0.054 0.186 19 

7 210 40 0.2 60 1.39 6.66 0.75 0.184 0.175 0.194 0.074 0.053 0.058 0.185 20 

8 190 60 0.3 45 1.36 9.98 0.75 0.181 0.263 0.192 0.072 0.079 0.058 0.209 2 

9 230 80 0.2 45 1.31 6.70 0.75 0.174 0.177 0.192 0.070 0.053 0.058 0.180 23 

10 190 40 0.2 45 1.32 6.52 0.70 0.176 0.172 0.180 0.070 0.052 0.054 0.176 26 

11 210 60 0.2 45 1.57 6.90 0.83 0.208 0.182 0.213 0.083 0.055 0.064 0.202 6 

12 210 80 0.2 60 1.69 6.64 0.84 0.225 0.175 0.216 0.090 0.052 0.065 0.207 3 

13 230 60 0.2 60 1.51 7.76 0.75 0.200 0.204 0.191 0.080 0.061 0.057 0.199 7 

14 210 60 0.2 45 1.49 7.20 0.74 0.198 0.190 0.189 0.079 0.057 0.057 0.193 13 

15 230 60 0.1 45 1.54 7.72 0.80 0.204 0.203 0.205 0.082 0.061 0.062 0.204 5 

16 230 40 0.2 45 1.51 7.38 0.78 0.200 0.194 0.200 0.080 0.058 0.060 0.199 8 

17 210 40 0.3 45 1.57 8.86 0.79 0.208 0.233 0.204 0.083 0.070 0.061 0.215 1 

18 190 60 0.1 45 1.51 6.36 0.78 0.201 0.168 0.200 0.080 0.050 0.060 0.191 15 

19 210 60 0.3 60 1.54 8.50 0.73 0.204 0.224 0.186 0.082 0.067 0.056 0.205 4 

20 210 80 0.1 45 1.47 7.70 0.74 0.196 0.203 0.190 0.078 0.061 0.057 0.196 11 

21 210 80 0.2 30 1.45 7.42 0.74 0.192 0.196 0.189 0.077 0.059 0.057 0.192 14 

22 230 60 0.2 30 1.36 6.62 0.71 0.180 0.174 0.183 0.072 0.052 0.055 0.179 25 

23 210 60 0.1 60 1.52 7.04 0.75 0.202 0.186 0.194 0.081 0.056 0.058 0.194 12 

24 230 60 0.3 45 1.28 7.78 0.70 0.170 0.205 0.180 0.068 0.062 0.054 0.184 21 

25 190 80 0.2 45 1.40 7.24 0.71 0.186 0.191 0.183 0.074 0.057 0.055 0.186 18 

26 210 40 0.1 45 1.57 6.82 0.77 0.209 0.180 0.198 0.084 0.054 0.059 0.197 10 

27 190 40 0.1 30 1.58 6.95 0.76 0.210 0.183 0.194 0.084 0.055 0.058 0.197 9 
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A. MOORA Ranking Results 

The SMART-MOORA method was applied to rank the 
experiments based on the three main criteria. As shown in 
Table III, the experiments that exhibited the best overall 
performance across the under study criteria were prioritized 
and ranked accordingly. 

The top-ranking experiments demonstrated a well-balanced 
combination of tensile strength and strain, which are pivotal 
factors in assessing the load-bearing capacity and flexibility of 
the 3D-printed components. In particular, experiments with 
high max load and favorable max strain scores tended to 
predominate the top ranks. This aligns with the optimization 
goal, as tensile strength is essential for applications demanding 
robust structural integrity, while strain ensures that the part can 
withstand mechanical deformation without failure. 

Conversely, studies featuring a high modulus but lower 
max load and max strain were ranked lower in the overall 
assessment. Although stiffness is a crucial factor, the ranking 
suggests that flexibility and load-bearing capacity were 
prioritized in this study. This implies that experiments with 
higher tensile strength and strain capabilities were preferred 
and given higher priority in the overall evaluation and 
assessment process. 

B. Sensitivity Analysis 

The sensitivity analysis was performed by adjusting the 
weights assigned to the criteria, and the results remained 
relatively stable even with changes being made in the 
importance of each individual criterion. This demonstrates that 
the SMART-MOORA method is a flexible and robust 
approach, effectively balancing multiple performance factors 
without being overly reliant on any single criterion. 

IV. CONCLUSIONS 

This investigation employed the Simple Multi-Attribute 
Rating Technique (SMART) combined with Multi-Objective 
Optimization on the Basis of Ratio Analysis (MOORA) 
approach to optimize the 3D printing parameters for the 
Polylactic Acid (PLA) material, concentrating on three crucial 
performance metrics: tensile strength, strain, and modulus. The 
relative importance of these criteria was chosen to find the 
balance between the mechanical performance and flexibility of 
the printed components. 

The findings demonstrated that the experiments exhibiting 
high tensile strength and strain levels achieved the top 
rankings, indicating that the material's capacity to withstand 
loads and deform without failure is crucial for optimizing 3D-
printed PLA components. Conversely, while modulus was 
considered, it played a secondary role in the ranking, 
underscoring that stiffness alone is inadequate for performance 
optimization when flexibility and load-bearing capacity are 
also essential. The sensitivity analysis confirmed the robustness 
of the ranking, revealing that the overall results remained stable 
even when adjusting the relative importance of the criteria. 
This highlights the effectiveness of the SMART-MOORA 
method in addressing multi-criteria optimization for the 3D 
printing processes. 

This study proposes, as far as is known, a novel application 
of the SMART-MOORA method to optimize the 3D printing 
parameters for the PLA material. This integrates the weighting 
flexibility of SMART and the objective ranking of MOORA, 
providing a more comprehensive solution to the multi-objective 
nature of 3D printing. The combined framework enhances 
optimization accuracy by appropriately weighting practical 
criteria, and increases robustness in selecting optimal 
parameters. This contribution advances additive manufacturing 
knowledge by offering a validated methodology adaptable to 
other materials and processes, expanding MCDM applications 
in 3D printing optimization. 

In conclusion, the combination of SMART and MOORA 
provided a systematic and reliable approach for optimizing the 
3D printing parameters of PLA. This methodology can be 
further applied to other materials and printing conditions, 
contributing to the development of high-performance 3D-
printed components in various industrial applications. 
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