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ABSTRACT 

This study presents a data-driven framework for anomaly detection, which is a significant process in 

modern computing, as the detection of an abnormal signal can prevent a high-risk decision. The proposed 

Multi-Level Deep Learning Autoencoder Architecture (MDLAA) is used to encode high dimensional input 

data using CNNs for anomaly detection in High Dimensional Input Datasets (HDDs). MDLAA is based on 

unsupervised learning, which has a strong theoretical foundation and is widely used for the detection of 

anomalies in HDDs, but a few limitations significantly reduce its performance. The proposed MDLAA 

combines multilevel convolutional layers and data preprocessing. The performance of the proposed model 

was evaluated on a benchmark dataset. Using feature engineering, the proposed algorithm assists in the 

detection of anomalies that are present in data structures, especially when compared to the ResNet101 

feature extractor. The results show that given adequate data, the proposed technique outperformed other 

previously implemented deep learning approaches and classification models, showing an overall 

improvement of 2.3% in terms of MSE, F1-score, precision, and accuracy. 

Keywords-Convolutional Neural Networks (CNNs); NSL-KDD; UNSW-NB15; autoencoders; anomaly 

detection; image classification; machine learning; data analysis 

I. INTRODUCTION  

Multilevel deep learning autoencoder architectures are 
widely used for anomaly detection in datasets, especially for 
ECGs and other Internet of Medical Things-based systems. 
These unusual irregularities, known as anomalies, can indicate 
important events that require immediate attention, such as 
extortion in financial transactions and security breaches in 
healthcare diagnostic frameworks. The primary objective of 
anomaly detection is to recognize unusual and possibly affected 
behavior from normal data during a predictive stage [1]. 
Autoencoders in cloud computing have drawbacks such as 
latency and lower Quality of Service (QoS) [2]. Machine 
learning models primarily focus on the automatic recognition 
of patterns to classify various issues in datasets. Multilevel 
deep-learning autoencoders reduce latency and improve 
performance by moving computational processes closer to the 
device, which is especially useful for time-sensitive or 
resource-intensive tasks in big data processing [3]. 

Deep learning autoencoder models based on non-intrusive 
methods support users to store data and perform operations 
remotely. The required resources are widely accessed for 
sophisticated operations to reduce computational burden and 
save time for anomaly avoidance [4]. With recent advances in 
time series and anomaly detection with nonlinear 
dimensionality processing, cloud services can detect anomalies 
from any location with an Internet connection. However, the 
use of many standards increases the complexity of maintaining 
a reliable system, making maintenance difficult and costly [5]. 
Autoencoders and parametric prediction using Convolutional 
Neural Networks (CNNs) can reduce QoS due to resource 
limitations and physical distance [6]. Figure 1 presents the 
schema of an ANN-based autoencoder structure that maps the 
input layer of the message to a code with a hidden and an 
output layer [7]. In [8], an unsupervised Stochastic Gradient 
Descent (SGD) machine learning algorithm was used to detect 
anomalies. In [9], an anomaly detection method was proposed 
for IoT transactions using CNNs to secure data, avoid 
anomalies, and handle complexity.  

 
Fig. 1.  Modern autoencoder structure. 

II. RELATED STUDIES 

In [10], a framework was proposed that used multi-layered 
neural networks for edge computing, describing its advantages 
and requirements and detailing the development of a novel 
server architecture for the execution of tasks in real time. This 
architecture aimed to meet industrial requirements and support 
extensibility. PCA-based real-time threat detection systems 
have been introduced [11, 12], using CNNs to perform 
parametric prediction in edge computing networks for 
variational autoencoders. In [13], an advanced computing node 
was used for anomaly detection, providing services with lower 
latency and bandwidth. Features including massive machine 
and Ultra-Reliable Low Latency Systems (URLLs) with deep 
learning autoencoders have been used for parametric prediction 
in modern computing systems, especially for High 
Dimensional Datasets (HDD) [14]. Big data and IoT devices 
based on cloud data centers are highly affected due to 
geographical distribution. IoT devices are widely using deep-
learning-based mechanisms, specifically in large-scale data 
transfers, to avoid significant network congestion [15]. An edge 
computing-based anomaly detection method in IoT is more 
suitable to respond to user requests directly at the edge, leading 
to an innovative computing paradigm [16]. Mobile edge 
computing-based deep learning frameworks for anomaly 
detection use the Service-Oriented Computing (SOC) 
architecture. The fundamental idea behind edge computing is 
the decentralization of processing and communication 
resources from the cloud to the periphery of networks [17]. 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21279-21283 21281  
 

www.etasr.com Ayub et al.: Forecasting Multi-Level Deep Learning Autoencoder Architecture (MDLAA) … 

 

III. METHODOLOGY 

The PTB-XL dataset [18] contains 21837 clinical ECGs 
with length of 10 s from 18885 patients. This dataset was used 
to test and validate a model based on autoencoders and a CNN 
in detecting anomalies. The multi-level deep learning 
autoencoder architecture was trained for 40 epochs. The 71 
different ECG statements conform to the SCP-ECG standard 
and cover diagnostic, form, and rhythm statements. The CNN 
has three layers: 

 An input layer of size |x|, 

 A hidden layer of size |h| (i.e., |h|<|x|), 

 An output layer of size |r| (i.e., |r|=|x|) 

where size refers to the number of nodes in each layer.  

A. Proposed Multi-Level Deep Learning Autoencoder 
Architecture (MDLAA) 

An efficient CNN-based autoencoder architecture was used 
for the detection of anomalies, including various convolutional 
layers for feature extraction, pooling layers for data 
compression, and sampling layers for data reconstruction. The 
encoder compresses the input data into a lower-dimensional 
representation, capturing essential features while discarding 
noise. The decoder reconstructs the input from its 
representation, and the reconstruction error is used to identify 
anomalies. 

��������	��
������� =∥ � − �� ∥�  (1) 

where � is the original input and �� is the reconstructed output. 

 Input layer: The convolutional layer input is based on 32 
filters, kernel size 3, and an activation function. Data are 
sampled at 500 Hz and 100 Hz with 16-bit resolution. 

 The dense layer included 150 neurons with the ReLU 
activation function, conforming the output to the 
dimensions of the input.  

 The upsampling layer upsamples the data to match the 
result size of the principal max-pooling layer. The 
effectiveness of the CNN autoencoder model is evaluated 
using various metrics, including accuracy, precision, recall, 
and F1-score. 

The confusion matrix showed that the model has a high 
True Positive Rate (TPR) and a moderately low False Negative 
Rate (FNR), demonstrating compelling inconsistency 
recognition capacities. Its True Positives (TP) were 7604 
(72.38%), indicating how many anomalies were correctly 
identified. The proposed model was proficient, demonstrating 
that it had a high TPR while maintaining a low FPR, ensuring 
that irregularities and issues in the data set can be easily 
rectified using the autoencoder. Figure 2 illustrates the 
proposed model. The encoder function � maps the original data 
� to a latent space � of reduced dimensionality. On the other 
hand, the decoder function � maps (i.e., reconstructs) the latent 
and reduced space � to the output. In this case, the output is the 
same as the input data �. The encoder-decoder pair is trying to 
reconstruct the original data and its shape after performing and 
capturing a generalized nonlinear transformation. 

B. Convolutional Network 

The network determines the class to which an input signal 
belongs by determining the index of the vector's maximum 
value. The class represented by this index is considered as a 
class of the input signal. Anomalies can be detected with a high 
degree of accuracy by evaluating the reconstruction error. This 
differentiation is essential for the model's reliability in practical 
applications. 

 

 
Fig. 2.  Fully multilevel convolutional autoencoder for feature extraction. 
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TABLE I.  RESULTS OF THE CNN WITH MULTIPLE 
CLASSES 

Number of 

classes 
Acc 

Avg 

precision 

Avg 

recall 

Avg  

F1-score 

Avg 

AUC 

2 0.717 0.706 0.963 0.88 0.953 
5 0.72 0.636 0.602 0.611 0.877 
20 0.589 0.259 0.228 0.238 0.856 

 
The cutoff point for identifying anomalous instances was 

0.020, which is the threshold for anomaly detection. For the 
preparation of typical information, there is a high centralization 
of low recreation errors, showing that the model successfully 
learns and remakes ordinary examples during preparation. The 
TPR (affectability) against the FPR (specificity) at different 
limit settings could be a graphical representation of a model's 
symptomatic capacity. The CNN autoencoder model's capacity 
to recognize between typical and atypical information is 
illustrated by its AUC score of 0.83. The averages of accuracy 
and precision are per class.  

The loss evaluation matrix contains the following values: 
True Positives (TP): 7000, False Positives (FP): 2801, True 
Negatives (TN): 3678, and False Negatives (FN): 277. 

Accuracy incorporates all four outcomes from the 
confusion matrix, given a balanced dataset with similar 
numbers of examples in all classes. 

���	���� =
�����

�����������
= 0.717  (2) 

Precision is the proportion of all the model's positive 
classifications that are truly positive. Precision improves as 
false positives decrease, while recall improves when false 
negatives decrease. False negatives are actual positives that 
were misclassified as negatives. Recall measures the fraction of 
true positives that were correctly classified as true. Another 
name for recall is the probability of detection. 

!���
�
�� =
��

�����
= 0.706   (3) 

����## =
��

�����
= 0.963   (4) 

The basic convolutional network achieved better accuracy 
during the classification of two classes (healthy/sick). 
However, the results of its usage on ECG signals are far from 
ideal. Figure 3 shows the confusion matrix for MDLAA.  

Equation (5) represents the reconstruction error as shown 
below. The proposed MDLAA may prove to be more 
advantageous compared to ResNet50 in terms of accuracy. The 
proposed solution could be used in small devices for 
continuous monitoring of ECG signals, for example, to alert 
about anomalies and make an initial diagnosis or support in 
this. Reconstruction error refers to the pixel-level 
reconstruction error at a specific location in a frame of a signal 
or video, which is calculated using a trained model. It 
represents the difference between the actual and the predicted 
intensity level by the model. 

��������	��
������� =∥ � − �� ∥�  (5) 
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For a total of samples . = 14552: 

&��
�
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)
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56� ≈ 0.015  

 

 
Fig. 3.  Confusion matrix of MDLAA results. 

Figure 4 shows the training and validation loss for the 
normal class and the x-axis represents the epochs ranging from 
0 to 40. The reproduction errors for typical data are 
consistently low, indicating that the model accurately captures 
and imitates typical examples. 

 

 
Fig. 4.  Training and validation loss using the pre-trained ResNet-50 and 
the proposed model. 

IV. CONCLUSION  

This article presented a CNN-based MDLAA that was used 
as the top level to encode high-dimensional input data, using a 
CNN for anomaly detection in HDDs. The exploratory results, 
highlighted by measurements such as accuracy, precision, 
recall, F1-score, and a critical AUC of 0.83, affirm the model's 
capability in distinguishing anomalies with high reconstruction 
errors. Its capacity to capture perplexing spatial connections 
inside the data was confirmed on a dataset that presents real-
world complexities. A multi-level deep learning approach was 
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proposed for the direct prediction of spatio-temporal dynamics 
of parametric predictions. The framework was designed to 
address parametric and future state prediction. Future work 
should focus on improving the model's architecture and 
exploring diverse types of multilayer autoencoders based on 
machine learning techniques. 
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