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ABSTRACT 

The adoption of precision agriculture in pineapple farming has a significant impact by increasing the yield 

and reducing the input resources while improving the management of pineapple crops. The intersection of 

advanced drone technology and cutting-edge artificial intelligence has reformed fruit crop management 

through revolutionary levels of automation, precision fruit detection, yield estimation, and crop health 

detection. However, the capability for obscuring the detection of subtle features to better manage 

occlusions and complex environments in images captured by drones at certain heights with drones is 

challenging to distinguish, thus hindering an accurate object analysis for fruit-environment differentiation. 

The proposed work uses Deep Learning (DL) techniques to classify pineapple fruit images captured ten 

meters above the ground. This is achieved specifically through the use of pretrained models and Faster 

Region-Based Convolutional Neural Networks (Faster R-CNNs) due to their ability to learn robust 
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interpretations from images for object classification tasks. This paper evaluates the capabilities and 

accuracies of four pretrained models, namely ResNet-101, ResNet-50, Inception-ResNet-v2, and VGG-19, 

to detect and classify the pineapple fruit amidst the complex background and varying lighting conditions. 

By evaluating the pretrained models for pineapple fruit classification using comprehensive metrics (True 

Positive Rate (TPR), False Positive Rate (FPR), Accuracy (ACC), Recall (REC), Precision (PRE), F1-

score), the results reveal that the Faster R-CNN architecture with the VGG-19 pretrained model 

outperformed the other architectures, demonstrating the best performance in pineapple fruit detection 

with an ACC of 0.7924 (79.24%), a PRE of 0.9990 (99.90%), a REC of 0.7930 (79.30%), and an F1-score of 

0.8839 (88.39%). The effectiveness of this model in overseeing complex scenarios suggests potential 

improvements in classification accuracy compared to other pretrained models, while acknowledging 

performance variability across various architectures. 

Keywords-ananas comosus; deep learning; image processing; pretrained deep neural networks; pineapple 

farming 

I. INTRODUCTION  

The Ananas comosus (or pineapple) fruit is a commercially 
grown tropical fruit in high demand in local and foreign 
markets, making its cultivation and production a key 
component of the economies of many countries. Notably, the 
growing interest in pineapple as a high-value crop has become 
a viable source of income for smallholder farmers [1, 2]. As 
technology advances, the scope of precision agriculture in 
pineapple production is likely to expand and bring greater 
benefits to the sustainability and productivity of the global 
pineapple industry. Thus, yield estimates can be monitored 
with detailed insights into the crop conditions and 
environmental factors, facilitating timely interventions and 
informed crop management decisions [3]. Traditional methods 
of estimating pineapple crop yields rely heavily on manual 
processes that are inherently subjective and generally prone to 
yield prediction bias. In most cases, agricultural officials use 
visual techniques that require a great deal of human judgment 
and experience. Such subjectivity introduces large yield errors 
that influence agricultural management decisions and 
productivity. Therefore, it is necessary to increase the 
efficiency of pineapple farming. To date, several approaches 
are available to automate current farming practices, namely 
remote sensing [4-6], computer vision [7-9], and Machine 
Learning (ML) algorithms [10-12]. 

Recent studies incorporating automated approaches and 
image analysis have been actively conducted to improve the 
accuracy and efficiency of pineapple crop classification 
processes. Authors in [13] proposed an enhanced segmentation 
approach that integrates image thresholding and Hue Value 
Segmentation (HVS) color space transformation for crop 
counting in pineapple plantations. This effectively identifies 
features in images with low contrast, which may result from 
varying heights and lighting conditions in the captured color 
image. Meanwhile, authors in [14] developed a recognition 
algorithm using the YOLO-v4 model to improve accuracy and 
reduce training time in predicting fruit maturity before 
harvesting. However, the proposed approach requires a massive 
dataset to obtain a robust model. Authors in [15] proposed a 
combined method consisting of Cascade Object Detector 
(COD), HVS, Adaptive Red and Blue Chromatic Map (ARB), 
Normalized Difference Index (NDI), and Convolutional Neural 
Network (CNN). The result is a high-quality image for accurate 
maturity identification and segmentation of pineapples from the 
background. At the same time, authors in [16] proposed 

counting and localizing flowering pineapple plants 
automatically by analyzing the density of flowers in the images 
using a U-net backbone model. This results in accurate 
counting performance with low error, which improves the 
efficiency and effectiveness of pineapple harvesting operations. 

Precision agriculture, as a part of advanced agricultural 
techniques utilizing drone image processing and Deep Learning 
(DL) models, is one of the latest approaches currently being 
explored to manage agronomic variability for environmental 
sustainability, improved crop quality, and efficient 
management practices [17-19]. With regard to pineapple 
farming, DL techniques can be employed to classify the 
pineapple characteristics. This includes maturity and quality 
based on color, shape, and texture [20], detection of pineapple 
fruits and flowers in cluttered backgrounds [21], and accurate 
automated detection of ripe pineapples and their three-
dimensional (3D) distance in fields [22]. In [23], a DL method, 
which is a layered network architecture based on CNNs, was 
employed to classify 20 unique types of fruits and vegetables 
using deep CNNs with data augmentation techniques. In 
addition, authors in [24] demonstrated a detailed performance 
evaluation of several CNN models for fruit and vegetable 
detection, which showed significant improvements with 
modern DL approaches in terms of both accuracy and speed. 
These results substantiate that CNNs are essential in achieving 
classification performance in advanced levels of agriculture. 
Remarkably, many studies apply CNNs to this field, 
demonstrating the outstanding performance and practical 
results of CNNs in agricultural technology. 

Despite the cutting-edge capabilities available in image 
processing, there is still room for improvement as the quality of 
captured images deteriorates. This includes blurring with loss 
of detail due to low resolution images produced during a 
heightened flight, which affects model performance. In 
particular, pretrained CNNs have attracted research interest in 
crop classification due to their functionality and effectiveness 
in producing an accurate classification based on visual 
characteristics captured in images. The model has 
demonstrated superior capabilities in fruit classification tasks 
for various crops. However, the performance of pretrained 
models requires trial and error, as no specific model fits all 
crops. Furthermore, variations in crop appearance and features, 
influenced by environmental conditions, differences in dataset 
size and quality, and specific classification requirements, can 
significantly affect the performance of pretrained models. For 
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example, authors in [25] discovered that VGG-19 
outperformed InceptionV3 and MobileNetV2 in ripeness 
classification of the Philippine guyabano fruit, achieving an 
impressive accuracy of 99.25%. In addition, authors in [26] 
demonstrated how various pretrained networks performed in 
pineapple classification. The VGG19 model was found to be 
excellent at identifying the finer details and patterns in dragon 
fruit images. Similarly, authors in [27] evaluated ResNet-50 
and VGG-19 for fruit quality classification, with VGG-19 
yielding the best performance with over 94% accuracy. 
Authors in [28] presented the result of ResNet-50-v2, which 
achieved 98.89% accuracy on a dataset of 41 fruit categories. 
The pretrained CNN has demonstrated its effectiveness in 
classifying fused images, with ResNet-50 demonstrating 
superior performance in both accuracy and convergence speed 
[29]. Moreover, the VGG-19 model excels at detecting finer 
details and patterns in images, especially in the agricultural 
field, for classifying fruits and vegetables against crowded 
backgrounds. For instance, authors in [30] highlighted that 
VGG-19 can detect fine details that may be obscured by the 
surrounding elements, and then effectively classify images, 
even when the latter contain overlapping foliage or other 
distractions. The VGG19 could effectively segment and 
recognize objects in images that present challenges due to 
varying colors and lighting conditions [31, 32]. 

This research assesses how effectively the pretrained Faster 
R-CNNs classify annotated images of pineapple fruits in the 
presence of complex backgrounds and varying lighting 
conditions. Accordingly, comparative evaluations between 
ResNet-101, ResNet-50, Inception-ResNet-v2, and VGG-19 
provide valuable information on how the models perform with 
different pretrained networks for pineapple classification. 
Performance metrics, such as TPR, FPR, ACC, REC, PRE, and 
F1-score are used to assess the model performance in an 
analysis of CNN for image classification. These metrics 
provide valuable insights into the model's capability to 
correctly identify the positives and negatives of pineapple 
detection, as well as its overall effectiveness in classification 
tasks. 

II. METHODOLOGY 

The present study proposes the analysis of pineapple image 
data collected by drones, such as the DJI Phantom 3 advanced 
quadcopter, which is used to capture high-quality images with a 
4K resolution RGB camera [33]. The analysis of the drone 
images was conducted on a personal computer equipped with a 
2.1 GHz Intel Core i5-13420H CPU, 6 GB GDDR6 RAM, 
NVIDIA GeForce RTX 4050, and MATLAB R2024a. The area 
where drone images were collected based on direct field 
observation is located in a pineapple plantation in Johor, 
Malaysia. Furthermore, a computational analysis was 
conducted on images captured from ten meters above the 
ground. It utilizes a two-stage algorithm that first generates 
region proposals through a Region Proposal Network (RPN) 
and subsequently classifies these samples using a Faster R-
CNN. This approach effectively streamlines the object 
detection process by leveraging the strengths of the RPN and 
the Faster R-CNN framework, known for its efficiency in 
identifying pineapple fruits as objects within images. 

The execution of the algorithm begins with image 
processing and the overall workflow is presented in Figure 1. 
The dataset is divided into training and testing sets. A 
pretrained model, previously trained on a large dataset, is 
employed to extract a feature map from the pineapple images, 
enabling it to effectively identify various image features. This 
approach leverages transfer learning, allowing the model to 
utilize its prior knowledge to improve its performance in the 
specific task of pineapple image classification. The feature map 
is processed by the RPN, which identifies potential Regions Of 
Interest (ROIs) in the image. In ROI pooling, the identified 
regions are pooled to ensure that they are of uniform size, 
which is necessary for further processing. In addition, the 
pooled regions are passed through a classifier to determine the 
class of objects within the regions (e.g., pineapple or non-
pineapple). The model performance is evaluated on the testing 
set, which is necessary to validate the model and ensure its 
accuracy and reliability in classifying pineapples in plantation 
images. Moreover, the pineapple fruit counts obtained from the 
automated analysis of the image frames were manually verified 
by experts for comparison. This overcomes the limitations of 
the traditional assessments of the counting process and 
strengthens the reliability of the results. 

A. Dataset Preparation 

Two datasets are required, commonly designated as training 
and testing images. During the training phase, the Faster R-
CNN learns these training images to recognize patterns and 
features that distinguish the pineapples from the background. In 
contrast, the testing images are datasets used to evaluate the 
performance of the trained model. The latter is separate from 
the training set and inaccessible to the model during the 
training phase. Meanwhile, the testing images are utilized to 
assess how well the Faster R-CNN generalizes to new data. It 
should be noted that the proposed model performs 
classification on the test images, and these outcomes are 
compared with the true labels using performance metrics. For 
this study, a total of 300 images of pineapple fruits, each with a 
size of 240 × 300 pixels and various positions and shapes, were 
selected as the training images. All the training images were 
annotated as pineapple using the Make Sense software. For the 
testing images, an additional set of ten frames containing 
multiple pineapples captured from a height of ten meters above 
the ground was selected and evaluated. 

B. Faster Region-based Convolutional Neural Networks 

The pineapple images were trained with the pretrained 
models, namely ResNet-101, ResNet-50, Inception-ResNet-v2, 
and VGG-19 as pretrained Deep Neural Networks (DNNs) to 
save time and computational resources compared to training a 
Faster R-CNN from scratch, which is especially important 
when working with limited datasets or when the computational 
resources are limited. The classifier uses an anchor box 
mechanism to oversee numerous sizes and aspect ratios. 

1) ResNet-101 and ResNet-50 

ResNet-101 and ResNet-50 are variations of the Residual 
Network (ResNet) architecture designed to enable effective 
CNN training. Specifically, the ResNet-101 consists of 101 
layers, while the ResNet-50 contains only 50 layers. Both 
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architectures use residual connections, which help mitigate the 
vanishing gradient problem and enable the effective training of 
deeper networks. Moreover, the ResNet-101 contains a deeper 
architecture, which allows it to capture more intricate features 

and perform slightly better on complex visual or image 
processing tasks. In contrast, the ResNet-50 is more 
computationally efficient and has a lower processing time. 

 

 
Fig. 1.  Workflow of the proposed study. 

2) Inception-ResNet-v2 

Inception-ResNet-v2 incorporates a CNN architecture that 
combines the multi-scale feature extraction of the inception 
module. This is done by utilizing inception modules with 
varying filter sizes within each layer and integrating them with 
the residual connections of ResNet to facilitate the gradient 
flow in deep networks. In addition, this architecture hybridizes 
individual components in order to enhance the model accuracy, 
adaptability, and ultimately the computational efficiency in 
image classification tasks. 

3) VGG-19 

VGG-19 is a 19-layer CNN architecture from the Visual 
Geometry Group (VGG), consisting of 16 convolutional layers 
and three fully connected layers. This architecture is based on a 
simple and homogeneous structure, where each convolutional 
layer has a filter size of 3 × 3 and is followed by a max-pooling 
layer to decrease the spatial dimensions. This architecture is 
suitable for image classification tasks due to its deep layering 
and relatively small convolution filters, which assist in 
capturing detailed image patterns. 

C. Model Performance Evaluation 

Several performance indicators are used to examine and 
evaluate the performance of Faster R-CNN by examining the 
TPR, FPR, ACC, PRE, and F1-score, shown in (1)-(5). True 
Positive (TP) can be defined as correctly predicted as true 
pineapple, True Negative (TN) represents the correctly 
predicted as non-pineapple, False Positive (FP) represents 
incorrectly predicted as pineapple, and False Negative (FN) 
represents incorrectly predicted as non-pineapple. Based on 
these parameters, the performance metrics are then calculated 

to benchmark which pretrained DNN has the best performance 
in performing classification for the pineapples within the 
plantation. 

TP
TPR / REC

TP FN




   (1) 

FP
FPR

FP TN




    (2) 

TP TN
ACC

TP TN FP FN




  

   (3) 

TP
PRE

TP FP




    (4) 

PRE REC
F1 score 2

PRE REC


  


   (5) 

III. RESULTS AND DISCUSSION 

The results for all the pretrained DNNs are exhibited in 
Figure 2. As displayed in Figure 2(c), with Inception-ResNet-
v2, it can be observed that all the bounding boxes in the sample 
frame misclassified the leaves or background as pineapples, 
reflecting poor model accuracy. However, in Figures 2(a), 2(b) 
and 2(d), most of the bounding boxes were correctly placed on 
the pineapple fruit in the image, demonstrating a better 
classification rate. It can be observed that the proper selection 
of pretrained DNN models plays an important role in the 
successful recognition of pineapple fruits. Table I compares the 
computational time required for each model to process the 
training and testing images. 
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TABLE I.  TRAINING AND TESTING TIMES 

Pretrained model Training time (s) Testing time (s) 

ResNet-101 2880.6 1.30 
ResNet-50 2842.2 1.04 

Inception-ResNet-v2 6195.6 1.84 
VGG-19 678.6 5.64 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2.  Demonstration of pineapple detection from the sample frame using 
the pretrained models: (a) ResNet-101, (b) ResNet-50, (c) Inception-ResNet-
v2, and (d) VGG-19. 

The execution testing time considers the average time to 
process ten frames of cropped pineapple images. The process 

of fine-tuning the model on this new dataset of testing images 
involves adapting the learned features from the training phase 
to the specific characteristics through iterative training. The 
longest training time is for Inception-ResNet-v2, whereas the 
longest testing time is for VGG-19. The reason for this is 
probably that Inception-ResNet-v2 encompasses a complex 
architecture designed to extract intricate features, which 
requires more computations during training to adjust for a 
substantial number of parameters. VGG-19 consists of deep 
stacks of convolutional layers utilizing small receptive fields (3 
× 3 filters). This results in a substantial number of operations 
during inferencing, and therefore requires significant memory 
and computational resources to process each test image. 
Although Inception-ResNet-v2 takes the longest to train, the 
classification performance is poor when running on test 
images. Thus, the longer training time is no guarantee of good 
quality results.  

Table II provides the recorded values for the performance 
metrics, including the number of fruits manually counted (n), 
TP, TN, FP, FN, ACC, PRE, REC, and F1-score. The highest 
ACC signifies that nearly all predictions regarding the 
detection and classification of the object (pineapples) are 
correct. Similarly, the highest PRE indicates a minimum 
number of FPs, whereas the highest REC reflects a minimum 
number of FNs. A top F1-score demonstrates an optimal 
balance between PRE and REC, suggesting that the model is 
both reliable and suitable for real-world applications, where 
both metrics are crucial. This suggests that the model 
effectively identifies positive cases (high REC) while 
generating few false alarms (high PRE). Therefore, a high F1-
score is indicative of a robust overall performance. The results 
presented in Table II compare the performance of four 
pretrained models, namely ResNet-101, ResNet-50, Inception-
ResNet-v2, and VGG-19, on a test image across ten different 
frames using the performance metrics. It is noteworthy that 
ResNet-101 exhibits significantly varied performance across 
frames. Frame 1 stands out with exceptional results, achieving 
an ACC, PRE, REC, and F1-score of 0.9544, 0.9941, 0.9599, 
and 0.9767, respectively. However, the subsequent frames 
show a significantly lower performance, with ACC ranging 
from 0.5876 to 0.6630. REC remains consistently high at 
nearly 1.0, indicating that the model captures almost all 
positive instances. However, it struggles with PRE in later 
frames. Meanwhile, ResNet-50 demonstrates more consistent 
performance compared to ResNet-101. Its ACCs range from 
0.7088 to 0.7721, which is significantly more stable across 
frames. Equivalently to ResNet-101, it maintains a perfect REC 
of 1.0 in most frames, suggesting robust positive instance 
detection. Frame 1 presents the highest ACC and REC at 
0.7721, while other frames maintain ACC above 0.7, indicating 
more reliable performance. The Inception-ResNet-v2 model 
exhibits the most challenging overall detection performance 
among the four pretrained models. In particular, the ACCs are 
significantly lower, ranging from 0.4108 to 0.4831. REC varies 
between 0.4419 and 0.4971, indicating consistent detection 
capabilities. Nevertheless, it remains relatively low compared 
to PRE, which varies between 0.5390 and 0.9448. The F1-
scores are mostly between 0.5824 and 0.6514. Frame 10 
appears to be the best performing frame for this architecture. At 
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the same time, VGG-19 emerges as the second-best performing 
model after the first frame of ResNet-101. It demonstrates 
consistently high ACCs ranging from 0.7493 to 0.8402. Frame 
7 is particularly impressive, achieving an ACC of 0.8402 and 
an F1-score of 0.9132. Similar to other models, the VGG-19 
maintains near-perfect REC across frames. Considering all the 
metrics, VGG-19 provides robust and reliable performance 
across most frames. The results suggest that the model 

architecture has a significant impact on performance, and that 
performance can vary significantly across different frames or 
data subsets. Therefore, a careful evaluation across multiple 
frames or scenarios is crucial when selecting a model for a 
particular task. To better visualize the performance metrics, the 
average performance for ten frames of test images is depicted 
in Figure 3. 

TABLE II.  PERFORMANCE METRICS 

Pretrained model Test image n ΤΡ ΤΝ FP FN ACC PRE REC FI-score 

ResNet-101 

Frame 1 351 335 0 2 14 0.9544 0.9941 0.9599 0.9767 
Frame 2 364 229 0 0 135 0.6291 1.0000 0.6291 0.7723 
Frame 3 370 225 0 1 144 0.6081 0.9956 0.6098 0.7563 
Frame 4 355 219 0 0 136 0.6169 1.0000 0.6169 0.7631 
Frame 5 362 240 0 1 121 0.6630 0.9959 0.6648 0.7973 
Frame 6 355 225 0 0 130 0.6338 1.0000 0.6338 0.7759 
Frame 7 363 223 0 2 138 0.6143 0.9911 0.6177 0.7611 
Frame 8 367 224 0 1 142 0.6104 0.9956 0.6120 0.7580 
Frame 9 363 216 0 1 146 0.5950 0.9954 0.5967 0.7461 

Frame 10 334 208 0 0 146 0.5876 1.0000 0.5876 0.7402 

ResNet-50 

Frame 1 351 271 0 0 80 0.7721 1.0000 0.7721 0.8714 
Frame 2 364 258 0 1 105 0.7088 0.9961 0.7107 0.8296 
Frame 3 370 264 0 0 106 0.7135 1.0000 0.7135 0.8328 
Frame 4 355 261 0 1 93 0.7352 0.9962 0.7373 0.8474 
Frame 5 362 272 0 0 90 0.7514 1.0000 0.7514 0.8580 
Frame 6 355 258 0 0 97 0.7268 1.0000 0.7268 0.8418 
Frame 7 363 260 0 1 102 0.7163 0.9962 0.7182 0.8347 
Frame 8 367 265 0 0 102 0.7221 1.0000 0.7221 0.8386 
Frame 9 363 262 0 0 101 0.7218 1.0000 0.7218 0.8384 

Frame 10 354 254 0 3 97 0.7175 0.9883 0.7236 0.8355 

Inception-ResNet-
v2 

Frame 1 351 149 0 25 177 0.4245 0.8563 0.4571 0.5960 
Frame 2 364 157 0 20 187 0.4313 0.8870 0.4564 0.6027 
Frame 3 370 152 0 26 192 0.4108 0.5390 0.4419 0.5824 
Frame 4 355 163 0 16 176 0.4592 0.9106 0.4808 0.6293 
Frame 5 362 154 0 16 192 0.4254 0.9059 0.4451 0.5969 
Frame 6 355 158 0 21 176 0.4451 0.8827 0.4731 0.6160 
Frame 7 363 167 0 10 186 0.4601 0.9435 0.4731 0.6302 
Frame 8 367 158 0 13 196 0.4305 0.9240 0.4463 0.6019 
Frame 9 363 157 0 14 192 0.4325 0.9181 0.4499 0.6038 

Frame 10 354 171 0 10 173 0.4831 0.9448 0.4971 0.6514 

VGG-19 

Frame 1 351 266 0 0 85 0.7578 1.0000 0.7578 0.8622 
Frame 2 364 289 0 0 75 0.7940 1.0000 0.7940 0.8851 
Frame 3 370 287 0 1 82 0.7757 0.9965 0.7778 0.8737 
Frame 4 355 284 0 0 71 0.8000 1.0000 0.8000 0.8889 
Frame 5 362 282 0 0 80 0.7790 1.0000 0.7790 0.8758 
Frame 6 355 282 0 0 73 0.7944 1.0000 0.7944 0.8854 
Frame 7 363 305 0 1 57 0.8402 0.9967 0.8425 0.9132 
Frame 8 367 302 0 0 65 0.8229 1.0000 0.8229 0.9028 
Frame 9 363 272 0 1 90 0.7493 0.9963 0.7514 0.8567 

Frame 10 354 287 0 0 67 0.8107 1.0000 0.8107 0.8955 

 
More comprehensive assessments comparing various 

architectures should be performed on diverse test images. 
Overall, the VGG-19 model achieved the highest performance 
across all metrics, with a mean ACC, mean PRE, mean REC, 
and mean F1-score of 0.7924, 0.9990, 0.7939, and 0.8839, 
respectively. This indicates that VGG-19 was able to correctly 
classify most of the test images while minimizing FP and FN. 
ResNet-50 also performed well, with a mean ACC, mean PRE, 
mean REC, and mean F1-score of 0.7285, 0.9977, 0.7297, and 
0.8428, respectively. This suggests that ResNet-50 is a strong 
contender for the pineapple image classification task. These 
metrics still demonstrate the effectiveness of ResNet-50 in 

accurately classifying the test samples and maintaining a good 
balance between PRE and REC, although slightly less accurate 
than VGG-19. ResNet-101, despite having a deeper 
architecture than ResNet-50, had lower performance across all 
metrics. Its mean ACC, mean PRE, mean REC, and mean F1-
score were 0.6513, 0.9968, 0.6528, and 0.7847, respectively. 
This could be due to overfitting the training data or the specific 
characteristics of the test image. Inception-ResNet-v2 had the 
lowest performance among the four models, with a mean ACC, 
mean PRE, mean REC, and mean F1-score of 0.4402, 0.9027, 
0.4621, and 0.6111, respectively. Despite the high mean PRE 
and low mean REC, these metrics correctly classify less than 
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half of the test samples, indicating that they fail to identify a 
significant portion of the positive samples. This suggests that 
the Inception-ResNet-v2 architecture may not be well suited to 
this classification task or the test image. 

 

 
Fig. 3.  Average performance comparison across multiple metrics. 

IV. CONCLUSION 

In conclusion, based on the provided performance metrics, 
the proposed detection model uses several pretrained learning 
models, namely ResNet-50, ResNet-101, Inception-ResNet-v2, 
and VGG-19 in which building a highly generalizable model to 
examine various types of objects can improve the classification 
outcome and further expand to perform detection tasks. It 
should be noted that the main challenge that needs to be 
addressed during the fruit image classification process is the 
poor quality of the images captured by the drone. Their quality 
can degrade, resulting in blurriness, loss of morphological 
details, and low resolution because the image is captured 
during a heightened flight. To overcome this, the model can be 
refined to ensure that the image classification system is less 
sensitive to the loss of image details. Hence, the proposed 
method is applied to the problem of classifying pineapple fruits 
in ten frames of images taken by a drone at ten meters above 
the ground. The performance metrics indicate that the model 
reliably identifies the pineapple fruit in images with complex 
backgrounds and varying lighting conditions, while 
highlighting the importance of selecting an appropriate 
pretrained model for a given computer vision task and dataset. 
The present study highlighted that VGG-19 as a backbone 
network performed best at extracting features from images and 
recognizing objects in complex environments, which enables 
the identification of an object in a complex background. In 
addition, the VGG-19 architecture combined with a Faster 
Region-Based Convolutional Neural Network (Faster R-CNN) 
was shown to improve the Accuracy (ACC) and robustness of 
detection and classification, making it as the preferred option 
for applications that require high Precision (PRE) in object 

detection in the presence of complex backgrounds. Moreover, a 
high F1-score indicates that the model is reliable and suitable 
for real-world applications where both aspects are critical, as it 
accurately identifies positive cases with high Recall (REC) and 
generates infrequent false alarms with high PRE. Thus, a high 
mean F1-score of 0.8839 or 88.39% reflects a robust overall 
performance. In contrast, ResNet-50. ResNet-101, and 
Inception-ResNet-v2 demonstrate lower performance, with 
Inception-ResNet-v2 having the weakest results. Therefore, 
these models are not a good choice for object classification 
under complex background conditions. In future work, a more 
thorough analysis considering diverse datasets when evaluating 
the models would provide a more comprehensive assessment 
and a generalized model. Furthermore, improved models 
should be accompanied by explainability techniques to 
understand why models produce certain performance outcomes 
when identifying regions, leading to targeted improvements. 
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