
Engineering, Technology & Applied Science Research Vol. 14, No. 6, 2024, 19001-19008 19001  
 

www.etasr.com Basfar et al.: Enhanced Intrusion Detection in Software-Defined Networking using Advanced Feature … 

 

Enhanced Intrusion Detection in Software-

Defined Networking using Advanced Feature 

Selection: The EMRMR Approach 
 

Raed Basfar 

Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia  

raedbasfar@gmail.com (corresponding author)  

 

Mohamed Y. Dahab  

Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia  

mdahab@kau.edu.sa 

 

Abdullah Marish Ali 

Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia  

ammali@kau.edu.sa 

 

Fathy Eassa 

Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia  

feassa@kau.edu.sa 

 

Kholoud Bajunaied 

Department of Finance, University of Business and Technology, Jeddah, Saudi Arabia 

k.bajunaid@ubt.edu.sa 

Received: 13 October 2024 | Revised: 3 November 2024 | Accepted: 5 November 2024 

Licensed under a CC-BY 4.0 license | Copyright (c) by the authors | DOI: https://doi.org/10.48084/etasr.9256 

ABSTRACT 

Most traditional IP networks face serious security and management challenges due to their rapid increase 

in complexity. SDN resolves these issues by the separation of control and data planes, hence enabling 

programmability for centralized management with flexibility. On the other hand, its centralized 

architecture makes SDN very prone to DDoS attacks, hence necessitating the use of advanced and efficient 

IDSs. This study focuses on improving IDS performance in SDN environments through the integration of 

deep learning techniques and novel feature selection methods. This study presents an Enhanced Maximum 

Relevance Minimum Redundancy (EMRMR) approach that incorporates a Mutual Information Feature 

Selection (MIFS) strategy and a new Contextual Redundancy Coefficient Upweighting (CRCU) strategy to 

optimize feature selection for early attack detection. Experiments on the inSDN dataset showed that 

EMRMR achieved better precision, recall, F1-score, and accuracy compared to the state-of-the-art 

approaches, especially when fewer features are selected. These results highlight the efficiency of the 

proposed EMRMR approach in the selection of relevant features with minimal computational overhead, 

which enhances the real-time capability for IDS in SDN environments. 

Keywords-software-defined networking; distributed denial of service; deep learning; enhanced maximum 

relevance minimum redundancy; mutual information feature selection; contextual redundancy coefficient 

upweighting 

I. INTRODUCTION  

Security is one of the main obstacles to the adoption and 
deployment of a Software Defined Network (SDN) across 
various networks, despite its advantages [1]. The network's 
central controller is susceptible to a single point of failure 

because it serves as its beating heart [2]. If the attacker can take 
advantage of the controller system, he can either control or 
obstruct the entire network as he desires. One of the most 
significant risks to SDN networks is DDoS attacks [3], as they 
can target any SDN layer, including the data, control, and 
application layers. In addition, DDoS attacks may target the 
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communication links that connect the data link to the control 
layer. Several mitigation approaches have recommended a 
backup controller to reduce the damage caused by DDoS 
attacks. However, as a secondary controller is also vulnerable 
to DoS/DDoS attacks, this is not a workable solution [4].  

Intrusion Detection Systems (IDSs) are standard security 
tools to keep an eye on and identify hostile activity within an 
organization's network, raising alerts in case they detect attacks 
or if the observed traffic from the incoming or leaving network 
matches suspicious activity [5, 6]. Given that security concerns 
rank among the most critical problems of SDNs, much research 
has focused on developing IDSs as an essential solution [7]. 
Statistical, Machine Learning (ML), and Deep Learning (DL) 
techniques are frequently used for anomaly-based detection 
solutions [8, 9]. SDN's centralized control plane design offers 
fresh ways to thwart DDoS attacks. This serves as a motivation 
for this study to employ DL approaches to mitigate the issue of 
DDoS attacks in SDNs. 

Feature selection is an essential preprocessing step that is 
necessary for the effectiveness of anomaly detection models 
[10]. By removing irrelevant and redundant features, these 
methods can preserve the most representative attributes of the 
initial dataset [11]. Optimized subset characteristics shorten the 
classifier's execution time while simultaneously increasing 
accuracy and detection rate. Therefore, fewer features can help 
to develop a lightweight model with low computing overhead 
and prediction latency and detect attacks in real-time 
environments. Furthermore, since feature selection techniques 
help to avoid the curse of dimensionality, the model is less 
likely to experience overfitting [12]. To achieve high model 
performance utilizing ML/DL tasks, several studies have 
focused on feature selection strategies to eliminate noisy and 
meaningless features [13]. Three general ways can be used to 
select features: filter, wrapper, and embedded methods [14-16].  

Current DDoS attack prevention measures are ineffective in 
SDNs, although several feature selection techniques employ 
ML to detect DDoS attacks [17-19]. The lack of an SDN 
network intrusion dataset is one of the significant drawbacks of 
previous studies [20]. Some datasets were produced using a 
standard network and not an SDN design [21, 22]. However, 
this adaption might not be sufficiently suitable for actual SDN 
detection [23]. The security risks associated with SDNs are 
different from those that typically affect legacy networks in 
terms of their nature. For example, the SDN controller receives 
a request for a policy when any unmatched flow is triggered at 
the open flow switches. The intruder can launch a new type of 
DDoS attack by sending massive amounts of mismatched flows 
that overload the controller's resources. As both malicious and 
legitimate traffic is sent to the SDN controller for decision-
making, the attack traffic also imitates the same typical 
behavior. As a result, the DDoS class on the SDN network does 
not always share the essential characteristics of DDoS attacks 
on traditional networks. Furthermore, omitting the most critical 
parameters while employing inappropriate feature selection 
techniques can waste a large amount of data. 

Given the effectiveness of DL in several domains, 
combining SDN and DL can improve IDS performance and 
network security [24, 25]. However, the requirement for an 

IDS to be lightweight and have high detection rates is 
increasing with network speeds [26]. Feature selection is an 
important step in achieving optimal intrusion detection 
performance. Effective feature subsets can shorten training and 
testing times, allowing for lightweight IDS that ensure high 
detection rates and are appropriate for online and real-time 
attack detection [27]. Mutual Information (MI) is a popular 
feature selection technique that has been used to classify 
features and assess the most relevant to DDoS attacks [28].  

Integrating DL with SDN opens an attractive perspective in 
enhancing IDS by improving detection accuracy and 
adaptability to evolving network threats [29]. Given the ever-
increasing network speeds, a lightweight and high-performance 
IDS is urgently needed, particularly for real-time detection. 
Feature selection plays a very important role, as it reduces 
processing load while retaining all critical information, 
enabling possible fast and effective detection [30, 31]. All 
features are ranked according to their importance using 
techniques such as MI, which optimizes IDS for quick and 
efficient response, making it appropriate for real-time security 
applications [32]. 

Mutual Information Feature Selection (MIFS) is widely 
used to improve IDS performance in various environments, 
including SDN. It considers nonlinear relationships between 
features and class labels, making it suitable for handling 
complex and nonlinear data patterns. It can also handle noisy 
and incomplete data, reducing their dimensionality and 
improving IDS accuracy. However, the relevance-redundancy 
trade-off is a common issue, as including redundant features 
can negatively affect IDS performance. The current calculation 
of the redundancy coefficient is not suitable for the detection of 
attacks whose behavior is constantly changing, as data lacking 
sufficient attack patterns can make it difficult to perceive 
common characteristics. This study proposes an enhanced 
feature selection technique called Contextual Redundancy 
Coefficient Gradual Upweighting (CRGU) MIFS, which 
evaluates candidate features individually instead of comparing 
them with common characteristics of already selected features. 
This study proposes an improved redundancy-relevancy 
tradeoff technique for the MIFS goal function, integrates it into 
the training phase of the IDS model for the ISDN, and conducts 
an experimental evaluation to measure the accuracy of the 
improved model and compare it with existing solutions. The 
objectives of this study can be described as follows. 

 Propose an improved redundancy-relevancy tradeoff 
technique for the MIFS goal function. 

 Integrate the improved MIFS into the training phase of the 
IDS model for the ISDN. 

 Conduct an experimental evaluation to measure the 
accuracy of the improved model and compare it with 
existing solutions. 

II. RELATED WORKS 

Conventional IP networks, still in widespread use today, 
have become more complicated and challenging to administer. 
Network complexity increases when IT operators must access 
network devices such as switches and routers independently 
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using vendor-specific commands to implement any high-level 
network policies, such as Quality of Service (QoS) or routing 
policies. IP-based network devices also include vertical 
integration. Embedded within the same network device are the 
control plane, which makes decisions, and the data plane, 
which determines how to route network traffic based on 
directives from the control plane. Connecting the control and 
data planes can limit the network's ability to adapt to the 
dynamic nature of the network. Furthermore, in traditional 
networks, the rapid expansion of networking can lead to a 
considerable decrease in network innovation and an increase in 
maintenance expenses [23]. Furthermore, there is an increase in 
the number of middle-box devices, such as firewalls, load 
balancers, detection and defense systems, etc., as all devices 
are dispersed throughout the network [23]. In [33], it was stated 
that 57 network companies have reported a significant growth 
in middle-box devices, and the number now matches that of 
other required network equipment, such as routers. 

The developing network design, commonly referred to as 
SDN, promises faster failover and central network control, 
thereby addressing many of the constraints of traditional IP 
networks. By separating the control layer from the underlying 
infrastructure components, SDN aims to eliminate vertical 
integration. With the help of a centralized controller, 
decoupling the two layers improves network flexibility and 
makes network management easier. Regardless of the 
underlying network technology, the new paradigm enables 
operators to manage the entire network using software APIs 
connected to the SDN controller through the northbound 
interface. The ability of the SDN system to provide global 
visibility motivates numerous companies, such as Microsoft, 
Huawei, and Google, to use the new paradigm in their network 
data centers [33].  

IDSs are essential for protecting SDN systems from cyber 
threats. Feature selection is a critical component of an IDS 
design aimed at identifying the most relevant features for 
effective intrusion detection. Various feature selection 
algorithms have been proposed to find the optimal set of 
features for IDSs in various environments, including SDN [34]. 
These algorithms use statistical measures, such as correlation 
and information gain, or population-based heuristic search 
approaches, such as particle swarm optimization, ant colony 
optimization, simulated annealing, and genetic algorithms. 
Some algorithms use unsupervised feature subset selection 
methods, fuzzy rough set theory, and mutual information-based 
feature selection algorithms such as MIFS. Other methods 
include MIFS-U, mRMR, and multi-objective evolutionary 
wrappers [35-38]. Attribute evaluation techniques, such as 
ReliefF, Chi-squared, Correlation Feature Selection (CFS), and 
Principal Component Analysis (PCA), are used to facilitate the 
feature selection process. These techniques employ search 
techniques such as BestFirst, ExhaustiveSearch, 
GreedyStepwise, RandomSearch, and Ranker for feature 
ranking. 

MI-based feature selection methods have garnered 
significant attention in IDS research due to their ability to 
capture dependencies between variables. Numerous studies 
have investigated the application of MI in feature selection for 

IDS in SDN systems. In [39], the Normalized Mutual 
Information Feature Selection (NMIFS) method was 
introduced, which is a filter-based approach that utilizes MI. 
Similarly, in [11], the Joint Mutual Information Maximization 
(JMIM) and Normalized Joint Mutual Information 
Maximization (NJMIM) methods were proposed to address the 
overestimation of feature significance in MI-based feature 
selection. In [5], the performance of an IDS model using an 
MI-based feature selection algorithm, called MMIFS, was 
examined. In [40], a feature selection method was developed 
that combined MI and Pearson's correlation coefficient to 
design an effective IDS. In [10, 11] MI-based feature selection 
algorithms were also proposed for IDS. Furthermore, in [12, 
41], the importance of MI in feature selection for IDS was 
emphasized. These studies underscore the importance of MI in 
selecting relevant features for intrusion detection. Moreover, in 
[13], a cross-correlation-based feature selection method was 
compared with MI-based selection, highlighting the relevance 
of feature selection techniques in IDS. Additionally, in [42], the 
importance of feature selection in ML-DL-based IDS was 
emphasized to enhance effectiveness and scalability. 

The advantages of the proposed EMRMR approach over 
existing schemes for intrusion detection in SDN environments 
are highlighted by comparing the key metrics and techniques 
used in some related feature selection methods. Table I shows a 
comparison of existing schemes with the proposed one. 

TABLE I.  COMPARISON WITH EXISTING SCHEMES 

Feature 

selection 

technique 

Dataset 
Performance 

metrics 
Advantages Limitations 

MIFS + 

CRCU 
inSDN 

Precision, 

Recall, F1-

score, 

Accuracy 

Efficient feature 

selection, low 

computational 

cost, high 

detection 

accuracy 

Limited testing 

on larger 

datasets 

MRMR Custom 
Precision, F1-

score 

Simple 

implementation, 

moderate 

relevance 

High 

redundancy in 

feature selection 

ReliefF inSDN 
Accuracy, 

Recall 

Effective for 

high-

dimensional 

data 

Ineffective in 

early attack 

detection 

Random 

Forest (RF) 

feature 

selection 

UNSW-NB15 

Precision, 

Recall, 

Accuracy 

Reduces 

redundancy in 

high-

dimensional 

features 

Computationally 

intensive 

Chi-Square CICIDS2017 F1-score 
Strong statistical 

relevance 

Less adaptive to 

SDN-specific 

data 

 

III. METHODOLOGY 

MIFS is a well-known feature selection method that can 
efficiently choose pertinent features regardless of the data 
distribution, making it appropriate for early detection situations 
in which the data lack sufficient attack patterns. Figure 1 
illustrates the research process for feature selection. 
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Fig. 1.  Research process for feature selection. 

MI is a measure of the amount of information that two 
discrete variables exchange with one another. Equation (1) 
provides the MI computation. 

���; �� � ���� 	 ���|�� �  

    ∑ ∑ ��
, �� log ���,��
��������������    (1) 

where ��
� and ���� are the marginal distributions of 
 and �, 
��
, �� is the joint distribution of 
 and �, ���� is the entropy 
of �, and ���|�� is the conditional entropy of � given �. The 
following equation is used to compute the entropy ����. 

���� �  	 ∑ ��
�� log���
�����∈�   (2) 

The following equation can be used to compute the 
conditional entropy ���|��. 

��|�� �   
	 ∑ ����� ∑ ��
� ��� log !��
� ���"��∈��#∈�  (3) 

Equation (4) represents the general formula for the linear 
combinations of Shannon information terms [30]. 

$��%� �  

���%; �� 	 & ∑ ���� ; �%��#�' ( ) ∑ ����; �% ���#�'   (4) 

Terms (5) and (6), stand for the relevancy and redundancy 
terms, respectively, in this equation. Both terms are weighed by 
parameters & and ), which have values between 0 and 1. The 
redundancy term is represented by the sum of marginal 
redundancy, which is expressed in (7), and conditional 
redundancy, which is expressed in (8). 

���%; ��     (5) 

& ∑ ���� ; �%��#�' ( ) ∑ ���� ; �% ���#�'   (6) 

& ∑ ���� ; �%��#�'     (7) 

) ∑ ���� ; �% ���#�'     (8) 

The conditional mutual information between the candidate 
and other features in the selected set * given the class label � is 
expressed by (7), whereas the mutual information between the 
candidate feature and the class label � is expressed by (5). 

& � ) � +
|'|     (9) 

& � |'|
|,|     (10) 

) � |,-'+
|,|      (11) 

A. Improved (Situational) Upweighting of Redundancy 
Coefficient 

The &  and )  parameters are used in the Contextual 
Redundancy Coefficient Upweighting (CRGU) technique. The 
relative contextual relevancy in relation to the label is 
represented by the coefficient's size, which also indicates the 
degree of trust in the contextual redundancy term. A CRCU is 
proposed that calculates the redundancy using (10) and (11), as 
opposed to the current MIFS that calculates it using (9). Every 
time a new feature is introduced to the chosen set, the CRCU 
progressively increases the weights rather than updating the 
value linearly. Because it also considers the class label, such 
conditional relevancy is less affected by contextual 
redundancy. 

./0123,'��4� �  

5��
% , �� 	 |'|
|,| !∑ ��
% , 
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where |7| and |*| denote feature counts in the original set and 
the selected set, respectively. 

B. Mutual Information Feature Selection based on CRGU 

The integration of the CRGU into the MIFS is seen in (12). 
It guarantees that, given the features that have already been 
chosen, the feature with the highest MI with the class label at 
the end of each iteration is added to the set *. The MI value for 
every feature in the original set 7 is first calculated using this 
technique. Following selection, the feature with the highest MI 
value is kept in *. Equation (12) is used to add the following 
features to the chosen set. Subsequently, the $��� value of each 
feature in * is used to rank them from highest to lowest. The 
features that rank higher than 8 are kept, while the remaining 
features are eliminated. The number of required features 
determines the value of 8. 

IV. RESULTS AND DISCUSSION 

The study used a dataset specifically designed for SDN 
systems, with a focus on assessing the performance of the 
MIFS approach combined with the CRCU technique. The 
objective of the experiment is to evaluate the detection 
accuracy and the real-time practicality of the IDS. A thorough 
examination was carried out to assess how feature selection 
affects the performance of several deep learning models in 
effectively identifying DDoS attacks. The results emphasize 
enhancements in detection rates, showcasing the effectiveness 
of the proposed technique in improving SDN security. 

The inSDN dataset [20] was used in the experimental 
evaluation. It is specifically tailored to address the distinct 
issues of identifying intrusions and malevolent actions within 
SDN settings. Unlike conventional network datasets, inSDN 
represents unique operating characteristics and attack vectors 
exclusive to SDNs. This makes it an ideal basis for creating and 
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testing IDSs customized for this technology. The dataset 
consists of several data sources, such as network traffic 
statistics, controller logs, and flow rules. The collected key 
aspects encompass packet size, inter-arrival time, protocol type, 
source and destination IP addresses, port numbers, flow 
durations, frequency of control messages, types of control 
commands sent, response times, and special anomaly 
indications such as spikes in mismatched flow requests. The 
dataset is carefully annotated to distinguish between regular 
network traffic, different forms of DDoS attacks, and other 
irregularities, ensuring a thorough coverage of possible security 
risks. Data gathering entails the utilization of a regulated SDN 
testbed, employing network simulation tools such as Mininet, 
as well as real-world SDN controllers, such as OpenDaylight or 
ONOS. This process involves modeling a wide range of attack 
scenarios, including volumetric DDoS attacks, protocol 
exploits, and application layer attacks. Preprocessing involved 
normalizing the data, selecting features based on MIFS, and 
dividing the data into training and testing sets. This ensures the 
dataset's resilience and suitability for training ML models, 
evaluating feature selection methods, and creating real-time 
detection systems. The inSDN dataset is an essential resource 
for researchers and practitioners, enabling advances in network 
security by offering a thorough and practical basis for the 
development and testing of IDSs in SDN environments. 

Table I presents the performance metrics of the proposed 
EMRMR technique across different feature counts. The table 
illustrates the precision, recall, F1-score, and accuracy for 
feature counts of 5, 10, 15, 20, 25, and 30. The EMRMR 
method achieved outstanding results with a feature count of 5, 
boasting precision, recall, F1-score, and accuracy all at 0.99. 
This indicates an exceptional ability to identify the most 
relevant features for classification with minimal redundancy. 
As the feature count increases, the metrics remain consistently 
high, with slight variations. For instance, with 20 features, the 
method maintains high performance with a precision of 0.89, 
recall of 0.88, F1-score of 0.89, and accuracy of 0.90. These 
results underscore the robustness and effectiveness of the 
EMRMR method in feature selection, ensuring high 
classification accuracy while efficiently managing feature 
space. This stability across different feature counts highlights 
EMRMR's adaptability and reliability in various scenarios, 
making it a valuable tool for enhancing the performance of ML 
models. 

TABLE II.  EVALUATION RESULTS OBTAINED BY THE 
PROPOSED EMRMR 

Feature count Precision Recall F1-score Accuracy 

5 0.99 0.99 0.99 0.99 

10 0.88 0.88 0.88 0.89 

15 0.87 0.87 0.87 0.89 

20 0.89 0.88 0.89 0.9 

25 0.86 0.85 0.86 0.87 

30 0.89 0.88 0.89 0.9 

 
Figure 2 provides a comparison of the precision of various 

feature selection methods across different feature counts, 
including MRMR [43], EMRMR (proposed), [44], [45], and 
[19]. The EMRMR method demonstrates better performance, 
particularly with fewer features. At a feature count of 5, 

EMRMR achieves 0.99 precision, significantly higher than 
MRMR (0.87), [44] (0.84), [45] (0.83), and [19] (0.81). When 
the feature count increases to 10, EMRMR maintains a high 
precision of 0.88, which is slightly lower than MRMR's 0.89 
but still competitive with [44] (0.85), [45] (0.84), and [19] 
(0.83). For feature counts of 15 and 20, EMRMR shows a 
consistent precision of 0.87 and 0.89, respectively, aligning 
closely with MRMR (0.87 and 0.88) and surpassing [44] (0.86) 
and [19] (0.84-0.85). With 25 features, EMRMR's precision is 
0.86, comparable to MRMR (0.89) and slightly lower than [44] 
(0.84), [45] (0.84), and [19] (0.84). At 30 features, EMRMR 
maintains a high precision of 0.89, significantly outperforming 
MRMR, which drops to 0.80 and remains competitive with 
[44] (0.86), [45] (0.85), and [19] (0.83). 

 

 
Fig. 2.  Precision achieved by various methods across feature counts. 

This comparison underscores EMRMR's consistent high 
precision across varying feature counts, particularly excelling 
at lower feature counts, making it a robust and reliable method 
for feature selection in comparison to MRMR and other 
contemporary methods. Even as the feature count increases, 
EMRMR maintains high precision. The good performance of 
EMRMR can be attributed to its enhanced mechanism, as 
described previously. EMRMR improves on the standard 
MRMR approach by incorporating additional steps that better 
handle feature relevance and redundancy. Specifically, 
EMRMR uses a more sophisticated evaluation of feature 
interactions, ensuring that selected features provide maximum 
discriminatory power while minimizing redundancy. This 
results in a more efficient and effective feature selection 
process, particularly evident at lower feature counts, where the 
impact of redundant features can be more pronounced. 
Furthermore, the ability of EMRMR to maintain high precision 
with fewer features underscores its robustness in selecting the 
most relevant features without compromising accuracy. This is 
crucial for applications with limited computational resources or 
where interpretability is important. By effectively balancing 
relevance and redundancy, EMRMR provides a significant 
advantage in feature selection, leading to improved model 
performance. 

Figure 3 presents a comparison of recall values for various 
feature selection methods across different feature counts, 
including MRMR [43], EMRMR (proposed), [44], [45], and 
[19]. The results highlight the good performance of the 
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EMRMR method, especially at lower feature counts. For a 
feature count of 5, EMRMR achieves a near-perfect recall of 
0.99, significantly outperforming MRMR (0.68), [44] (0.846), 
[45] (0.857), and [19] (0.806). As the feature count increases to 
10, EMRMR maintains a high recall of 0.88, matching the 
performance of MRMR and exceeding the recall of [44] 
(0.853), [45] (0.861), and [19] (0.830). At feature counts of 15 
and 20, EMRMR continues to show strong performance with 
recall values of 0.87 and 0.88, respectively, surpassing MRMR 
(0.81 and 0.79) and maintaining competitive performance with 
[44] (0.840 and 0.830), [45] (0.820 and 0.840), and [19] (0.810 
and 0.840). With 25 features, EMRMR and MRMR both 
achieve a recall of 0.85, comparable to [44] (0.830), [45] 
(0.830), and [19] (0.844). At 30 features, EMRMR maintains a 
high recall of 0.88, significantly higher than MRMR (0.5), and 
competitive with [44] (0.860), [44] (0.850), and [19] (0.829). 

 

 

Fig. 3.  Recall achieved by various methods across feature counts. 

This comparison underscores EMRMR's capability to 
maintain high recall values across varying feature counts, 
particularly excelling at lower counts. The enhanced 
mechanism of EMRMR, which effectively balances feature 
relevance and redundancy, enables it to achieve such high 
recall, highlighting its robustness and reliability in accurately 
identifying relevant features. This makes EMRMR a highly 
effective method for feature selection, ensuring comprehensive 
detection of relevant instances in various applications. Such an 
improvement can be attributed to its enhanced mechanism, as 
described previously. EMRMR refines the standard MRMR 
approach by incorporating additional steps that more 
effectively handle feature relevance and redundancy. This 
advanced evaluation process ensures that selected features 
maximize discriminatory power while minimizing redundancy, 
leading to more accurate and comprehensive detection of 
relevant instances. The result is a more effective feature 
selection process, particularly evident at lower feature counts 
where the impact of irrelevant or redundant features can be 
more pronounced. 

Figure 4 presents a comparison of F1 scores for various 
feature selection methods across different feature counts, 
including MRMR [43], EMRMR (proposed), [44], [45], and 
[19]. The results underscore the exceptional performance of the 
EMRMR method, particularly at lower feature counts. At a 

feature count of 5, EMRMR achieves an outstanding F1 score 
of 0.99, significantly higher than MRMR (0.69), [44] (0.87), 
[45] (0.90), and [19] (0.88). With 10 features, EMRMR 
maintains a high F1 score of 0.88, which is slightly higher than 
MRMR (0.86) and comparable to [44] (0.84), [45] (0.83), and 
[19] (0.86). For feature counts of 15 and 20, EMRMR 
continues to demonstrate strong performance with F1 scores of 
0.87 and 0.89, respectively, surpassing MRMR (0.81 and 0.80) 
and remaining competitive with other methods such as [44] 
(0.85 and 0.86), [45] (0.83 and 0.87), and [19] (0.85 and 0.86). 
With 25 features, EMRMR achieves an F1 score of 0.86, 
similar to MRMR (0.84) and in line with [44] (0.84), [45] 
(0.84), and [19] (0.83). At 30 features, EMRMR maintains a 
high F1 score of 0.89, significantly outperforming MRMR 
(0.40) and demonstrating superior performance compared to 
[44] (0.75), [45] (0.77), and [19] (0.76). 

 

 
Fig. 4.  F1 score achieved by various methods across feature counts. 

 

Fig. 5.  Accuracy achieved by various methods across feature counts. 

Figure 5 compares the accuracy of various feature selection 
methods across different feature counts, including MRMR [43], 
EMRMR (proposed), [44], [45], [19]. The results clearly 
highlight the superior performance of the EMRMR method, 
particularly at lower feature counts. At a feature count of 5, 
EMRMR achieves an exceptional accuracy of 0.99, 
significantly higher than MRMR (0.78), [44] (0.88), [45] 
(0.89), and [19] (0.87). With 10 features, EMRMR maintains a 
high accuracy of 0.89, slightly higher than MRMR (0.87) and 
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comparable to [44] (0.85), [45] (0.83), and [19] (0.87). For 
feature counts of 15 and 20, EMRMR continues to demonstrate 
strong performance with accuracies of 0.89 and 0.90 
respectively, surpassing MRMR (0.83 and 0.84) and remaining 
competitive with [44] (0.87 and 0.86), [41] (0.85 and 0.86), and 
[21] (0.88). With 25 features, EMRMR achieves an accuracy of 
0.87, similar to MRMR (0.85) and in line with [44] (0.85), [45] 
(0.85), and [19] (0.84). At 30 features, EMRMR maintains a 
high accuracy of 0.90, significantly outperforming MRMR 
(0.66) and demonstrating superior performance compared to 
[44] (0.86), [45] (0.87), and [19] (0.83). 

This comparison underscores EMRMR's consistent and 
good accuracy across various feature counts. The significant 
improvement observed with EMRMR, particularly at lower 
feature counts, can be attributed to its enhanced mechanism, 
which effectively balances feature relevance and redundancy. 
By selecting features that provide maximum discriminatory 
power while minimizing redundancy, EMRMR enhances the 
overall accuracy of the model. Its robustness and effectiveness 
in feature selection make EMRMR a highly reliable method to 
improve model performance in diverse applications. EMRMR 
enhances the standard MRMR approach by improving the way 
feature relevance and redundancy are estimated. This refined 
evaluation process ensures that the selected features offer 
maximum discriminatory power while minimizing redundancy, 
leading to more accurate and comprehensive feature selection. 
This results in improved model accuracy, showcasing the 
robustness and effectiveness of EMRMR in various 
applications. The consistently high performance of EMRMR 
across different feature counts underscores its reliability and 
superiority as a feature selection method, making it an excellent 
choice for enhancing ML model accuracy. 

V. CONCLUSION 

The results of this study highlight the substantial 
improvements achieved by the EMRMR technique in the 
context of intrusion detection for SDN. By integrating 
advanced feature selection strategies, specifically MIFS and 
CRCU, EMRMR effectively balances feature relevance and 
redundancy. This results in superior performance metrics 
compared to traditional methods such as MRMR, as well as 
other contemporary techniques. The EMRMR mechanism 
allows it to maintain high precision, recall, F1-score, and 
accuracy, particularly at lower feature counts, demonstrating its 
robustness in selecting the most relevant features without 
compromising accuracy. Its ability to reduce computational 
burden and enhance detection rates makes it suitable for real-
time and lightweight IDSs. The significant improvements 
observed with EMRMR can be attributed to its effective 
evaluation of feature interactions, ensuring maximum 
discriminatory power while minimizing redundancy. This study 
confirms that employing contextual feature estimation in MIFS 
can improve IDS accuracy, which in turn enhances network 
security. Future work may explore the integration of EMRMR 
with other ML models and its application to various 
cybersecurity challenges, further validating its effectiveness 
and broadening its applicability in the field. Future works 
should involve extending the EMRMR approach by 
considering adaptive weighting mechanisms that can help 

further improve real-time detection in SDN environments. 
Testing the framework with more extensive and various 
datasets will be pursued to enhance generalizability. 
Additionally, integration of the EMRMR approach with other 
machine learning models will be studied to further improve 
IDS performance. 
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