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ABSTRACT 

Athletes in various sports, such as swimming, are increasingly using motion capture to identify and 

optimize their movement techniques. However, traditional motion capture systems tend to be expensive 

and limited. Computer vision-based methods have emerged as alternatives to identify four swimming 

styles: freestyle, backstroke, breaststroke, and butterfly. However, previous models did not identify flaws 

in swimmer movement. A significant challenge is the lack of labeled swimming video datasets that indicate 

these flaws. To overcome this challenge, this study collected and labeled a dataset of swimmer flaws and 

integrated them with the publicly available dataset SwimXYZ. Then, YOLO models were trained on the 

generated data. The YOLOv8s model demonstrated an impressive mean average precision (mAP@0.50) of 

98% in the detection of swimming style and 95% in the simultaneous detection of swimming style and the 

identification of incorrect movements. This model can be used in real-time applications to help swimmers 

evaluate and improve the accuracy of their techniques. 

Keywords-human motion capture; artificial intelligence; computer vision; YOLOv8; swimming styles; 

swimming flaws; incorrect movement 
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I. INTRODUCTION  

The emphasis on sports and youth initiatives to improve 
quality of life and healthy lifestyles is essential. Promoting 
aquatic sports and increasing the availability of modern 
swimming pools are crucial steps in spreading aquatic sports 
culture. Swimming is a recognized sport throughout the world 
in organized sports events. In these events, swimmers compete 
on their skills and speed in various races. Swimming 
competitions adopt four main swimming styles: freestyle, 
backstroke, breaststroke, and butterfly. During training, 
swimmers often struggle to accurately assess their swimming 
tactics. Many seek professional advice or resort to instructional 
videos. However, challenges such as limited time, cost, and 
difficulty in accessing facilities and finding professional 
coaching hinder the level of physical activity and 
professionalism. 

With the rapid advance of technology, motion capture has 
been applied in the field of computer vision. Motion capture is 
a technique to record and convert the movements of objects or 
people into digital data, which can then be analyzed and 
manipulated [1], and is used in various fields, such as 
entertainment [2-4], autonomous driving [5], medical 
applications [6-9], and sports [10-14]. It is also used to validate 
computer vision systems [15–18]. The use of motion capture in 
sports helps to analyze and optimize athlete skills [10, 19-21], 
injury prevention [22-25], and detection of drowning [26]. 
Despite traditional human motion capture systems that involve 
manual capture of images and videos, automatic motion 
capture systems have greatly improved accuracy and reliability, 
making them useful in different sports contexts, from analyzing 
individual techniques to assessing group tactics. However, 
computer vision-based motion capture systems for swimming 
face limitations due to the lack of labeled data. This study 
proposes Moar, a YOLOv8-based deep learning model that is 
trained to simultaneously identify swimming styles and flaws 
in them from videos. To train Moar, data for incorrect 
swimming style movements were collected and integrated with 
the publicly available SwimXYZ dataset [27]. 

II. RELATED WORKS 

In general, four swimming style forms are used in 
swimming competitions, such as freestyle, backstroke, 
breaststroke, and butterfly. These styles encourage swimmers 
to adhere to unique sets of guidelines and tactics. Freestyle 
involves alternating arm motions and a flutter kick while 
positioning the body to face down in the water and breathing to 
the side. The backstroke style is much like the freestyle, but the 
swimmers move their bodies side to side to create propulsion 
using a flutter kick and are allowed to breathe continuously. 
Breaststroke involves a simultaneous arm motion and a frog-
like kick, with a glide phase between strokes. The butterfly 
style is characterized by an undulating dolphin-like body 
movement and simultaneous arm motion, and it is considered a 
challenging swimming style.  

Many studies have focused on monitoring and analyzing 
swimmer movements. Some used electronic devices known as 
Inertial Measurement Units (IMUs), which measure and report 
data related to certain forces, angular rates, and occasionally 

magnetic fields. Accelerometers, gyroscopes, and occasionally 
magnetometers are common components found in IMUs. They 
are used when comprehension of motion and orientation is 
required, especially in the detection of swimming styles [28-
30]. Other studies used various sensors for swimming 
movement tracking such as sonar sensors [31], mobile phones 
[32], smart watches [33], biosensors and wearable sensors [34], 
and wrist wearable assistants [35].  

In [28], a single waterproof inertial sensor attached to the 
swimmer's back waist was used to collect 3-axis acceleration 
and gyro data and detect the start time of the swimming stroke 
using a Convolutional Neural Network (CNN), achieving a 
precision of 85% and a recall of 90%. In [29], a deep learning-
based Swimming Stroke Recognition (SSR) system was 
developed using Inertial Measurement Units (IMU) and a 
hybrid DCNN-BiLSTM model, achieving a balanced accuracy 
of 96.27% in recognizing four swimming strokes. In [30], four 
different multiclass classification models were proposed and 
evaluated, using Long Short-Term Memory (LSTM) networks 
to capture temporal dependencies in swimming movements, 
achieving a high classification accuracy of 95% and acceptable 
loss values. In [31], sonar and a deep CNN were used to 
identify swimming styles, achieving 93.7% training accuracy. 
In [32], an aqua-tracker system was developed, achieving a 
real-time classification accuracy of 95% with a CNN model. In 
[33], a CNN was used to recognize swimming styles and 
transitions, achieving an average F1-score of 97%. In [34], a 
real-time framework was proposed to analyze swimming 
performance using wearable sensors and biosensors, with a 
Random Forest (RF) classifier achieving a macro-averaged F1-
score of 95%. 

Although previous studies have shown impressive results, 
acquiring these sensors might be a challenge. Thus, several 
studies focused solely on computer vision using machine 
learning and deep learning techniques [29, 36-41]. In [36], 
computer vision was used for pose detection, achieving 67% 
accuracy in distinguishing between efficient and inefficient 
pulling poses. In [37], a performance prediction model was 
developed for young swimmers, using a feedforward neural 
network that achieved 80% precision. In [38], a CNN-based 
approach was proposed to automatically detect swimming 
strokes in continuous video, achieving an F1-score of 92%. In 
[29], a hybrid Deep CNN and Bidirectional LSTM 
(DCNNBiLSTM) model was proposed to recognize four 
swimming strokes with an accuracy of 96%. In [39], 
bidirectional LSTM was used to classify swimming activities 
with an F1-score of 96% and high precision in calculating lap 
times. In [40], a system was proposed that used machine 
learning and computer vision to analyze freestyle swimming 
strokes. This system classified strokes as "good" or "bad," 
offering corrective feedback to help swimmers improve their 
technique and reduce the risk of injuries, achieving an accuracy 
of more than 90%. 

However, earlier studies did not identify flaws or incorrect 
tactics in swimmer movement, while the lack of labeled 
datasets that can identify these errors is a major obstacle. 
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III. METHODOLOGY 

A. Datasets and Data Cleaning  

Data on swimming style flaws were collected and 
integrated with the publicly accessible SwimXYZ dataset [27]. 
Training models on the integrated data enables effective and 
simultaneous identification of the style and flaws through the 
swimmer's stroke. Before integrating the two datasets, each 
dataset was cleaned, annotated, and augmented. 

1) SwimXYZ Dataset [27] 

This is a synthetic dataset containing swimming motions 
and videos, consisting of 11,520 videos, amounting to a total of 
3.4 million frames. Each 5-second video, recorded at 60 fps, is 
annotated in both 2D and 3D using three different formats. The 
dataset consists of 240 swimming motion sequences 
represented in SMPL parameters. It includes 60 sequences for 
each of the four swimming strokes, capturing variations in both 
movement and body shape. It is important to ensure the quality 
of the dataset for reliable training and analysis. This was 
achieved by following several key steps. First, videos showing 
a swimmer from above (located on the side above the water 
folder in the SwimXYZ dataset) were removed and excluded 
because they do not clearly explain the swimmer's movement. 
This can mislead or distract the model, affecting its predictions, 
as shown in Figure 1. Moreover, data redundancy was reduced 
by identifying and removing videos that do not capture the 
swimmer's movement. Furthermore, the dataset was 
transformed from WEBM to MP4 format to ensure 
compatibility with the model. After cleaning, the dataset 
consisted of 1,110 videos, divided into 395 videos in Butterfly, 
288 videos in Backstroke, 288 videos in Breaststroke, and 139 
videos in Freestyle. All the videos in the dataset were 
converted into a frame of six images. As not all images show 
the swimmer's movement, images in which the swimmer's 
movement is not clear or the swimmer is not present were 
removed. This process generated 1,030 individual images that 
were used to train the model, 339 images in Butterfly, 200 
images in Backstroke, 269 images in Breaststroke, and 222 
images in Freestyle. This process was essential to ensure that 
the model had a diverse range of visual data for accurate 
predictions. 

B. SwimMistakes Dataset 

Several videos and photos were collected that showcased 
different types of incorrect swimming movements in Butterfly, 
Backstroke, and Breaststroke swimming styles. Videos 
depicting mistakes in freestyle swimming were excluded due to 
the wide variation in this style among different swimmers, 
which could potentially mislead or distract the model, thus 
affecting its predictions. Cleaning datasets enhance data quality 
and highlight their relevance. Videos that depict a swimmer 
from above were excluded, as this pose does not provide a clear 
understanding of the swimmer's movement. This step resulted 
in a dataset of 236 images divided as follows: 39 images of 
incorrect movement in Butterfly, 99 images of incorrect 
movement in Backstroke, and 98 images of incorrect 
movement in Breaststroke. Each image captures different 
differences in camera angle, subject appearance, water 
conditions, lighting, and movement. 

C. Data Annotation 

This is an important step in the data preparation process to 
make it understandable and usable for deep learning models. 
Annotation was implemented using Roboflow, starting by 
defining the annotation class with the names Butterfly, 
Backstroke, Breaststroke, Freestyle, and Mistake. This class 
presents the type of swimming movement along with the 
mistake within the frame of uploaded videos. The annotation 
process involves manual frame labeling. Swimmer labels and 
bounding boxes were assigned to accurately illustrate the 
swimmer's movement and the place of the mistake. This step 
ensures that the dataset contains detailed information to be used 
by the deep learning model to identify the style and flaws in the 
swimming style. 

D. Data Augmentation 

Data augmentation is used to improve the quality and 
diversity of a dataset. Roboflow was used to apply some 
augmentation strategies, including the ability to accept images 
horizontally, apply grayscale to 10% of them, blur up to 0.7 
pixels, and add noise up to 0.14% of pixels. After these steps, 
the dataset consisted of 2,720 images, ensuring that it includes 
many variations and circumstances found in the actual world. 
Figure 2 shows the total number of labels in each class. 

 

 

Fig. 1.  Sample of side above water frame from the SwimXYZ dataset. 

 

Fig. 2.  Number of labels in each class. 

E. Data Splitting 

To ensure the reliability of the results, the dataset was 
divided into 80% for training (2,181 images) and 20% for 
validation (539 images). 
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F. The Proposed Models and Training Process 

The aim was to develop a model that identifies swimming 
styles and detects common technique flaws. Among the various 
object detection models that identify objects within images or 
videos, analyze postures, and categorize movements, the 
YOLO models (You Only Look Once) are particularly 
effective and come in various versions [42]. YOLOv5n and 
YOLOv8n are more complex and high-performance options for 
large-scale tasks, while YOLOv5s and YOLOv8s are 
lightweight and optimized for speed on resource-limited 
devices. Each variant may differ in the architecture of the 
backbone, the number of layers, and the design of the classifier 
component to suit specific requirements in terms of object 
detection accuracy, speed, and computational resources. The 
backbone of YOLOv5 and YOLOv8 is a modified version of 
the CSPDarknet53 architecture. 

YOLOv5 [43, 44] uses a modified CSP-Darknet53 
backbone, which contains 53 convolutional layers. It utilizes 
Cross Stage Partial (CSP) connections to enhance the flow of 
information and reduce computational load. The head of 
YOLOv5 consists of convolutional layers that predict bounding 
boxes, abjectness scores, and class probabilities. 

 The YOLOv5n model has a total of 47-119 layers. The total 
number of layers can vary depending on the specific 
configuration. 

 The YOLOv5s model has 19 convolutional layers, the total 
number of layers in the architecture is 157, encompassing 
various operations that transform the data through the 
network. 

YOLOv8 [43-44] introduces several improvements over 
previous versions, including more advanced convolutional 
layers and potentially different structures for the head. The 
YOLOv8 head is composed of several convolutional layers, 
followed by a set of fully connected layers. The three heads 
correspond to the cv2, cv3, and dfl layers in the Detect module. 

 YOLOv8n has a total of 225 layers, The number of layers 
in the C2f (Cross-stage Partial Connections) blocks and 
bottleneck blocks is determined by the depth multiplier (�) 
of the model. For the YOLOv8n model, the depth multiplier 
(�) is 0.33. This means that the number of repeats in the 
C2f and bottleneck blocks is scaled down by a factor of 
0.33 compared to the base model.  

 The YOLOv8s model has a total of 225 layers. 

G. Training Process 

These models were fine-tuned, establishing the following 
hyperparameters. The number of epochs, each representing a 
full pass over the entire dataset, was set at 80, and the 
minimum confidence threshold for detections was set at 0.25. 
The number of images per batch was set to -1, indicating 
AutoBatch for YOLOv8n and YOLOv8s, and set to 16 for 
YOLOv5n and YOLOv5. 

H. Evaluation Measures 

Several evaluation metrics are used in the context of object 
detection tasks with bounding boxes and considering IoU 

thresholds. These metrics calculate the Intersection over the 
Union (IoU) threshold to determine if a predicted bounding box 
is True Positive (TP) or False Negative (FN), where TP are 
correctly predicted instances, and FP are instances incorrectly 
predicted as positive. This study used the recall and mean 
Average Precision (mAP). Recall is calculated as the ratio of 
TP to the total number of relevant instances: 

� =
��

����	
      (1) 

Precision is calculated as the ratio of TP to the total number 
of predicted positive instances. 


 =
��

�����
      (2) 

mAP is also a commonly used performance metric to 
evaluate object detection models. This study used mAP@0.50 
and mAP@0.50:0.95. mAP@0.50 measures the average 
precision of object detection models at a specific IoU threshold 
of 0.50, ensuring at least 50% overlap between predicted and 
ground truth bounding boxes. mAP@0.50:0.95 is a more 
comprehensive evaluation metric than mAP@0.50, since it 
considers the average precision across IoU thresholds, ranging 
from 0.50 to 0.95. However, both metrics are widely used in 
object detection to evaluate model accuracy and robustness. 
Higher recall and precision values indicate better object 
detection. 

IV. RESULTS AND DISCUSSION 

This section presents the results and a comprehensive 
analysis of the performance of the trained models. The 
evaluation of the model includes its ability to identify the 
swimming style and flaws in the style tactics. Table I shows the 
results of the four YOLO models used in this study in terms of 
precision (P), recall (R), and mAP at various IoUs. From the 
results, the following can be observed: 

 In general, YOLOv5s and YOLOv8s perform better in both 
the All and the Mistake classes compared to YOLOv5n and 
YOLOv8n, respectively. YOLOv5s and YOLOv8s have 
higher mAP@0.50 values in identifying the Mistake class, 
indicating better accuracy in detecting instances in this 
class. YOLOv5s consistently outperforms YOLOv5n, while 
YOLOv8s tends to have a slight edge over YOLOv8n in 
both the identification of All and Mistake classes. 

 The results show varying levels of performance across 
different IoU thresholds. For example, the model 
demonstrates strong performance at an IoU threshold of 
0.50, with mAP values ranging from 0.78 to 0.99 in 
YOLOv5n, 0.82 to 0.99 in YOLOv5s, 0.79 to 0.99 in 
YOLOv8n and 0.81 to 0.99 in YOLOv8s across different 
classes. This variability suggests that the model's accuracy 
and precision levels can fluctuate based on the IoU 
threshold considered. 

 When comparing the values of mAP@0.50:0.95, they range 
from 0.35 to 0.82 in YOLOv5n, 0.37 to 0.80 in YOLOv5s, 
0.36 to 0.81 in YOLOv8n, and 0.36 to 0.84 in YOLOv8s 
across different classes. This variability suggests that the 
models exhibit different levels of accuracy and precision in 
detecting objects, depending on the degree of overlap 
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between predicted and ground-truth bounding boxes. 
However, YOLOv8n and YOLOv8s outperform YOLOv5n 
and YOLOv5s in terms of average mAP @0.50:0.95, 
achieving 0.66 and 0.68, respectively. 

 All four models achieved the highest recall and mAP in the 
Freestyle and Breaststroke classes.  

 YOLOv5s and YOLOv8s show slightly better mean 
performance compared to YOLOv5n and YOLOv8n, 
respectively. 

TABLE I.  COMPARATIVE VALIDATION RESULTS OF 
FINE-TUNED YOLO MODELS ON THE INTEGRATED 

DATASET 

Class Ref. Dataset Model 

Evaluation Measures 

R P 
mAP@ 

0.50 

mAP@ 

0.50:0.95 

Mistake 
This 

study 

Swim-

Mistakes  

YOLOv5n 0.76 - 0.78 0.35 

YOLOv5s 0.74 - 0.82 0.37 

YOLOv8n 0.75 - 0.82 0.38 

YOLOv8s 0.76 - 0.82 0.37 

All  

[39] Collected Bi-LSTM 0.96 0.96 - - 

This 

study 
SwimXYZ 

YOLOv5n 0.91 - 0.94 0.66 

YOLOv5s 0.92 - 0.95 0.66 

YOLOv8n 0.93 - 0.94 0.68 

YOLOv8s 0.92 - 0.95 0.68 

Butterfly 

[28] 

Collected 

CNN 0.904 0.855 - - 

[29] 
DCNN-

BiLSTM 
0.915 0.886 - - 

[33] CNN 0.91 1 - - 

[39] Bi-LSTM 0.88 0.99 - - 

This 

study 
SwimXYZ 

YOLOv5n 0.95 - 0.96 0.69 

YOLOv5s 0.95 - 0.96 0.71 

YOLOv8n 0.95 - 0.97 0.72 

YOLOv8s 0.96 - 0.97 0.72 

Back-

stroke 

[29] 

Collected 

DCNN-

BiLSTM 
.0.98 0.996 - - 

[33] CNN 0.98 0.97 - - 

[39] Bi-LSTM 0.99 0.98 - - 

This 

study 
SwimXYZ 

YOLOv5n 0.89 - 0.98 0.67 

YOLOv5s 0.91 - 0.98 0.67 

YOLOv8n 0.94 - 0.98 0.7 

YOLOv8s 0.95 - 0.98 0.7 

Breast-

stroke 

[29] 

Collected 

DCNN-

BiLSTM 
0.93 0.89 - - 

[33] CNN 0.95 1 - - 

[39] Bi-LSTM 0.99 0.98 - - 

This 

study 
SwimXYZ 

YOLOv5n 0.96 - 0.99 0.75 

YOLOv5s 0.98 - 0.99 0.74 

YOLOv8n 0.99 - 0.99 0.78 

YOLOv8s 0.99 - 0.99 0.77 

Front-

crawl 

[29] 

Collected 

DCNN-

BiLSTM 
0.917 0.94 - - 

[33] CNN 0.99 0.99 - - 

[39] Bi-LSTM 0.99 0.99 - - 

Freestyle 
This 
study 

SwimXYZ 

YOLOv5n 1.00 - 0.99 0.82 

YOLOv5s 1.00 - 0.99 0.8 

YOLOv8n 1.00 - 0.99 0.81 

YOLOv8s 1.00 - 0.99 0.84 

 

A. Analyzing the Performance of YOLOv8s Model 

As YOLOv8s slightly outperformed other models, Figure 3 
shows the precision and recall confidence curves for each of 
the five classes. These curves provide information on the trade-
off between classification performance and the confidence 

level of the predicted results. The precision-confidence curve 
shows how a classifier's precision varies as the confidence 
threshold is adjusted, while the recall-confidence curve 
illustrates the relationship between a classifier's recall and the 
confidence threshold. The precision and recall confidence 
curves provide insight into how precise and sensitive the model 
is individually for each class. The model reaches high precision 
and recall in detecting the Freestyle class followed by 
Breaststrokes, Butterfly, Backstroke, and finally the Mistake 
class. To investigate the over- and under-fitting of the 
YOLOv8s fine-tuned model, the loss functions were compared 
in the training and validation sets. Figure 4 shows the training 
and validation box losses associated with the model predictions 
of the location and size of the bounding boxes during the 
training and validation processes. The training and validation 
class losses focus on the model's ability to classify objects 
within these boxes on the training and validation. These graphs 
show that the model does not suffer from overfitting or 
underfitting, since both the training and validation curves 
exhibit decreasing trends, while the accuracy metrics 
demonstrate upward curves. 

 

(a) 

 

(b) 

 

Fig. 3.  Precision and recall confidence curves for the YOLOv8s model. 

B. Investigating the Results in a Real-World Scenario 

Tests were carried out to evaluate the precision of the 
proposed model in detecting swimming styles and incorrect 
movements in real-world scenarios. The model was subjected 
to various sizes and colors of 105 images and videos to assess 
its ability to draw bounding boxes and correctly label the 
swimmer's movements. The model showed impressive 
performance in detecting incorrect swimming tactics and 
movements, drawing bounding boxes around the swimmer's 
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movements with precise labeling, as shown in Figure 5. The 
tests showed that high-confidence detection with scores greater 
than 0.7 was consistently accurate. However, low-confidence 
detection with scores less than 0.4 sometimes resulted in false 
alarms due to possible FP or inconclusive results. 

 

 
Fig. 4.  The train/validation loss and accuracy curves for the YOLOv8s 

model. 

 

Fig. 5.  Testing using the YOLOv8s model. 

C. Comparisons with Prior Studies 

Table I compared the performance of YOLO with other 
models such as Bi-LSTM, DCNN-BiLSTM, and CNN, 
indicating several key points. YOLO models, particularly 
YOLOv8, consistently show strong performance across various 
classes and datasets, achieving high recall values and indicating 
their effectiveness in detecting instances of the target classes. 
For example, in the SwimXYZ dataset, the YOLOv8 models 
achieved recall values up to 0.99 for the Breaststroke and 
Freestyle classes. Additionally, the mAP@0.50:0.95 values for 
YOLO models were generally high, demonstrating their 
precision across different IoU thresholds. YOLO models 
performed well in both the SwimMistakes and SwimXYZ 
datasets, showcasing their adaptability to different types of 
data. This versatility makes them suitable for a wide range of 
applications in object detection and classification tasks. 

However, the Bi-LSTM and DCNN-BiLSTM models 
excelled in a collected dataset, achieving high precision and 
recall values. For instance, the Bi-LSTM model achieved a 
recall of 0.99 and a precision of 0.98 for the Backstroke class. 

However, their performance in the SwimXYZ dataset was not 
provided, so their generalizability to different datasets remains 
to be fully assessed. CNN models also performed well in 
collected datasets, with high recall and precision values, such 
as a recall of 0.99 and precision of 0.99 for the Front Crawl 
class. However, their performance in the SwimXYZ dataset 
was not provided, limiting the ability to compare their 
generalizability and robustness against YOLO models.  

V. CONCLUSION 

Traditional human motion capture systems are not practical 
for large-scale use due to their setup, preprocessing, and 
calibration requirements. This study used four YOLO models 
to detect and analyze swimming movements and detect errors. 
The models were fine-tuned on an integrated dataset of 
SwimXYZ and Swim-Mistakes. Fine-tuned models show 
promising results with high mAP scores and good performance 
across IoU thresholds, indicating robustness in the detection of 
swimming techniques and incorrect movements. YOLOv5s and 
YOLOv8s exhibited stronger and more consistent performance 
on various metrics compared to YOLOv5n and YOLOv8n, 
especially in the detection of swimming techniques and 
movements. Models could distinguish between the various 
classes effectively, with high precision and recall values. The 
reliability of the model was further strengthened by the high 
mAP values. The rigorous testing process on the dataset 
provided robust results, demonstrating the precision of the 
YOLOv8s model in identifying swimming techniques and 
incorrect movements.  

It is important to note that datasets in the literature rarely 
include evaluations of movement error detection. This means 
that while the models are evaluated on their ability to classify 
and detect various swimming strokes, there is no direct 
evaluation of their performance in identifying movement 
errors. This study addressed this gap by incorporating error 
detection evaluations through the Swim-Mistakes dataset. This 
work highlights a potential area for future research and dataset 
development, which could enhance the models' applicability in 
real-world scenarios where precise movement detection is 
crucial. 
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