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ABSTRACT 

Due to its potential uses in security, surveillance, mental health monitoring, and human-computer 

interaction, artificial emotion recognition employing video and audio modalities has attracted a lot of 

attention. This study focuses on optimal cross-modal fusion techniques to enhance the precision and 

robustness of multimodal audio-video-based emotion recognition. Specifically, this study introduces a 

gated cross-modal fusion mechanism in audio-video-based emotion recognition, known as Compact 

Bilinear Gated Pooling (CBGP). The novelty of this work is that CBGP fusion is being applied to the 

emotion recognition task for the first time to integrate the extracted features and reduce the dimensionality 

of the audio and video modalities using 1DCNN and 3DCNN deep neural architectures, respectively. This 

novel approach was tested and verified on three benchmark datasets: CMU-MOSEI, RAVDESS, and 

IEMOCAP, each containing multimodal data representing a range of emotions, including happy, sad, fear, 

anger, neutral, and disgust. Experimental results show that CBGP consistently outperformed state-of-the-

art fusion techniques, such as early fusion, late fusion, hybrid fusion, and others. CBGP extracts the 

relevant features, leading to higher accuracy and F1 scores due to its dynamic gating mechanism that 

selectively emphasizes relevant feature interactions. This study suggests that the integration of gating 

mechanisms within fusion processes is vital to improve emotion recognition. Future work will focus on 

extending these findings to real-time applications, exploring multitask learning frameworks, and 

enhancing the interpretability of multimodal emotion recognition systems. 

Keywords-attention mechanism; bilinear pooling; emotion recognition; feature extraction; fusion strategies 

I. INTRODUCTION  

Emotion recognition utilizing multimodal data has evolved 
as an important area of research, with applications ranging 
from human-computer interaction to mental health monitoring 
and security. Researchers aim to develop systems that can 
properly discern human emotions by combining audio and 
video inputs. This study addresses the challenge of improving 
fusion strategies to enhance the performance of audio-video-
based emotion recognition systems. Existing traditional 
approaches, such as intramodal, intermodal, and hybrid fusion 
techniques, have shown nominal efficiency and limited 
improvement due to difficulties in capturing complex 
correlations among cross-model features. Intramodal fusion 
involves integrating and exploring correlations of features 
within a single modality, such as combining different audio 
features or various video descriptors. Some attention-based 
techniques, such as relation-attention, self-attention, and 
transformer-attention, achieve effective intramodal fusion. In 
contrast, intermodal fusion combines features across different 

modalities, integrating cross-model audio and video features to 
create a cohesive representation. 

This study introduces a gated cross-modal fusion-based 
approach to address the complex challenge of integrating 
features from audio and video modalities, which are inherently 
different in nature. Single modality emotion recognition relies 
on a single data source, making it simpler but limited in scope. 
In contrast, multimodal-based emotion recognition is more 
complex and challenging, requiring the synchronization of 
diverse data and the resolution of conflicting signals. The gated 
mechanism in the fusion approach is designed to capture the 
intricate relationships between audio and video features, 
enhancing the system's ability to recognize emotions with 
greater accuracy. The contributions of this study are as follows: 

 Applies Compact Bilinear Gated Pooling (CBGP) to the 
multimodal emotion recognition task for the first time. 

 Tests and validates the gated cross-modal fusion approach 
experimentally in audio-video-based emotion recognition. 
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 Adopts the optimal cross-model fusion mechanisms to fuse 
audio and video features. 

 Implements, trains, and validates the model across three 
different datasets. 

 The proposed CBGP cross-model fusion outperforms the 
state-of-the-art fusion models, such as early fusion, late 
fusion, and hybrid fusion, in addressing audio-video-based 
emotion recognition challenges. 

 Highlights the importance of the gating fusion mechanism 
and provides a robust fusion method with good accuracy 
and versatility. 

Experiments were conducted on three well-known datasets: 
IEMOCAP [1], RAVDESS [2], and CMU-MOSEI [3]. The 
IEMOCAP dataset provides a diverse set of emotions captured 
through audio-visual recordings, while RAVDESS offers a 
controlled environment with professional actors portraying 
various emotional states. CMU-MOSEI is a large-scale 
multimodal sentiment analysis dataset that offers a rich source 
for evaluating the effectiveness of the proposed fusion strategy.  

The fusion mechanism of audio and video features is 
crucial in multimodal systems, especially those incorporating 
humanoid robots [4, 5] or other intelligent agents [6], as it 
allows realistic and successful human-machine interaction. 
This integration of features enables the system to detect, 
evaluate, and respond to a variety of human behaviors and 
emotions. To achieve this, feature extraction is a critical 
process that ensures that the system focuses on the most 
appealing and pertinent areas of object information that it 
receives while minimizing processing complexity. Feature 
extraction is the process of transforming raw audio and video 
input into measurable and relevant qualities for machine 
learning algorithms. The features extracted from the audio and 
video modalities are fused with a simple concatenation of 
feature vectors [7].  

In multimodal systems, good feature extraction is crucial 
for accurately expressing the multimodal input while 
minimizing data dimensions. Feature selection is the process of 
determining and selecting the most informative features of an 
extracted collection. This phase is critical for lowering the 
dimensionality in the feature space, increasing computing 
efficiency, and improving the performance of machine learning 
models. In recent years, deep learning has led to advances in 
numerous sectors, including healthcare [8], speech recognition 
[9], music generation [10], electroencephalogram signals [11], 
and e-learning [12]. Deep neural networks have the advantage 
of training models efficiently with multimodal data, which also 
deal with autoencoders [13], intermodal [14], intramodal [15], 
and generalization techniques using Restricted Boltzmann 
Machines (RBM) [16]. 

Deep learning models outperform traditional hand-crafted 
traditional features [17, 18], and multimodal approaches 
outperform unimodal-based emotion recognition [19-21]. 
Attention models have achieved significant improvements 
when combined with deep neural networks, such as pre-trained 
networks, including AlexNet [22], VGG16 [23-25], 
VGGFACE [26], and ResNet [27-29], to automatically extract 

and fuse features. In the fusion mechanism, previous studies 
have highlighted the importance of combining the most likely 
features to achieve notable results. Some of the most widely 
used fusion mechanisms are feature-level fusion [30-32], 
decision-level fusion [33-34], hybrid fusion[35-36], attention-
based fusion [37-38], and rule-based fusion [39-41].  

This study fills the research gap on cross-modal fusion, 
highlighting the significance of this approach in capturing 
complex audio-video features. It also provides a comparative 
experimental performance analysis on benchmark datasets, 
demonstrating the effectiveness of integrating gating 
mechanisms in cross-modal fusion. 

II. MATERIALS AND METHODS 

A. Audio-Video Features and Feature Extraction 

The process starts with the video input, extracting both the 
audio signals and image frames. A 1DCNN [42] was used to 
extract the audio features, while a 3DCNN [43] was used to 
extract facial features from the visual modality. The extracted 
features from both modalities are then fed into a gated cross-
modal fusion mechanism layer (CBGP) to fuse the extracted 
features. Figure 1 illustrates the process from feature extraction 
to emotion classification, with specific subdivisions in the 
cross-modal fusion mechanism, including Factorized Bilinear 
Pooling (FBP), Compact Bilinear Pooling (CBP), and CBGP. 

 

 
Fig. 1.  Basic architecture of the audio-video-based cross-modal fusion 

mechanism. 

B. Factorized Bilinear Pooling (FBP) 

FBP improves traditional bilinear pooling by factorizing the 
interaction into a lower-rank approximation, reducing 
overfitting and computational burdens. This allows FBP to 
capture the more relevant cross-modal interactions with fewer 
parameters while preserving the expressive power. 

� � ∑ �����	

�� . �����    (1) 

where �  is the pooled feature vector, �  and �  are bilinear 
interaction matrices, and �  and �  are feature vectors from 
audio and video, respectively. 

C. Compact Bilinear Pooling (CBP) 

CBP refines bilinear pooling by using a compact 
representation of bilinear interactions through the tensor sketch 
technique. It approximates the outer product of feature vectors 
with random projections, reducing dimensionality while 
preserving major attentive cross-model interactions. 

� � ∑ ���������
�
	

�� . ��������
��   (2) 
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where �  is the pooled feature vector, �  and �  are feature 
vectors from audio and video, respectively, and �����  and 
����� are projection matrices of audio and video features. 

D. Compact Bilinear Gated Pooling (CBGP) 

CBGP enhances and builds on CBP by adding a gating 
mechanism that adjusts or selectively emphasizes features 
based on their relevance, using a learned softmax function to 
modulate feature interactions before pooling. In CBGP, the 
feature vectors � and �  undergo compact bilinear pooling as 
described in CBP, but before the final summation, the resulting 
interaction vector is element-wise multiplied by a gating vector 

�� ∈ �� , where �  is the dimensionality of the compact 
representation. The gating vector is computed as:  

�′ � �������, ��� + "��    (3) 

where � is the softmax function, ��   is the weight matrix, "�  is 
the bias vector, and ��, �� are audio and video feature vectors. 

1) Training Method 

Let �� and �′ represent the audio and video modalities. The 
feature extraction functions $� and $�  are applied to the audio 
and video modalities, generating the feature vectors:  

%& � $���′�  

%� � $���′�  

CBP uses random projections to project the high-
dimensional feature vectors into a lower-dimensional space 
before combining them.  

 Random projection for audio features: �& � '&%& 

 Random projection for video Features: �( � '(%(  

where �&  and �( are the projections of audio and video, and '& 
and '(  are the projection matrices of audio and video features. 
Then, an element-wise multiplication of the projected vectors is 
calculated: 

 �′ � �& ∘ �(      (4) 

For gated pooling, the gating vector �� ∈ �� is calculated, 
where, � is the dimensionality of the compact representation. 
The gating vector is calculated by: 

�′ � �������, ��� + "��   (5) 

where � is the softmax function. Then, the gating mechanism is 
applied to the element-wise multiplied vector:  

�′′ � �′ ∘ �′      (6) 

Finally, the elements of the gated interaction vector are 
summed to obtain the final pooled vector using: 

� � *+,��′′�     (7) 

This entire mechanism can be summarized by: 

� � ∑  ����� ��, �� + "���
. ��&�
�
	

�� . ��(��
� (8) 

where �  is the pooled feature vector, and �&  and �(  are the 
projections of audio and video. 

This mathematical analysis shows that CBGP can identify 
the optimal fusion approaches that can be applied to audio-
video-based emotion recognition systems, ultimately 
contributing to the development of more robust and accurate 
emotion recognition technologies. The gating mechanism 
allows controlling the flow of information between the layers 
while selecting and rejecting the relevant or non-relevant 
(based on correlation feature score) inputs. As not all features 
are equally important at every step or time frame, the gating 
mechanism dynamically assigns weights to features to capture 
complex regions more effectively. 

2) How the Gating Mechanism Works 

A gating unit is applied to control the flow of information, 
acting as a filter and deciding which features from a modality 
should be passed on and which should be suppressed. The 
gating vector is calculated using (3). In this approach, features 
are audio and video modalities that interact through the outer 
product. The outer product allows the 1DCNN and 3DCNN to 
capture the interactions between every feature of one modality 
and every feature of the other modality in a compact manner. 
However, the full outer product is computationally expensive 
due to the high dimensionality it generates, but compact 
bilinear pooling reduces the high dimensionality. This process 
ensures that the combined feature representation is both 
expressive and compact. The gating mechanism is integrated 
into the pooling process to selectively emphasize the relevant 
features and suppress irrelevant ones. The gating vector is 
learned alongside the fused features and the gate assigns 
weights to different features dynamically. Extracted features 
are fed as input to the CBGP layer, which combines them into a 
unified representation. This fused representation is passed to 
the softmax function and the subsequent (output) layer for 
classification.  

III. RESULTS AND DISCUSSION 

The performance of CBGP was evaluated and compared 
with the state-of-the-art mechanisms, including early fusion, 
late fusion and hybrid fusion, on the IEMOCAP, RAVDESS, 
and CMU-MOSEI datasets. 

A. Datasets 

 IEMOCAP [1]: This dataset contains 12 hours of 
audiovisual data from 10 actors engaging in scripted and 
improvised dialogues, annotated with emotions such as 
happiness, sadness, anger, and neutrality. 

 RAVDESS [2]: This dataset contains 24 professional actors 
performing 7350 clips of emotional speech and singing, 
annotated for emotions such as happiness, sadness, anger, 
and fear. 

 CMU-MOSEI [3] comprises 23,453 video segments from 
over 1000 speakers, annotated with sentiment and emotion 
labels, showcasing a broad spectrum of emotions in diverse 
contexts. 

The results are summarized in the tables below, 
highlighting the contributions of each fusion method to the 
overall system performance. 
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TABLE I.  PERFORMANCE COMPARISON ON IEMOCAP [1] 

Fusion 

mechanism 

Accuracy 

(%) 

F1-score 

(%) 
Remarks 

Early fusion 55.4 54.9 Limited features interacted 

Late fusion 59.02 58.1 
Lacks fine-grained feature 

interaction 

Hybrid fusion 62.5 61.8 Improved over early and late fusion 

CBGP 79.2 78.3 
Best performance, particularly for 

nuanced emotions 

 
Table I shows that in the IEMOCAP dataset, CBGP 

outperforms the state-of-the-art fusion mechanisms, achieving 
the highest accuracy and F1 score. The gating mechanism in 
CBGP effectively captures subtle emotional cues, leading to 
improved classification, especially in cases of complex 
emotions such as anger and sadness. 

TABLE II.  PERFORMANCE COMPARISON ON RAVDESS [2] 

Fusion 

mechanism 

Accuracy 

(%) 

F1-score 

(%) 
Remarks 

Early fusion 70.5 69.4 Limited features interacted 

Late fusion 72.6 71.2 
Lacks fine-grained feature 

interaction 

Hybrid fusion 75.8 74.3 Moderate improvement 

CBGP 85.1 84.6 
Excels in both speech and song 

emotions 

 
Table II shows that in the RAVDESS dataset, CBGP again 

leads, demonstrating its ability to manage the diverse range of 
emotional expressions in both speech and songs. The gating 
mechanism proves beneficial in distinguishing emotions that 
are expressed differently in spoken versus sung formats. 

TABLE III.  PERFORMANCE COMPARISON ON CMU-MOSEI 

Fusion 

mechanism 

Accuracy 

(%) 

F1-score 

(%) 
Remarks 

Early fusion 67.3 65.4 Limited features interacted 

Late fusion 70.4 69.2 
Lacks fine-grained feature 

interaction 

Hybrid fusion 72.6 71.4 Moderate improvement 

CBGP 80.3 79.2 
Best for fine-grained emotion 

detection 

 
Table III shows that in the CMU-MOSEI dataset, CBGP 

achieved the highest scores, particularly excelling at 
recognizing fine-grained emotions. Its ability to dynamically 
adjust the importance of different feature interactions allows it 
to handle nuanced and varied expressions found in the dataset. 

B. Ablation Study 

To evaluate the performance of CBGP, an ablation study 
was carried out comparing CBGP to classify and evaluate its 
effectiveness with state-of-the-art fusion methods, including 
early fusion, late fusion, and hybrid fusion. The aim was to 
assess the impact of the CBGP mechanism on the fusion of 
features and dimensionality reduction when applied to 
multimodal data, using 1DCNN for audio and 3DCNN for 
video. Figure 2 illustrates the performance comparison of the 
baseline fusion models and gated cross-modal fusion (early, 
late, hybrid, and CBGP) in terms of accuracy and F1 scores 
across the IEMOCAP, RAVDESS, and CMU-MOSEI datasets. 

 
Fig. 2.  Performance comparison of the baseline fusion model and gated 

cross-modal fusion (early, late, hybrid, and CBGP) in terms of accuracy and 

F1 scores across the IEMOCAP, RAVDESS, and CMU-MOSEI datasets. 

C. Feature Extraction 

The audio and video modalities undergo independent 
feature extraction processes using specialized neural networks. 
For audio, a 1DCNN is used to capture temporal and spectral 
patterns effectively without losing resolution. For video, a 
3DCNN is used to extract facial features by simultaneously 
processing the spatial and temporal dimensions of image 
frames, allowing the network to understand motion and spatial 
structures. 

D. Model Training 

The 1DCNN architecture for audio data processes MFCC 
features extracted from spectrograms, effectively capturing 
temporal patterns. It consists of three Conv1D layers (filters: 
64, 128, 256) with ReLU activation, batch normalization, max 
pooling, and dropout (20-40%) to reduce overfitting. These 
layers are followed by a flatten layer and two fully connected 
dense layers (units: 128, 64) with additional dropout (50%). 
The model employs L2 regularization, the Adam optimizer 
with a learning rate of 0.001, and is trained with categorical 
cross-entropy loss. 

The 3DCNN extracts spatial and temporal features from 
video frames using three 3D convolutional layers (filters: 32, 
64, 128; kernel size: 3×3×3), 3D max-pooling layers, a dropout 
rate of 0.3, and two fully connected layers with 256 and 128 
units. Both architectures were trained using the Adam 
optimizer with learning rates of 0.001 (1DCNN) and 0.0005 
(3DCNN), cross-entropy loss, and L2 weight regularization (- 
= 0.0001 for 1DCNN and -  = 0.0005 for 3DCNN) over 50 
epochs. Regularization techniques, including batch 
normalization, dropout, and early stopping, were employed to 
prevent overfitting, while data augmentation (time shifting for 
audio, flipping for video) enhanced generalization. Together, 
these architectures effectively captured multimodal features, 
allowing robust emotion recognition when integrated with the 
CBGP mechanism. 

The results clearly show that the focused weighting of key 
features from the correlation weight matrix through dynamic 
gating is critical to improve the performance in audio-video-
based emotion recognition tasks. The primary advantage of 
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CBGP lies in its gating mechanism, which enhances the 
model's ability to focus on the most relevant features for 
emotion recognition. On applying the softmax function, this 
mechanism provides the ability to measure the weight of 
features that are more important and helps to predict the correct 
emotion. This is particularly important in datasets such as 
IEMOCAP and CMU-MOSEI, where emotions are often 
expressed subtly and can overlap with sentiments. While FBP 
offers computational efficiency and CBP provides a good 
balance between complexity and performance, CBGP's ability 
to adaptively gate feature interactions makes it a superior 
choice for complex emotion recognition tasks. 

Tables IV and V illustrate the trade-offs between 
computational efficiency and accuracy for all fusion 
mechanisms. This suggests that future work in multimodal 
emotion recognition should consider the integration of gating 
mechanisms to further enhance model performance.   

TABLE IV.  TRADE-OFFS BETWEEN COMPUTATIONAL 
EFFICIENCY AND ACCURACY FOR ALL FUSION 

MECHANISMS 

Fusion technique Memory usage Processing time 

Early Fusion High High 

Late Fusion Low Low 

Hybrid Fusion Moderate Moderate 

CBGP  Moderate Moderate 

TABLE V.  TRADE-OFFS BETWEEN COMPUTATIONAL 
EFFICIENCY AND ACCURACY FOR ALL FUSION 

MECHANISMS 

Fusion technique 
Model 

complexity 

Computational 

cost 
Accuracy 

Early Fusion High High Moderate to High 

Late Fusion Low Low to Moderate Moderate 

Hybrid Fusion Moderate Moderate High 

CBGP Moderate Moderate to High High 

 

E. Future Directions 

The insights gained from this study open several avenues 
for future research and development in the domain of 
multimodal emotion recognition. 

1) Extended Dataset Exploration 

Although this study focused on three datasets, future 
research could explore the application of these fusion 
mechanisms to other datasets that contain different cultural 
contexts, languages, or more complex multimodal interactions, 
such as those involving text or physiological signals (e.g., 
EEG, heart rate). 

2) Real-Time Emotion Recognition 

Implementing these fusion mechanisms in real-time 
emotion recognition systems is a promising direction. This 
would involve optimizing the computational efficiency of 
CBGP and other fusion techniques to meet the requirements of 
real-time applications, such as human-computer interaction, 
social robots, or virtual reality environments. 

 

 

3) Multi-Task Learning 

Future studies could explore the integration of these fusion 
mechanisms within a multitask learning framework, where the 
model is simultaneously trained to perform related tasks, such 
as emotion recognition, sentiment analysis, and action 
recognition. This could potentially improve the model's 
robustness and generalizability across tasks. 

4) Fusion Mechanism Enhancements 

Further refinement of the CBGP mechanism could involve 
experimenting with different gating functions or learning 
strategies, such as attention mechanisms, to dynamically adjust 
the importance of different features based on context. 
Additionally, exploring hybrid approaches that combine the 
strengths of different fusion techniques could lead to even more 
powerful emotion recognition systems. 

5) Cross-Domain Transfer Learning 

Given the variability in emotional expression across 
different domains (e.g., movies, social media, conversational 
agents), future work could investigate the use of transfer 
learning techniques to adapt the CBGP model to new domains 
with limited annotated data, enhancing its applicability and 
effectiveness in diverse real-world scenarios. 

6) Interpretability and Explainability 

As multimodal emotion recognition systems are 
increasingly deployed in sensitive applications, ensuring their 
interpretability and explainability becomes crucial. Future 
research could focus on developing techniques that provide 
insight into how and why the model arrives at certain emotional 
classifications, making the systems more transparent and 
trustworthy. 

IV. CONCLUSION 

This study investigated the effectiveness of fusing features 
by applying the gated pooling mechanism and a robust deep 
learning model for audio-video-based artificial emotion 
recognition. The performance of the proposed gated fusion 
mechanism was evaluated and compared with state-of-the-art 
fusion techniques, such as early fusion, late fusion, and hybrid 
fusion mechanisms on the IEMOCAP, RAVDESS, and CMU-
MOSEI datasets using accuracy and F1-score. The 
performance of each fusion technique was evaluated across 
various emotional categories, including happiness, sadness, 
fear, anger, neutrality, and disgust. The experimental results 
demonstrate that the CBGP mechanism outperforms the other 
fusion techniques across all datasets, consistently achieving 
higher accuracy and F1 scores. The gating mechanism 
integrated within the CBGP enables the model to selectively 
emphasize relevant feature interactions that are crucial to 
accurately recognizing complex and nuanced emotional 
expressions. Overall, the findings of this study suggest that 
incorporating a gating mechanism in multimodal fusion 
processes can significantly enhance the performance of 
emotion recognition systems, making CBGP a promising 
approach for future developments in various fields and 
applications, such as mental health and well-being, improving 
communication, identifying security threats and consumer 
behavior, and in cross-disciplinary research. 
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