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ABSTRACT 

Gene selection from high-dimensional microarray data presents challenges such as overfitting, 

computational inefficiency, and feature redundancy. Despite significant advances, existing methods often 

suffer from limitations in scalability and interpretability, especially for precision oncology. This study 

introduces a novel Three-Stage Gene Selection (3SGS) strategy that addresses these issues through a 

combination of filter-based methods (signal-to-noise ratio, correlation coefficient, ReliefF) with accuracy-

driven refinement and redundancy reduction. The 3SGS approach identifies minimal but highly predictive 

gene subsets, achieving 100% accuracy for leukemia and 98% for prostate cancer using only 3-4 genes. 

Compared to traditional methods, 3SGS enhances efficiency and interpretability, establishing itself as a 

scalable and robust solution for cancer classification. 

Keywords-artificial intelligence; data mining; machine learning; pattern recognition; computer science   

I. INTRODUCTION  

DNA microarray technology has revolutionized biomedical 
research, particularly in cancer diagnosis and treatment, 
allowing the large-scale analysis of gene expression [1-4]. 
However, the high dimensionality of microarray data, where 
thousands of genes are profiled from only a limited number of 
samples, presents significant challenges for machine learning 
models. This often results in overfitting and poor 
generalizability, making accurate classification difficult [5-7]. 
To address these issues, effective gene selection is crucial for 
improving model performance and interpretability [8-10]. 

Gene selection methods are generally classified into filter, 
wrapper, and hybrid approaches. Filter methods independently 
rank genes based on their relevance to class separability, 
offering speed and simplicity but limited accuracy. Wrapper 
methods, in contrast, refine gene subsets iteratively based on 
classifier performance, improving accuracy but at a higher 
computational cost [11-15]. Hybrid methods seek to combine 
the strengths of both by enhancing accuracy while maintaining 
efficiency. Despite these advances, existing approaches often 
struggle with balancing interpretability, computational 
efficiency, and classification accuracy. For instance, methods 
combining genetic algorithms with manifold learning [16] 
achieve high accuracy but are computationally intensive and 
require complex parameter tuning. Similarly, hybrid techniques 
leveraging multi-objective optimization [17] improve 
performance but lack scalability for large datasets. 

To address these gaps, this study introduces the 3SGS 
approach, which integrates both filter and wrapper techniques 
to optimize gene selection for cancer classification. By 
combining Signal-to-Noise Ratio (SNR), Correlation 

Coefficient (CC), and ReliefF with iterative refinement and 
redundancy reduction, the proposed method simplifies the 
process while achieving superior performance using minimal 
gene subsets. Experiments on leukemia and prostate cancer 
datasets demonstrate that 3SGS achieves high classification 
accuracy with only 3-4 genes, making it an efficient and 
interpretable solution for cancer classification [18-21]. 

II. METHOD 

A. Summary of the Three-Stage Gene Selection (3SGS) 
Method 

The 3SGS method systematically refines gene selection for 
cancer classification through the following stages: 

1. Filter-Based Gene Selection: Identifies the most relevant 
genes using three filter methods: SNR, CC, and ReliefF. 
This stage narrows the gene pool by selecting the top-
ranked candidates based on relevance metrics. 

2. Accuracy-Driven Selection: Iteratively evaluates the 
predictive performance of combinations of the top-ranked 
genes using a classifier. Genes that improve or maintain 
accuracy are retained, creating a refined subset. 

3. Redundancy Reduction: Eliminates redundant genes from 
the refined subset to produce a minimal, non-redundant 
set of genes with maximal classification power. 

This structured process is designed to balance 
computational efficiency, predictive accuracy, and 
interpretability, enabling precise and effective cancer 
classification (Figure 1). The 3SGS model is designed to 
minimize computational costs while ensuring high 
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classification accuracy by selecting a minimal, highly 
predictive subset of genes. 

 

 
Fig. 1.  Workflow of the 3SGS method. 

 

B. Gene Selection 

Gene selection is a critical component of cancer 
classification, especially in microarray data, where the number 
of genes far exceeds the number of samples, presenting 
challenges of high dimensionality, computational inefficiency, 
and the risk of overfitting. The 3SGS approach combines three 
filter-based techniques alongside a recursive accuracy-driven 
selection strategy. This approach refines the gene subset to be 
both minimal and maximally informative, facilitating the 
effective classification of cancerous tissues. 

SNR ranks genes by evaluating the difference in mean 
expression levels between classes, normalized by within-class 
variability. This method is computationally efficient and 
performs well in datasets with low overlap between class 
distributions, highlighting clear separability. However, its 
reliance on linear assumptions limits its ability to detect non-
linear patterns and gene interactions, potentially overlooking 
relationships critical for classification accuracy [15, 18]. The 
SNR for a gene � is defined as: 

���� � ���	�
�
�����
�

    (1) 

where �� and ���  denote the mean and the standard deviation 
of the gene � for samples of classes � � 1, 2. A higher SNR 
value indicates a greater distinction between classes, enabling 
efficient identification of candidate genes. 

The CC, particularly Pearson's correlation, measures the 
linear relationship between gene expression levels and class 
labels. It is computationally efficient and effective for 
identifying genes with consistent expression patterns and 
strong class separability. However, like SNR, CC assumes 
linear relationships, limiting its performance with non-linear 
data. Additionally, CC does not account for redundancy among 
selected genes, which can degrade the quality of the gene 
subset [19]. The correlation coefficient for gene � is calculated 
as: 

��� � ∑ ����	 �������	Ῡ�����
 ∑ ����	����²����  ∑ ���	Ῡ�²����

   (2) 

where � is the Pearson correlation score, "��  is the # th sample 
value for the gene � , $�  is the corresponding class, and  
"� � 1/& ∑ "��'�()  and $  are the means for gene �  and the 
classes, respectively. 

ReliefF is a sophisticated filter method that identifies genes 
based on their ability to differentiate classes by considering 
neighboring samples. Unlike SNR and CC, ReliefF can detect 
non-linear interactions and is robust to noise, making it 
effective for complex datasets with overlapping classes. 
However, it is computationally more demanding, particularly 
for large datasets, and its performance depends on the number 
of nearest neighbors and iterations, which can be challenging to 
tune effectively [20, 21]. The weight *+ assigned to gene , is 
calculated as: 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21093-21099 21095  
 

www.etasr.com Bouazza: Optimized Machine Learning for Cancer Classification via Three-Stage Gene Selection 

 

*+  �
 -.  – ∑ 0122 �+� ,��,3�45��

6∗�
��() +

          ∑ 9�:�
)	9�:;<55�����:=:;<55���� ∑ .�>>�+� ,��,6�55?5��

6∗�
��()  (3) 

where the distance used is defined by: 
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Here, "�  is an instance described by the vector ,�  of & genes, J  is the number of process repetitions (a user-defined 
parameter), �  is the number of nearest misses, and ℎ#LM  and 
J#MMNM refer to nearest hit and miss instances, respectively. 

SNR is efficient but limited to linear separability, often 
missing non-linear patterns in the data. CC is effective in 
identifying consistent gene-class relationships but may struggle 
with redundancy between genes, potentially reducing the 
overall performance. ReliefF, on the other hand, excels at 
handling noisy data and can detect non-linear interactions 
between genes, although it requires more computational 
resources for tuning, especially when dealing with larger 
datasets. Together, these three methods provide complementary 
strengths, enabling a more robust gene selection process in the 
3SGS framework. 

The filter-based selection stage of 3SGS leverages these 
ranking methods to independently evaluate each gene's 
relevance. However, while this approach is effective in 
identifying potentially important genes, it can also select genes 
that introduce noise, which could hinder classification accuracy 
if included without further validation. To mitigate this risk, a 
wrapper-based strategy is introduced in the second stage of 
3SGS. 

In the second stage, an iterative process is adopted where 
genes from the filter-selected subset are incrementally added, 
and the classifier's accuracy is evaluated with each addition. 
Only genes that show a clear improvement in classification 
performance are retained. This strategy allows refining the 
gene subset by directly optimizing classifier performance and 
eliminating unnecessary complexity. 

By the end of the first two stages, a set of highly relevant 
genes is identified. The third stage performs redundancy 
reduction, which involves analyzing the selected genes to 
remove those that are highly correlated or redundant. This 
ensures that the final subset of genes is both minimal and 
highly discriminative, leading to improved model 
interpretability and greater computational efficiency. 

C. Algorithm of the 3SGS Approach 

The 3SGS algorithm is developed to optimize cancer 
classification by refining the gene selection process through 
three distinct stages. This approach combines filter and 
wrapper strategies to identify a minimal and highly informative 
subset of genes. By doing so, classification accuracy while 
simultaneously reducing computational complexity. The three 
stages of the 3SGS algorithm steps are as follows. 

Algorithm 1: Three-Stage Gene Selection 

1: Feature Selection using Filter Methods: 

   Rank genes based on SNR, CC, or  

   ReliefF. 

   Normalize scores (if needed) for  

   comparability. 

   Select the top � genes as candidates. 
2: Recursive Accuracy-Driven Selection: 

   Initialize an empty subset � to hold  
   selected genes. 

   Iteratively add genes from the top- 

   ranked list to �, evaluating classifier  
   accuracy at each step. 

   Retain genes that improve or maintain  

   accuracy. 

3: Redundancy Reduction: 

   Evaluate redundancy in � by calculating  
   correlations or mutual information. 

   Remove redundant genes, keeping only  

   those that provide unique information. 

   Verify classifier performance using the  

   reduced subset. 

 

D. Parameter Tuning and Robustness Discussion 

The performance of the 3SGS approach is influenced by 
parameters such as the number of top-ranked genes � and the 
classifier used. For this study, �  was selected based on 
preliminary experiments balancing computational efficiency 
and classifier accuracy. Specifically: 

 Filter-Based Selection: Values of � were initially set to 50, 
100, and 200, and the classifier accuracy was monitored for 
each subset. The optimal � was chosen based on the highest 
cross-validation accuracy. 

 ReliefF Parameters: The number of nearest neighbors J 
was set to 10 based on prior studies, ensuring a balance 
between noise resistance and computational feasibility. 

To evaluate robustness, sensitivity analysis was performed 
by varying �  and measuring its impact on classification 
accuracy and subset size. The results showed that small 
deviations in �  (e.g., ±10%) did not significantly affect 
accuracy, highlighting the stability of the 3SGS approach. 
Future studies could explore a broader range of parameters or 
employ automated tuning methods, such as grid search or 
Bayesian optimization, to refine parameter selection further. 

E. Classification Methods 

Five widely recognized classifiers were employed to 
evaluate the effectiveness of the 3SGS approach, each with 
unique strengths in handling high-dimensional, low-sample 
datasets typical of microarray gene expression data. These 
classifiers were selected for their diverse methodological 
foundations, offering a robust basis for assessing the impact of 
gene selection on cancer classification performance. 

 K-Nearest Neighbors (KNN) [22, 23] simplicity and 
adaptability to high-dimensional spaces make it well-suited 
for gene expression data, where inter-sample similarity is 
crucial for accurate classification. 
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 Support Vector Machine (SVM) [24] effectively 
distinguishes between gene expression patterns by 
maximizing the margin between classes, achieving high 
classification accuracy even with limited sample sizes.  

 Linear Discriminant Analysis (LDA) [25] is particularly 
advantageous for microarray gene expression data, as it 
enhances interpretability by selecting a discriminative axis 
that captures maximum variance between cancer classes. 

 Decision Tree (DT) [26, 27]: In microarray gene expression 
analysis, DT provides a clear framework to identify key 
genes that contribute to classification, making it well-suited 
for selecting and analyzing a compact, informative subset 
of genes.  

 Naïve Bayes (NB) [26] classifies samples based on prior 
probabilities and likelihoods calculated from gene 
expression levels, providing a computationally efficient 
alternative that remains robust in the face of high-
dimensional gene subsets. 

Table I presents the final values for each classifier after 
hyperparameter tuning. It reflects the settings that were chosen 
to balance model performance and computational efficiency, 
ensuring optimal results on the cancer classification task. 

TABLE I.  HYPERPARAMETERS FOR KNN, SVM, LDA, NB, 
AND DC FOR LEUKEMIA AND PROSTATE CANCER 

Classifier Hyperparameter Final Value 

KNN 

n_neighbors 5 
metric 'euclidean' 

weights 'distance' 
algorithm 'auto' 

SVM 
kernel 'rbf' 

C 1.0 
gamma 'scale' 

LDA 
solver 'lsqr' 

shrinkage 'auto' 
NB var_smoothing 1e-9 (GaussianNB) 

DT 

criterion 'gini' 
max_depth 5 

min_samples_split 10 
min_samples_leaf 5 

 
Each classifier was trained and validated using the 3SGS-

selected gene subsets, providing a comprehensive evaluation of 
classification accuracy, efficiency, and model interpretability. 
This multiclassifier approach ensures that the 3SGS method's 
impact on performance is rigorously evaluated across diverse 
classification paradigms, highlighting its generalizability and 
robustness for microarray cancer classification. 

Classification accuracy [28] was used to assess classifier 
performance. 

,OOP�QOR � 100 ∗  TU � TV
TV � TU� WV� WU  (5) 

where X�  denotes true positives, XY  denotes true negatives, 
Z� denotes false positives, and ZY denotes false negatives. 

F. Datasets 

Microarray datasets are often represented as an Y ×  
matrix, where Y is the number of samples and  is the number 

of genes. Each value in the matrix represents the expression 
level of a certain gene in a given sample. This study employed 
two popular binary-class microarray cancer datasets (Table II). 

TABLE II.  MICROARRAY DATASETS 

Datasets Genes Class 
Samples 

data 

Train 

data 

Test 

data 

Leukemia 7129 2 72 38 34 
Prostate 12600 2 136 102 34 

 
The leukemia dataset was taken from a collection of 

leukemia patient samples [29]. This dataset often serves as a 
benchmark for microarray analysis methods. It contains gene 
expressions corresponding to Acute Lymphoblast Leukemia 
(ALL) and Acute Myeloid Leukemia (AML) samples from 
bone marrow and peripheral blood. The dataset consisted of 72 
samples: 49 samples of ALL and 23 samples of AML. Each 
sample is measured over 7,129 genes. The data are in a matrix 
with 7130 rows (7129 rows show the gene expressions, while 
the last row reports the corresponding sample's class label) and 
72 columns representing the samples. The dataset can be found 
in [30].  

The prostate cancer dataset was derived from the 
microarray analysis in [31]. It provides gene expression data 
for 12,600 genes, organized into distinct training and testing 
subsets. The training dataset includes 102 samples, 52 from 
patients diagnosed with prostate tumors and 50 from normal 
specimens, offering a solid basis for developing classification 
models. The test dataset comprises 34 samples, including 25 
from prostate tumor patients and 9 from normal specimens, 
serving as an independent evaluation set to validate the model's 
predictive performance. This dataset is well-documented and 
publicly accessible, with detailed information about its 
structure, preprocessing steps, and usage guidelines available in 
[32].  

G. Workflow: 3SGS Method for Cancer Classification 

The process begins by classifying genes according to class 
separability using filter-based methods (SNR, CC, and 
ReliefF). An iterative, accuracy-driven selection process 
follows, retaining genes that improve classifier performance. In 
the final stage, redundancy is reduced by eliminating genes 
with minimal classification value, ensuring a minimal yet 
highly informative subset. 

1) Dataset Preparation 

 Select and preprocess two microarray datasets: leukemia 
and prostate cancer. 

 Apply variance filtering to remove low-variance genes, 
reducing noise. 

2) 3SGS Process 

a) Stage 1: Filter-Based Selection 

 Use SNR, CC, and ReliefF to rank genes by relevance. 

 Select the top � genes for further analysis. 

b) Stage 2: Accuracy-Driven Selection 

 Evaluate classifier accuracy iteratively for gene subsets. 
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 Retain genes that improve or maintain accuracy to create a 
refined subset. 

c) Stage 3 - Redundancy Reduction 

 Analyze correlations or mutual information among genes. 

 Remove redundant genes to finalize a minimal, predictive 
subset. 

3) Classification 

 Train classifiers on the selected gene subset. 

 Evaluate performance using cross-validation and test 
datasets. 

4) Results Analysis 

 Compare classification accuracy and gene subset size with 
other methods. 

 Discuss computational efficiency and biological relevance 
of selected genes. 

III. RESULTS AND DISCUSSION  

A. Data Preprocessing 

Effective data preprocessing is essential in microarray 
analysis to reduce noise, ensure data quality, and manage high 
dimensionality. In the leukemia dataset, genes with low 
variance across samples were filtered out using a combination 
of thresholding, filtering, and logarithmic transformation 
techniques [33]. Thresholding kept values between 100 and 
16000. Filtering tried to exclude genes whose expression is 
uniform and whose variation is insignificant in comparison to 
expression level measurements.  

For each gene, the minimum value �6�' and highest value �6<\  of the expression level were examined, and only genes 
with �6<\/�6�' > 5  and �6<\ − �6�' > 500  were 
maintained. The data was then transformed logarithmically. 
This preprocessing resulted in a modest reduction in microarray 
data, from 7129 to 3051 genes. 

B. Experimental Tools 

MATLAB was used, which ran on a laptop with an Intel 
Core i5 CPU M 250 @ 2.4GHz. Each experiment took between 
30 seconds and one minute to execute. 

C. Classifier Performance Using the 3SGS Strategy 

The 3SGS strategy, integrating filter-based and wrapper-
based selection approaches, was applied to the leukemia and 
prostate cancer datasets. Five widely used classifiers were 
assessed: KNN, SVM, LDA, DT, and NB. Each classifier was 
evaluated based on accuracy and the number of selected genes. 
The feature selection methods compared include SNR, CC, and 
ReliefF, both independently and within the 3SGS framework. 

1) Performance on the Leukemia Dataset 

Table III displays the performance of various classifiers on 
the leukemia dataset, comparing traditional feature selection 
methods with the integrated 3SGS approach. The 3SGS 
strategy consistently achieved higher accuracy, reaching 100% 
with only 3-4 genes across several classifiers. The 3SGS 

approach outperformed traditional methods in accuracy and 
reduced the gene count required for high classification 
performance, identifying crucial markers (M27891, M23197, 
Y00787) for distinguishing between ALL and AML. 

TABLE III.  PERFORMANCE OF CLASSIFIERS WITH 
DIFFERENT FEATURE SELECTION METHODS FOR 

LEUKEMIA CANCER 

Feature selection 

methods 

Classifiers 

KNN SVM LDA DT NB 

SNR 
100% 
(13) 

97% 
(4) 

97% 
(9) 

97% 
(3) 

97% 
(5) 

SNR_3SGS 
100% 

(3) 
97% 
(2) 

97% 
(4) 

97% 
(3) 

97% 
(4) 

CC 
100%  
(50) 

97% 
(3) 

100%  
(93) 

97% 
(4) 

97% 
(6) 

CC_3SGS 
100% 

(4) 
97% 
(3) 

100% 
(5) 

100% 
(4) 

100% 
(4) 

ReliefF 
97% 
(41) 

97% 
(2) 

97%  
(69) 

94% 
(11) 

94% 
(5) 

ReliefF_3SGS 
100%  

(4) 
97%  
(1) 

100% 
(4) 

97% 
(4) 

97% 
(4) 

 

2) Performance on the Prostate Cancer Dataset 

Table IV summarizes the results on the prostate cancer 
dataset, where the 3SGS approach identified 3-4 genes, 
yielding classifier accuracies between 91% and 98%. 

TABLE IV.  PERFORMANCE OF VARIOUS CLASSIFIERS 
WITH DIFFERENT FEATURE SELECTION METHODS FOR 

PROSTATE CANCER 

Feature selection 

methods 

Classifiers 

KNN SVM LDA DT NB 

SNR 
90% 
(22) 

92% 
(8) 

92% 
(4) 

91% 
(19) 

91% 
(45) 

SNR_ 3SGS 
98% 
(3) 

98% 
(2) 

97% 
(1) 

92% 
(3) 

92% 
(4) 

CC 
85% 
(6) 

92% 
(44) 

92% 
(6) 

92% 
(46) 

91% 
(65) 

CC_3SGS 
92% 
(4) 

98% 
(3) 

98% 
(3) 

95% 
(4) 

92% 
(3) 

ReliefF 
90% 
(32) 

92% 
(34) 

91% 
(75) 

90% 
(36) 

92% 
(50) 

ReliefF_3SGS 
95% 
(3) 

95% 
(3) 

91% 
(1) 

91% 
(4) 

95% 
(4) 

 
The findings illustrate that the 3SGS method reduces the 

required gene subset size and consistently improves accuracy 
across classifiers, enhancing interpretability and computational 
efficiency. It achieved the highest classification accuracy using 
only three key discriminative genes (37720_at, 37639_at, 
40435_at). 

D. Discussion 

Several methods have achieved notable results in leukemia 
and prostate cancer classification. For instance, in [16], 
Isomap-based dimensionality reduction was combined with 
genetic algorithms, achieving 100% accuracy for leukemia but 
requiring 43 genes, making it computationally intensive and 
less interpretable compared to the 3SGS approach. Similarly, in 
[17], perfect accuracy was achieved for leukemia using seven 
genes. However, this method's reliance on multi-objective 
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optimization increases implementation complexity. In [34], 
100% accuracy was achieved for leukemia, but this method 
required 15 genes and leveraged fuzzy systems, which may 
complicate interpretability. In [35], 100% accuracy was 
achieved for leukemia using 10 genes, but this method lacks 
the accuracy-driven refinement and redundancy reduction 
included in 3SGS. 

For prostate cancer, methods such as MC-FE combined 
with PCA [36] achieved high accuracy (98%) but relied on 
PCA for dimensionality reduction, which can reduce 
interpretability by transforming features into principal 
components. Self-regularized Lasso [37] achieved 97% 
accuracy but required careful tuning of regularization 
parameters, which may limit scalability across datasets. 
Ensemble-based methods focused on tree features [38] also 
reached 97% accuracy but were computationally demanding 
and involved complex tree-based ensemble strategies, 
potentially increasing training time and complexity. 

The 3SGS approach achieved competitive performance 
with 100% accuracy for leukemia and 98% for prostate cancer 
using only 3-4 genes. Unlike the referenced methods, 3SGS 
balances simplicity and interpretability by combining filter-
based methods (SNR, CC, ReliefF) with accuracy-driven 
selection and redundancy reduction. This allows the 
identification of minimal but highly predictive gene subsets, 
reducing computational demands while maintaining high 
performance. Integrating linear (SNR, CC) and non-linear 
(ReliefF) techniques ensures robustness across diverse datasets 
without the need for ensemble models or dimensionality 
reduction techniques such as PCA. These strengths place 3SGS 
as a scalable, efficient, and interpretable solution for precision 
oncology, advancing the field of cancer classification through 
innovative feature selection. 

Despite its strengths, several limitations merit attention. 
First, the limited sample size raises concerns regarding 
overfitting. Future studies should validate 3SGS on larger, 
more diverse datasets to evaluate its generalizability. Second, 
the current application of 3SGS is limited to binary 
classification tasks. Expanding this framework to handle multi-
class cancer classification will enhance its utility in complex 
biomedical contexts. Third, although the identified genes 
exhibit strong statistical relevance, biological validation is 
essential to confirm their roles as biomarkers. Therefore, 
collaborations with biomedical researchers can provide deeper 
insights into their clinical significance. Finally, although 3SGS 
enhances computational efficiency, applying it to larger or 
multi-omics datasets may present challenges. Future research 
should explore parallel computing or distributed frameworks to 
improve scalability. 

IV. CONCLUSION 

This study introduced the 3SGS method, a novel 
framework that combines filter-based techniques, accuracy-
driven refinement, and redundancy reduction to address key 
challenges in gene selection. This approach differs from prior 
methods, such as those relying on genetic algorithms, ensemble 
models, or dimensionality reduction techniques such as PCA, 
by achieving similar or superior performance with far fewer 

genes and reduced computational demands. For example, while 
methods like Isomap-based genetic algorithms and XGBoost-
based multi-objective optimization require 10-43 genes to 
achieve 100% accuracy for leukemia, 3SGS achieves the same 
result with only 3-4 genes. Furthermore, the interpretability and 
efficiency of 3SGS make it particularly advantageous 
compared to ensemble-based approaches, which are often 
computationally intensive. Thus, this novel method provides a 
practical, scalable, and high-performance solution for cancer 
classification. 

Future research should focus on validating these findings 
across more extensive and varied datasets to assess the 
generalizability of 3SGS and its potential to handle multi-class 
classifications. Additionally, integrating deep learning 
techniques with 3SGS-selected features may further improve 
performance, especially in complex and high-dimensional 
settings such as multi-omics. The proposed strategy also 
encourages collaborations with clinical researchers to explore 
the biological relevance of selected genes, potentially 
enhancing precision oncology. 

In summary, the 3SGS strategy represents a robust, 
scalable, and efficient solution for cancer classification, poised 
to advance precision medicine through improved diagnostic 
workflows in cancer genomics. 
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